Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T11:41:54.024Z Has data issue: false hasContentIssue false

5 - Isotope Analysis for Mobility and Climate Studies

from Part II - Biomolecular Archaeology

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Isotope studies in archaeology are often concerned with the analysis of preserved proteins for the reconstruction of past diets, but isotopic signatures in the mineral phase of archaeological skeletons can also be used to reconstruct place of residence and even the contemporary local climate. These applications are based upon the premise of a relationship between underlying local geology/local soils (strontium) and ingested water (oxygen) to the body isotope chemistry of the individuals in question (see reviews in Bentley 2006, and Pederzani and Britton 2019). Where the distribution of isotope signatures within and across different ecosystems varies predictably, these methods can be used to source human and animal remains to specific regions or to identify non-local outliers or migrants (e.g., Bentley 2013; Müldner et al. 2009).

Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 99 - 124
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, G. 1995. The use of natural strontium isotopes as tracers in environmental studies. Water, Air and Soil Pollution 79:309322.CrossRefGoogle Scholar
Åberg, G., Jacks, G., Wickman, T. and Hamilton, P. J. 1990. Strontium isotopes in trees as an indicator for calcium availability. Catena 17:111.Google Scholar
Ayliffe, L. K., Lister, A. M. and Chivas, A. R. 1992. The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99:179191.Google Scholar
Balasse, M., Ambrose, S. H., Smith, A. B. and Price, T. D. 2002. The seasonal mobility model for prehistoric herders in the South-western Cape of South Africa assessed by isotopic analysis of sheep tooth enamel. Journal of Archaeological Science 29:917932.Google Scholar
Bataille, C. P., von Holstein, I. C. C., Laffoon, J. E., Willmes, M., Liu, X. -M. and Davies, G. R., 2018. A bioavailable strontium isoscape for Western Europe: A machine learning approach. PLoS ONE 13:e0197386.Google Scholar
Beikman, H. M. 1980. Geologic Map of Alaska, 1:2 500 000. US Geological Survey.Google Scholar
Bentley, R. A. 2006. Strontium isotopes from the earth to the archaeological skeleton: A review. Journal of Archaeological Method and Theory 13:135187.CrossRefGoogle Scholar
Bentley, R. A. 2013. Mobility and the diversity of Early Neolithic lives: Isotopic evidence from skeletons. Journal of Anthropological Archaeology 32:303312.CrossRefGoogle Scholar
Bentley, R. A. and Knipper, C. 2005. Transhumance at the early Neolithic settlement at Vaihingen (Germany). Antiquity 79 (December. Online Project Gallery).Google Scholar
Bentley, R. A., Pietrusewsky, M., Douglas, M. T. and Atkinson, T. C. 2005. Matrilocality during the prehistoric transition to agriculture in Thailand? Antiquity 79:865881.Google Scholar
Bentley, R. A., Price, T. D. and Stephen, E. 2004. Determining the ‘local’ 87Sr/86Sr range for archaeological skeletons: A case study from Neolithic Europe. Journal of Archaeological Science 31:365375.CrossRefGoogle Scholar
Bernard, A., Daux, V., Lécuyer, C., Brugal, J.-P., Genty, D., Wainer, K., Gardien, V., Fourel, F. and Jaubert, J. 2009. Pleistocene seasonal temperature variations recorded in the δ18O of Bison priscus teeth. Earth and Planetary Science Letters 283:133143.Google Scholar
Blum, J. D., Taliaferro, E. H., Weisse, M. T. and Holmes, R. T. 2000. Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern U.S.A. Biogeochemistry 49:87101.CrossRefGoogle Scholar
Brettell, R., Montgomery, J. and Evans, J. 2012. Brewing and stewing: The effect of culturally mediated behaviour on the oxygen isotope composition of ingested fluids and the implications for human provenance studies. Journal of Analytical Atomic Spectrometry 27:778785.CrossRefGoogle Scholar
Britton, K. 2010. Multi-isotope analysis and the reconstruction of prey species palaeomigrations and palaeoecology. Doctoral thesis, Durham University.Google Scholar
