Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T01:47:51.862Z Has data issue: false hasContentIssue false

6 - Geometry of the fundamental lemma

Published online by Cambridge University Press:  05 October 2014

Pierre-Henri Chaudouard
Affiliation:
Université Paris Diderot
Fred Diamond
Affiliation:
King's College London
Payman L. Kassaei
Affiliation:
King's College London
Minhyong Kim
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Altman, A., Iarrobino, and S., Kleiman. Irreducibility of the compactified Jacobian. In Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pages 1–12. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.
[2] A., Altman and S., Kleiman. Compactifying the Picard scheme. Adv. in Math., 35(1) :50–112, 1980.Google Scholar
[3] A., Beauville, M., Narasimhan, and S., Ramanan. Spectral curves and the generalised theta divisor. J. Reine Angew. Math., 398 :169–179, 1989.Google Scholar
[4] A., Belinson, J., Bernstein, and P., Deligne. Faisceaux pervers. In Analysis and topology on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171. Soc. Math. France, Paris, 1982.
[5] R., Bezrukavnikov. The dimension of the fixed point set on affine flag manifolds. Math. Res. Lett., 3(2) :185–189, 1996.Google Scholar
[6] I., Biswas and S., Ramanan. An infinitesimal study of the moduli of Hitchin pairs. J. London Math. Soc. (2), 49(2) :219–231, 1994.Google Scholar
[7] P.-H., Chaudouard and G., Laumon. Le lemme fondamental pondéré. I. Constructions géométriques. Compos. Math., 146(6) :1416–1506, 2010.Google Scholar
[8] P.-H., Chaudouard and G., Laumon. Le lemme fondamental pondéré. II. Enoncés cohomologiques. Ann. of Math., 176(3) :1647–1781, 2012.Google Scholar
[9] R., Cluckers, T., Hales, and F., Loeser. Transfer principle for the fundamental lemma. In On the stabilization of the trace formula, volume 1 of Stab. Trace Formula Shimura Var. Arith. Appl., pages 309–347. Int. Press, Somerville, MA, 2011.
[10] P., Deligne. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math., (52) :137–252, 1980.Google Scholar
[11] M., Demazure, H., Pinkham, and B., Teissier, editors. Séminaire sur les Singularités des Surfaces, volume 777 of Lecture Notes in Mathematics. Springer, Berlin, 1980. Held at the Centre de Mathématiques de l'École Polytechnique, Palaiseau, 1976–1977.
[12] S., Diaz and J., Harris. Ideals associated to deformations of singular plane curves. Trans. Amer. Math. Soc., 309(2) :433–468, 1988.Google Scholar
[13] E., Esteves. Compactifying the relative Jacobian over families of reduced curves. Trans. Amer. Math. Soc., 353(8) :3045–3095 (electronic), 2001.Google Scholar
[14] M., Goresky, R., Kottwitz, and R., MacPherson. Homology of affine Springer fibers in the unramified case. Duke Math. J., 121(3) :509–561, 2004.Google Scholar
[15] M., Goresky, R., Kottwitz, and R., MacPherson. Purity of equivalued affine Springer fibers. Represent. Theory, 10 :130–146 (electronic), 2006.Google Scholar
[16] D., Kazhdan and G., Lusztig. Fixed point varieties on affine flag manifolds. Israel J. Math., 62(2) :129–168, 1988.Google Scholar
[17] J.-P., Labesse and R. P., Langlands. L-indistinguishability for SL(2). Canad. J. Math., 31(4) :726–785, 1979.Google Scholar
[18] R., Langlands. Les débuts d'une formule des traces stable, volume 13 of Publications Mathématiques de l'Université Paris VII. Université de Paris VII U.E.R. de Mathématiques, Paris, 1983.
[19] R., Langlands and D., Shelstad. On the definition of transfer factors. Math. Ann., 278 :219–271, 1987.Google Scholar
[20] S., Langton. Valuative criteria for families of vector bundles on algebraic varieties. Ann. of Math. (2), 101 :88–110, 1975.Google Scholar
[21] G., Laumon. Fibres de Springer et jacobiennes compactifiées. In Algebraic geometry and number theory, volume 253 of Progr. Math., pages 515–563. Birkhäuser Boston, Boston, MA, 2006.
[22] B. C., Ngô. Fibration de Hitchin et endoscopie. Invent. Math., 164(2) :399–453, 2006.Google Scholar
[23] B. C., Ngô. Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci., (111) :1–169, 2010.Google Scholar
[24] B. C., Ngô. Decomposition theorem and abelian fibration. In On the stabilization of the trace formula, volume 1 of Stab. Trace Formula Shimura Var. Arith. Appl., pages 253–264. Int. Press, Somerville, MA, 2011.
[25] J.-L., Waldspurger. Endoscopie et changement de caractéristique. J. Inst. Math. Jussieu, 5(3) :423–525, 2006.Google Scholar
[26] J.-L., Waldspurger. L'endoscopie tordue n'est pas si tordue. Mem. Amer. Math. Soc., 194(908) :x+261, 2008.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×