Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T20:28:46.399Z Has data issue: false hasContentIssue false

9 - Experimental Metrics for ASAT

from Core Section

Published online by Cambridge University Press:  03 March 2022

Thomas F. Kelly
Affiliation:
Steam Instruments, Inc.
Brian P. Gorman
Affiliation:
Colorado School of Mines
Simon P. Ringer
Affiliation:
University of Sydney
Get access

Summary

We proposed in Chapter 5 that a combination of STEM and APT is the most likely method through which ASAT could be achieved, using either APT-centric atomic positioning or STEM-centric atom positioning. The approaches laid out are expected to achieve ASAT at some level, but we cannot expect absolute perfection since all experimental techniques have limitations. Limitations may be due either to the underlying physics (physical) or due to the technology available (technical). It is important to consider these limitations to understand where improvements might be made if limited primarily by the technology (technical). This chapter explores the most significant of these potential limitations using both APT- and STEM-centric atom positioning methods. Changes to experimental best practices as well as forward-looking advances in hardware and software are needed in order to achieve ASAT.

Type
Chapter
Information
Atomic-Scale Analytical Tomography
Concepts and Implications
, pp. 160 - 198
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gault, B., Moody, M. P., Cairney, J. M., and Ringer, S. P., “Atom Probe Crystallography,” Mater. Today, vol. 15, no. 9, pp. 378386, 2012.Google Scholar
Kirchhofer, Rita, Diercks, David, and Gorman, Brian, “Near Atomic Scale Quantification of a Diffusive Phase Transformation in (Zn,Mg)O/Al2O3 Using Dynamic Atom Probe Tomography,” J. Mater. Res., vol. 30, no. 8, Apr. 2015.CrossRefGoogle Scholar
Bunton, J. H., Olson, J. D., Lenz, D. R., Larson, D. J., and Kelly, T. F., “Optimized Laser Thermal Pulsing of Atom Probe Tomography: LEAP 4000X,” Microsc. Microanal., vol. 16 no. S2, pp. 1011, 2010.CrossRefGoogle Scholar
Larson, D. J. et al., “Analysis of Bulk Dielectrics with Atom Probe Tomography,” Microsc. Microanal., vol. 14, no. Supp. 2, pp. 12541255, 2008.Google Scholar
Prosa, T. J., Kostrna Keeney, S., and Kelly, T. F., “Recent Advances in Analysis of Organic Materials Using LEAP Tomography,” Microsc. Microanal., vol. 13, no. Supp. 2, pp. 190191, 2007.CrossRefGoogle Scholar
Gault, B., Yang, W., Ratinac, K. R. et al., “Atom Probe Microscopy of Self-Assembled Monolayers: Preliminary Results,” Langmuir, vol. 26, no. 8, pp. 52915294, Apr. 2010, doi: https://doi.org/10.1021/la904459 k.Google Scholar
Larson, D. J. and Geiser, B. P., “Field Evaporation Simulation of a Cross Section ABA Structure,” presented at the Third Australian Atom Probe Workshop, Magnetic Island, Queensland, Australia, 2017, [Online]. Available: Third Australian Atom Probe Workshop.Google Scholar
Tsong, T. T., “Direct Observation of Interactions between Individual Atoms on Tungsten Surfaces,” Phys. Rev. B, vol. 6, no. 2, pp. 416–426, 1972.CrossRefGoogle Scholar
Tsong, T. T. and Kellogg, G. L., “Direct Observation of the Directional Walk of Single Adatoms and the Adatom Polarizability,” Phys. Rev. B, vol. 12, no. 4, pp. 13431353, 1975.Google Scholar
