Published online by Cambridge University Press: 05 September 2016
We are on the verge of an explosion in data volume owing to recently started or upcoming surveys of the skies. One of the benefits of these new programmes will be the vastly increased number of known strong gravitational lens systems. In this chapter I will discuss three main topics: lens discovery in these surveys; the use of lensing to determine the mass distribution in galaxies, and in particular substructure in massive galaxy haloes; and cosmological measurements with large lens samples.
Introductory remarks
The next few decades will present an especially exciting time for strong gravitational lensing. This is because a combination of new instrumentation and, in some cases, brand new telescopes have come online, or are at an advanced stage of planning. With the enhanced observing capability enabled by these new facilities, a number of large-scale astronomical surveys are planned. These surveys will provide unprecedented combinations of depth, area, angular resolution and, in some cases, will open up poorly explored wavelength regimes. As a result, they should lead to orders of magnitude increases in the number of known strong lens systems. Indeed, although dedicated observational surveys for lenses have proved productive in the past, it is likely that the vast majority of future lenses will be discovered by mining the data produced by the new large surveys. The resulting large samples of lenses will lead to two major advantages: (1) improved statistics for investigations of galaxy properties, evolution in these properties and cosmology etc., and (2) the discovery of rare lens systems that are especially interesting and useful. As a complement to the large surveys, the planned construction of significantly larger ground- and space-based telescopes will provide enhanced follow-up capabilities of the new discoveries. Furthermore, advances in modelling and analysis codes will allow researchers to exploit more of the information available in observations of lens systems.
As is obvious at this point, this chapter has a focus on the field of strong gravitational lensing, and how it can be affected by large recently started and upcoming astronomical surveys. Taking this approach necessarily ignores other aspects of lensing that also have an exciting future. The new surveys will have a strong impact on investigations that utilize weak lensing or microlensing.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.