Book contents
- Frontmatter
- Contents
- Preface
- 1 Observations of planetary systems
- 2 Protoplanetary disk structure
- 3 Protoplanetary disk evolution
- 4 Planetesimal formation
- 5 Terrestrial planet formation
- 6 Giant planet formation
- 7 Early evolution of planetary systems
- Appendix 1 Physical and astronomical constants
- Appendix 2 N-body methods
- References
- Index
4 - Planetesimal formation
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- 1 Observations of planetary systems
- 2 Protoplanetary disk structure
- 3 Protoplanetary disk evolution
- 4 Planetesimal formation
- 5 Terrestrial planet formation
- 6 Giant planet formation
- 7 Early evolution of planetary systems
- Appendix 1 Physical and astronomical constants
- Appendix 2 N-body methods
- References
- Index
Summary
The formation of terrestrial planets from micron-sized dust particles requires growth through at least 12 orders of magnitude in size scale. It is conceptually useful to divide the process into three main stages that involve different dominant physical processes:
Planetesimal formation. Planetesimals are defined as bodies that are large enough (typically of the order of 10 km in radius) that their orbital evolution is dominated by mutual gravitational interactions rather than aerodynamic coupling to the gas disk. With this definition it is self-evident that aerodynamic forces between solid particles and the gas disk are of paramount importance in the study of planetesimal formation, since these forces dominate the evolution of particles in the large size range that lies between dust and substantial rocks. The efficiency with which particles coagulate upon collision – loosely speaking how “sticky” they are – is also very important.
Terrestrial planet formation. Once a population of planetesimals has formed within the disk their subsequent evolution is dominated by gravitational interactions. This phase of planet formation, which yields terrestrial planets and the cores of giant planets, is the most cleanly defined since the basic physics (Newtonian gravity) is simple and well-understood. It remains challenging due to the large number of bodies – it takes 500 million 10 km radius planetesimals to build up the Solar System's terrestrial planets – and long time scales involved.
Giant planet formation and core migration. Once planets have grown to about an Earth mass, coupling to the gas disk becomes significant once again, though now it is gravitational rather than aerodynamic forces that matter. […]
- Type
- Chapter
- Information
- Astrophysics of Planet Formation , pp. 109 - 145Publisher: Cambridge University PressPrint publication year: 2009