Gault, B., Danoix, F., Hoummada, K., Mangelinck, D., and Leitner, H., “Impact of Directional Walk on Atom Probe Microanalysis,” Ultramicroscopy, vol. 113, pp. 182191, Feb. 2012, doi: https://doi.org/10.1016/j.ultramic.2011.06.005.CrossRefGoogle Scholar
Yao, L., Gault, B., Cairney, J. M., and Ringer, S. P., “On the Multiplicity of Field Evaporation Events in Atom Probe: A New Dimension to the Analysis of Mass Spectra,” Philos. Mag. Lett., vol. 90, no. 2, pp. 121129, 2010.Google Scholar
Kobayashi, Y., Takahashi, J., and Kawakami, K., “Anomalous Distribution in Atom Map of Solute Carbon in Steel,” Ultramicroscopy, vol. 111, no. 6, pp. 600603, 2011.Google Scholar
Hyde, J. M. et al., “Atom Probe Tomography of Reactor Pressure Vessel Steels: An Analysis of Data Integrity,” Ultramicroscopy, vol. 111, pp. 676682, 2011.Google Scholar
Tu, Y. et al., “Influence of Laser Power on Atom Probe Tomographic Analysis of Boron Distribution in Silicon,” Ultramicroscopy, vol. 173, no. Supplement C, pp. 5863, Feb. 2017, doi: https://doi.org/10.1016/j.ultramic.2016.11.023.Google Scholar
Müller, E. W., Nakamura, S., Nishikawa, O., and McLane, S. B., “Gas-Surface Interactions and Field-Ion Microscopy of Nonrefractory Metals,” J. Appl. Phys., vol. 36, no. 8, pp. 24962503, 1965.CrossRefGoogle Scholar
Lefebvre, W., “Atom Counting in Atom Probe Tomography Specimens Using Quantitative HAADF-STEM,” Microsc. Microanal., vol. 19, no. Supp. 2, pp. 950951, 2013, doi: https://doi.org/10.1017/S1431927613006740.Google Scholar
De Geuser, F., Gault, B., Bostel, A., and Vurpillot, F., “Correlated Field Evaporation as Seen by Atom Probe Tomography,” Surf. Sci., vol. 601, no. 2, pp. 536543, 2007.Google Scholar
Kelly, T. F., “Kinetic-Energy Discrimination for Atom Probe Tomography,” Micros. Microanal., vol. 17, no. 1, pp. 114, 2011.Google Scholar
Miller, M. K. and Forbes, R. G., Atom-Probe Tomography: The Local Electrode Atom Probe, 1st ed. Boston: Springer US, 2014.Google Scholar
Bachhav, M., Danoix, F., Hannoyer, B., Bassat, J. M., and Danoix, R., “Investigation of O-18 Enriched Hematite (α-Fe2O3) by Laser Assisted Atom Probe Tomography,” Int. J. Mass Spectrom., vol. 335, pp. 5760, Feb. 2013, doi: https://doi.org/10.1016/j.ijms.2012.10.012.CrossRefGoogle Scholar
Diercks, D. R., Gorman, B. P., Kirchhofer, R. et al., “Atom Probe Tomography Evaporation Behavior of C-Axis GaN Nanowires: Crystallographic, Stoichiometric, and Detection Efficiency Aspects,” J. Appl. Phys., vol. 114, no. 18, p. 184903, Nov. 2013, doi: https://doi.org/10.1063/1.4830023.CrossRefGoogle Scholar
Kirchhofer, R., Teague, M. C., and Gorman, B. P., “Thermal Effects on Mass and Spatial Resolution during Laser Pulse Atom Probe Tomography of Cerium Oxide,” J. Nucl. Mater., vol. 436, no. 1–3, pp. 2328, 2013.Google Scholar
Diercks, D. R. and Gorman, B. P., “Nanoscale Measurement of Laser-Induced Temperature Rise and Field Evaporation Effects in CdTe and GaN,” J. Phys. Chem. C, vol. 119, no. 35, pp. 2062320631, Sep. 2015, doi: https://doi.org/10.1021/acs.jpcc.5b02126.Google Scholar
Gault, B. et al., “Behavior of Molecules and Molecular Ions near a Field Emitter,” New J. Phys., vol. 18, no. 3, p. 033031, 2016.Google Scholar
Kingham, D. R., “The Post-Ionization of Field Evaporated Ions: A Theoretical Explanation of Multiple Charge States,” Surf. Sci., vol. 116, no. 2, pp. 273301, 1982.Google Scholar
