Book contents
- Frontmatter
- Contents
- Preface
- 1 Observations of planetary systems
- 2 Protoplanetary disk structure
- 3 Protoplanetary disk evolution
- 4 Planetesimal formation
- 5 Terrestrial planet formation
- 6 Giant planet formation
- 7 Early evolution of planetary systems
- Appendix 1 Physical and astronomical constants
- Appendix 2 N-body methods
- References
- Index
5 - Terrestrial planet formation
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- 1 Observations of planetary systems
- 2 Protoplanetary disk structure
- 3 Protoplanetary disk evolution
- 4 Planetesimal formation
- 5 Terrestrial planet formation
- 6 Giant planet formation
- 7 Early evolution of planetary systems
- Appendix 1 Physical and astronomical constants
- Appendix 2 N-body methods
- References
- Index
Summary
Once planetesimals have formed, the dominant physical process that controls further growth is their mutual gravitational interaction. Conventionally the only further role the gas disk plays in terrestrial planet formation is to provide a modest degree of aerodynamic damping of protoplanetary eccentricity and inclination. In this limit the physics involved – Newtonian gravity – is simple and the problem of terrestrial planet formation is well posed. It is not, however, easy to solve. It would take 4 × 109 planetesimals with a radius of 5 km to build the Solar System's terrestrial planets, and it is infeasible to directly simulate the N-body evolution of such a system for long enough (and with sufficient accuracy) to watch planets form. Instead a hybrid approach is employed. For the earliest phases of terrestrial planet formation a statistical approach, similar to that used in the kinetic theory of gases, is both accurate and efficient. When the number of dynamically significant bodies has dropped to a manageable number (of the order of hundreds or thousands), direct N-body simulations become feasible, and these are used to study the final assembly of the terrestrial planets. Using this two-step approach has known drawbacks (for example, it is difficult to treat the situation where a small number of protoplanets co-exist with a large sea of very small bodies), but nevertheless it provides a reasonably successful picture for how the terrestrial planets formed.
- Type
- Chapter
- Information
- Astrophysics of Planet Formation , pp. 146 - 184Publisher: Cambridge University PressPrint publication year: 2009