Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 Introduction
- 2 Atomic structure
- 3 Atomic processes
- 4 Radiative transitions
- 5 Electron–ion collisions
- 6 Photoionization
- 7 Electron–ion recombination
- 8 Multi-wavelength emission spectra
- 9 Absorption lines and radiative transfer
- 10 Stellar properties and spectra
- 11 Opacity and radiative forces
- 12 Gaseous nebulae and H II regions
- 13 Active galactic nuclei and quasars
- 14 Cosmology
- Appendix A Periodic table
- Appendix B Physical constants
- Appendix C Angular algebra and generalized radiative transitions
- Appendix D Coefficients of the fine structure components of an LS multiplet
- Appendix E Effective collision strengths and A-values
- References
- Index
1 - Introduction
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 Introduction
- 2 Atomic structure
- 3 Atomic processes
- 4 Radiative transitions
- 5 Electron–ion collisions
- 6 Photoionization
- 7 Electron–ion recombination
- 8 Multi-wavelength emission spectra
- 9 Absorption lines and radiative transfer
- 10 Stellar properties and spectra
- 11 Opacity and radiative forces
- 12 Gaseous nebulae and H II regions
- 13 Active galactic nuclei and quasars
- 14 Cosmology
- Appendix A Periodic table
- Appendix B Physical constants
- Appendix C Angular algebra and generalized radiative transitions
- Appendix D Coefficients of the fine structure components of an LS multiplet
- Appendix E Effective collision strengths and A-values
- References
- Index
Summary
Atomic astrophysics and spectroscopy
Spectroscopy is the science of light–matter interaction. It is one of the most powerful scientific tools for studying nature. Spectroscopy is dependent on, and therefore reveals, the inherent as well as the extrinsic properties of matter. Confining ourselves to the present context, it forms the link that connects astronomy with fundamental physics at atomic and molecular levels. In the broadest sense, spectroscopy explains all that we see. It underlies vision itself, such as the distinction between colours. It enables the study of matter and light through the wavelengths of radiation (‘colours’) emitted or absorbed uniquely by each element. Atomic astrophysics is atomic physics and plasma physics applied to astronomy, and it underpins astrophysical spectroscopy. Historically, astrophysical spectroscopy is older than modern astrophysics itself. One may recall Newton's experiments in the seventeenth century on the dispersion of sunlight by a prism into the natural rainbow colours as an identification of the visible band of radiation. More specifically, we may trace the beginning of astrophysical spectroscopy in the early nineteenth century to the discovery of dark lines in the solar spectrum by Wollaston in 1802 and Fraunhofer in 1815. The dark lines at discrete wavelengths arise from removal or absorption of energy by atoms or ions in the solar atmosphere. Fraunhofer observed hundreds of such features that we now associate with several constituent elements in the Sun, such as the sodium D lines.
- Type
- Chapter
- Information
- Atomic Astrophysics and Spectroscopy , pp. 1 - 14Publisher: Cambridge University PressPrint publication year: 2011