Frasinski, L. J., Codling, K., and Hatherly, P. A., “Covariance Mapping: A Correlation Method Applied to Multiphoton Multiple Ionization,” Science, vol. 246, no. 4933, pp. 10291031, 1989.CrossRefGoogle ScholarPubMed
Saxey, D. W., “Correlated Ion Analysis and the Interpretation of Atom Probe Mass Spectra,” Ultramicroscopy, vol. 111, no. 6, pp. 473479, 2011, doi: https://doi.org/10.1016/j.ultramic.2010.11.021.Google Scholar
Savitzky, B. H. et al., “py4DSTEM: A Software Package for Multimodal Analysis of Four-Dimensional Scanning Transmission Electron Microscopy Datasets,” ArXiv200309523 Cond-Mat Physics, Mar. 2020, Accessed: May 19, 2020. [Online]. Available: http://arxiv.org/abs/2003.09523.Google Scholar
Williams, D. B. and Carter, C. B., Transmission Electron Microscopy, 2nd ed., 4 vols. New York: Springer, 2009.Google Scholar
Burton, G. L., Ricote, S., Foran, B. J., Diercks, D. R., and Gorman, B. P., “Quantification of Grain Boundary Defect Chemistry in a Mixed Proton-Electron Conducting Oxide Composite,” J. Am. Ceram. Soc., vol. 103, no. 5, pp. 32173230, 2020, doi: https://doi.org/10.1111/jace.17014.CrossRefGoogle Scholar
Kelly, T. F., Miller, M. K., Rajan, K., and Ringer, S. P., “Atomic-Scale Tomography: A 2020 Vision,” Microsc. Microanal., vol. 19, no. 3, pp. 652664, 2013.CrossRefGoogle ScholarPubMed
Da Costa, G., Vurpillot, F., Bostel, A., Bouet, M., and Deconihout, B., “Design of a Delay-Line Position-Sensitive Detector with Improved Performance,” Rev. Sci. Instrum., vol. 76, no. 1, pp. 013304–1–8, 2005.Google Scholar
Mane, A. et al., “An Atomic Layer Deposition Method to Fabricate Economical and Robust Large Area Microchannel Plates for Photodetectors,” Phys. Procedia, vol. 37, pp. 722732, 2012, doi: https://doi.org/10.1016/j.phpro.2012.03.720.CrossRefGoogle Scholar
Minot, M. J. et al., “Pilot Production and Advanced Development of Large-Area Picosecond Photodetectors,” Proceedings of SPIE 9968, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVIII, Sep. 30, 2016, p. 99680X, doi: https://doi.org/10.1117/12.2237331.Google Scholar
Bajikar, S. S., Larson, D. J., Camus, P. P., and Kelly, T. F., “Mass Resolution Enhancement in Local-Electrode Atom Probes: A Preliminary Study Using Field Emitter Arrays,” J. Phys. IV, vol. 6, no. C5, pp. 303308, 1996.Google Scholar
Kelly, T. F., Camus, P. P., Larson, D. J., Holzman, L. M., and Bajikar, S. S., “On the Many Advantages of Local-Electrode Atom Probes,” Ultramicroscopy, vol. 62, no. 1, pp. 2942, 1996.Google Scholar
Prosa, T. J., Geiser, B. P., Ulfig, R. M., Kelly, T. F., and Larson, D. J., “Measurement of Detection Efficiency in Atom Probe Tomography,” Microsc. Microanal., vol. 20, no. Supplement S3, pp. 11601161, 2014, doi: https://doi.org/10.1017/S1431927614007533.Google Scholar
Larson, D. J., Prosa, T. J., Ulfig, R. M., Geiser, B. P., and Kelly, T. F., Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer, 2013.Google Scholar
Da Costa, G., Wang, H., Duguay, S. et al., “Advance in Multi-hit Detection and Quantization in Atom Probe Tomography,” Rev. Sci. Instrum., vol. 83, no. 12, p. 123709, 2012.Google Scholar
Panitz, J. A., “The 10 cm Atom Probe,” Rev Sci. Instrum., vol. 44, no. 8, pp. 10341038, 1973.Google Scholar
