Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T20:28:34.322Z Has data issue: false hasContentIssue false

7 - Arctic Ocean–Sea Ice–Climate Interactions

Published online by Cambridge University Press:  05 August 2014

Mark C. Serreze
Affiliation:
University of Colorado Boulder
Roger G. Barry
Affiliation:
University of Colorado Boulder
Get access

Summary

Overview

The mean seasonal variation of sea ice extent was reviewed in Chapter 2 along with some basic aspects of sea ice circulation, morphology, and the factors contributing to sea ice growth. As introduced there, the existence of the ice cover is not simply a function of low winter temperatures; its formation and persistence is fostered by the existence of a relatively fresh surface layer, maintained by river runoff, the import of low-salinity water through the Bering Strait, net precipitation over the Arctic Ocean, and the distillation process associated with ice formation itself. Seasonally, summer melt of the fairly fresh ice is also important. The characteristics of river runoff were examined in Chapter 6. In Chapter 3, we discussed the role that sea ice plays in the Arctic’s atmospheric energy budget, with sea ice melt maintaining a downward net surface flux (from the atmosphere to the ocean) in summer, and sea ice growth adding heat to the atmosphere in winter. Chapter 5 shed further light on this issue through a review of surface energy exchanges. In Chapter 4, we documented sea ice impacts on regional aspects of the atmospheric circulation through enhanced baroclinicity along the ice margins, and how the atmospheric circulation may now be responding to observed reductions in ice extent. The present chapter extends our understanding of sea ice and its interactions with the atmosphere and ocean.

The growth of sea ice up to about 1 m in thickness can be approximated in terms of freezing degree days. This is because the temperature gradient in thin ice is essentially linear. By contrast, the growth of thicker ice, primarily multiyear ice, which has historically attained equilibrium thicknesses of 3.5–4.5 m while surviving ten years or more, is complicated by thermal history, seen as nonlinear vertical temperature gradients. Ice melts at both its top and bottom surfaces, with the process again less straightforward for thick ice. For example, in October when thin ice is growing quickly in leads, thick ice may still be decreasing in thickness owing to bottom melt, the reason being that the autumn cooling has not yet affected the lowest part of the ice. Over the past several decades, the Arctic has lost much of its thickest and oldest multiyear ice.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×