Britton, K. 2018. Prey species movements and migrations in ecocultural landscapes: Reconstructing late Pleistocene herbivore seasonal spatial behaviours. In: `Pilaar-Birch, S. (ed.) Multi-Species Archaeology, pp. 347367. London: Routledge.CrossRefGoogle Scholar
Britton, K., Fuller, B. T., Tutken, T., Mays, S. and Richards, M. P. 2015. Oxygen isotope analysis of human bone phosphate evidences weaning age in archaeological populations. American Journal of Physical Anthropology 157:226241.Google Scholar
Britton, K., Grimes, V., Dau, J. and Richards, M. P. 2009. Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: A case study of modern caribou (Rangifer tarandus granti). Journal of Archaeological Science 36:11631172.Google Scholar
Britton, K., Grimes, V., Niven, L., Steele, T., McPherron, S., Soressi, M., Kelly, T. E., Jaubert, J., Hublin, J.-J. and Richards, M. P. 2011. Strontium isotope evidence for migration in late Pleistocene Rangifer: Implications for Neanderthal hunting strategies at the Middle Palaeolithic site of Jonzac, France. Journal of Human Evolution 61:176185.CrossRefGoogle ScholarPubMed
Brown, W. A. B. and Chapman, N. G. 1991a. Age assessment of fallow deer (Dama dama): From a scoring scheme based on radiographs of developing permanent molariform teeth. Journal of Zoology, London 224:367379.CrossRefGoogle Scholar
Brown, W. A. B. and Chapman, N. G. 1991b. The dentition of red deer (Cervus elaphus): A scoring scheme to assess age from wear of the permanent molariform teeth. Journal of Zoology, London 224:519536.Google Scholar
Bryant, J. D. and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59:45234537.Google Scholar
Bryant, J. D., Froelich, P. N., Showers, W. J. and Genna, B. J. 1996a. Biologic and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126:7589.CrossRefGoogle Scholar
Bryant, J. D., Koch, P. L., Froelich, P. N., Showers, W. J. and Genna, B. J. 1996b. Oxygen isotope partioning between phosphate and carbonate in mammalian apatite. Geochimica et Cosmochimica Acta 60:51455148.CrossRefGoogle Scholar
Bryant, J. D., Luz, B. and Froelich, P. N. 1994. Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107:303316.CrossRefGoogle Scholar
Budd, P., Millard, A., Chenery, C., Lucy, S. and Roberts, C. 2004. Investigating population movement by stable isotope analysis: A report from Britain. Antiquity 78:127141.CrossRefGoogle Scholar
Burton, J. H., Price, T. D. and Middleton, W. D. 1999. Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. Journal of Archaeological Science 26:609616.CrossRefGoogle Scholar
Capo, R. C., Stewert, B. W. and Chadwick, O. A. 1998. Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 82:197225.CrossRefGoogle Scholar
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. and Hedin, L. O. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397:491497.Google Scholar
Chenery, C., Muldner, G., Evans, J., Eckardt, H. and Lewis, M. 2010. Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. Journal of Archaeological Science 37:150163.Google Scholar
Clark, I. and Fritz, P. 1997. Environmental Isotopes in Hydrogeology. New York: Lewis Publishers.Google Scholar
Copeland, S. R., Sponheimer, M., le Roux, P. J., Grimes, V., Lee-Thorp, J. A., de Ruiter, D. J. and Richards, M. P. 2008. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: Comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. Rapid Communications in Mass Spectrometry 22:31873194.Google Scholar
Coplen, T. B. 1995. New manuscript guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope-ratio data. Geothermics 24:707712.Google Scholar
Crowson, R. A., Showers, W. J., Wright, E. K. and Hoering, T. C. 1991. Preparation of phosphate samples for oxygen isotope analysis. Analytical Chemistry 63:23972400.Google Scholar
Cuntz, M., Ciais, P. and Hoffmann, G. 2002. Modelling the continental effect of oxygen isotopes over Eurasia. Tellus B 54:895911.CrossRefGoogle Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16:436468.CrossRefGoogle Scholar