Panitz, J. A., “Imaging Atom-Probe Mass Spectroscopy,” Prog. Surf. Sci., vol. 8, no. 6, pp. 219262, Jan. 1978, doi: https://doi.org/10.1016/0079-6816(78)90002-3.Google Scholar
Miller, M. K., Kelly, T. F., Rajan, K., and Ringer, S. P., “The Future of Atom Probe Tomography,” Mater. Today, vol. 15, no. 4, pp. 158165, Apr. 2012.Google Scholar
Matoba, S., Takahashi, R., Io, C., Koizumi, T., and Shiromaru, H., “Absolute Detection Efficiency of a High-Sensitivity Microchannel Plate with Tapered Pores,” Jpn. J. Appl. Phys., vol. 50, no. 11, p. 112201, 2011, doi: https://doi.org/10.1143/JJAP.50.112201.Google Scholar
Bacchi, C., Da Costa, G., and Vurpillot, F., “Spatial and Compositional Biases Introduced by Position Sensitive Detection Systems in APT: A Simulation Approach,” Microsc. Microanal., vol. 25, no. 2, pp. 418424, 2019, doi: https://doi.org/10.1017/S143192761801629X.Google Scholar
Bacchi, C., “New Generation of Position-Sensitive Detectors for the Development of the Atom Probe Tomography,” PhD thesis, University of Rouen, France, 2020.Google Scholar
Ronsheim, P., Flaitz, P., Hatzistergos, M. et al., “Impurity Measurements in Silicon with D-SIMS and Atom Probe Tomography,” Appl. Surf. Sci., vol. 255, no. 4, pp. 15471550, 2008.Google Scholar
Thuvander, M. et al., “Quantitative Atom Probe Analysis of Carbides,” Ultramicroscopy, vol. 111, no. 6, pp. 604608, May 2011, doi: https://doi.org/10.1016/j.ultramic.2010.12.024.Google Scholar
Llopart, X., Ballabriga, R., Campbell, M., Tlustos, L., and Wong, W., “Timepix, a 65 k Programmable Pixel Readout Chip for Arrival Time, Energy and/or Photon Counting Measurements,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 581, no. 1–2, pp. 485494, Oct. 2007, doi: https://doi.org/10.1016/j.nima.2007.08.079.CrossRefGoogle Scholar
John, J. J. et al., “PImMS, a Fast Event-Triggered Monolithic Pixel Detector with Storage of Multiple Timestamps,” J. Instrum., vol. 7, no. 8, p. C08001, Aug. 2012, doi: https://doi.org/10.1088/1748-0221/7/08/C08001.Google Scholar
Jungmann, J. H. and Heeren, R. M. A., “Detection Systems for Mass Spectrometry Imaging: A Perspective on Novel Developments with a Focus on Active Pixel Detectors,” Rapid Commun. Mass Spectrom., vol. 27, no. 1, pp. 123, Jan. 2013, doi: https://doi.org/10.1002/rcm.6418.Google Scholar
McDermott, R. F. and Suttle, J. R., “System and Method for Characterizing Ions Using a Superconducting Transmission Line Detector,” US Patent 9490112, 2015.Google Scholar
Suttle, J. R., Kelly, T. F., and McDermott, R. F., “A Superconducting Ion Detection Scheme for Atom Probe Tomography,” presented at Atom Probe Tomography and Microscopy 2016: from Science to Industry, Gyeongju, Korea, Jun. 2016.Google Scholar
Suttle, J., “A Superconducting Ion Detector,” Ph.D. thesis, The University of Wisconsin – Madison, 2018.Google Scholar
Gorman, B. P., “Systems and Methods of Aberration Correction for Atom Probe Tomography,” US20190318907A1, Oct. 17, 2019.Google Scholar
Suttle, J. R., Kelly, T. F., and McDermott, R., “Superconducting Delay-Line Detector for Time-of-Flight Spectrometry,” Microsc. Microanal., vol. 24, no. S1, pp. 12, 2018.Google Scholar
Hilton, G. C. et al., “Impact Energy Measurement in Time-of-Flight Mass Spectrometry with Cryogenic Microcalorimeters,” Nature, vol. 391, no. 6668, pp. 672675, 1998.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×