Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T23:05:03.293Z Has data issue: false hasContentIssue false

9 - Equations différentielles p-adiques et modules de Jacquet analytiques

Published online by Cambridge University Press:  05 October 2014

Gabriel Dospinescu
Affiliation:
UMR, Ecole Normale Supérieure de Lyon
Fred Diamond
Affiliation:
King's College London
Payman L. Kassaei
Affiliation:
King's College London
Minhyong Kim
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] L., Berger-Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), 219–284.Google Scholar
[2] L., Berger, C., Breuil-Sur quelques représentations potentiellement cristallines de GQp, Astérisque 330 (2010), 155–211.Google Scholar
[3] F., Cherbonnier et P., Colmez-Représentations p-adiques surconvergentes, Invent. Math. 133 (1998), 581–611.Google Scholar
[4] P., Colmez-Représentations triangulines de dimension 2, Astérisque 319 (2008), 213–258.Google Scholar
[5] P., Colmez-Représentations de GL2(Qp) et (φ, Γ)-modules, Astérisque 330 (2010), 281–509.Google Scholar
[6] P., Colmez-La série principale unitaire de GL2(Qp), Astérisque 330 (2010), 213–262.Google Scholar
[7] P., Colmez-La série principale unitaire de GL2(Qp): vecteurs localement analytiques, ce volume.
[8] G., Dospinescu-Actions infinitésimales dans la correspondance de Langlands locale p-adique, Math. Ann. 354 (2012), 627–657.Google Scholar
[9] M., Emerton-Locally analytic vectors in representations of locally p-adic analytic groups, to appear in Memoirs of the AMS.
[10] M., Emerton-A local-global compatibility conjecture in the p-adic Langlands programme for GL2/Q, Pure Appl. Math. Q. 2 (2006), 279–393.Google Scholar
[11] J.-M., Fontaine-Représentations p-adiques des corps locaux. I, in The Grothendieck Festschrift, Vol II, Progr. Math., vol 87, Birkhauser, 1990, 249–309.
[12] K.S., Kedlaya-A p-adic local monodromy theorem, Ann. of Math. 160 (2004), 93–184.Google Scholar
[13] R., Liu, Locally analytic vectors of some crystabeline representations of GL2(Qp), Compositio Mathematica, Volume 148, Issue 01, (2012) 28–64.Google Scholar
[14] R., Liu, B., Xie, Y., Zhang, Locally analytic vectors of unitary principal series of GL2(Qp), Annales Scientifiques de l'E.N.S. Vol. 45, No. 1, (2012) 167–190.Google Scholar
[15] P., Schneider et J., Teitelbaum- Locally analytic distributions and p-adic representation theory, with applications to GL2, J. Amer. Math. Soc 15 (2002), 443–468.Google Scholar
[16] P., Schneider et J., Teitelbaum- Algebras of p-adic distributions and admissible representations, Invent. Math. 153 (2003), 145–196.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×