Dau, J. 2003. Units 21D, 22A, 22B, 23, 24, 26A. In: `Healy, C. (ed.) Caribou survey-inventory management report, July 1 2000–June 30 2002. Juneau: Alaska Department of Fish and Game.Google Scholar
Daux, V., Lécuyer, C., Héran, M.-A., Amiot, R., Simon, L., Fourel, F., Martineau, F., Lynnerup, N., Reychler, H. and Escarguel, G. 2008. Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution 55:11381147.Google Scholar
Dettman, D. L., Kohn, M. J., Quade, J., Ryerson, F. J., Ojha, T. P. and Hamindullah, S. 2001. Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology 29:3134.Google Scholar
Dijkstra, F. A. and Smits, M. M. 2002. Tree species effects on calcium cycling: The role of calcium uptake in deep soils. Ecosystems 5:385398.Google Scholar
Ericson, J. E. 1985. Strontium isotope characterization in the study of Prehistoric human ecology. Journal of Human Evolution 14:503514.Google Scholar
Evans, J. A., Montgomery, J., Wildman, G. and Boulton, N. 2010. Spatial variations in biosphere 87Sr/86Sr in Britain. Journal of the Geological Society 167:14.Google Scholar
Evans, J. A., Stoodley, N. and Chenery, C. 2006. A strontium and oxygen isotope assessment of a possible fourth-century immigrant population in a Hampshire cemetery, southern England. Journal of Archaeological Science 33:265272.Google Scholar
Evans, J. A., Tatham, S., Chenery, S. R. and Chenery, C. A. 2007. Anglo-Saxon animal husbandry techniques revealed though isotope and chemical variations in cattle teeth. Applied Geochemistry 22:19942005.Google Scholar
Ezzo, J. A., Johnson, C. M. and Price, T. D. 1997. Analytical perspective on prehistoric migration: A case study from east-central Arizona. Journal of Archaeological Science 24:447466.Google Scholar
Fabre, M., Lécuyer, C., Brugal, J. P., Amiot, R., Fourel, F. and Martineau, F. 2011. Late Pleistocene climatic change in the French Jura (Gigny) recorded in the delta O-18 of phosphate from ungulate tooth enamel. Quaternary Research 75:605613.Google Scholar
Faure, G. 1986. Principles of Isotope Geology. New York: Wiley.Google Scholar
Fricke, H. C., Clyde, W. C., O’Neil, J. R. and Gingerich, P. D. 1998. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenetic phosphate from Bighorn Basin (Wyoming). Earth and Planetary Science Letters 160:193208.Google Scholar
Garvie-Lok, S. J., Varney, T. and Katzenberg, M. A. 2004. Preparation of bone carbonate for stable isotope analysis: The effects of treatment time and acid concentration. Journal of Archaeological Science 31:763776.CrossRefGoogle Scholar
Gat, J. R. 1980. The isotopes of hydrogen and oxygen in precipitation. In: `Fritz, P. and `Fontes, J.-C. (eds.) Handbook of Environmental Isotope Geochemistry, Vol. 1: The Terrestrial Environment, pp. 2142. Amsterdam: Elsevier.Google Scholar
Gosz, J. R. and Moore, D. I. 1989. Strontium isotope studies of atmospheric inputs to forested watersheds in New Mexico. Biogeochemistry 8:115134.Google Scholar
Graustein, W. C. and Armstrong, R. 1983. The use of 87Sr/86Sr ratios to measure atmospheric transport into forested watersheds. Science 219:289292.Google Scholar
Green, G. P., Bestland, E. A. and Walker, G. S. 2004. Distinguishing sources of base cations in irrigated and natural soils: Evidence from strontium isotopes. Biogeochemistry 68:199225.Google Scholar
Hartman, G. and Richards, M. 2014. Mapping and defining sources of variability in bioavailable strontium isotope ratios in the Eastern Mediterranean. Geochimica et Cosmochimica Acta 126:250264.Google Scholar
Hoppe, K. A., Amundson, R., Vavra, M., McClaran, M. P. and Anderson, D. L. 2004. Isotopic analysis of tooth enamel carbonate from modern North American feral horses: Implications for palaeoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 203:299311.CrossRefGoogle Scholar
Hoppe, K. A., Koch, P. L., Carlson, R. W. and Webb, D. S. 1999. Tracking mammoths and mastodons: Reconstruction of migratory behaviour using strontium isotope ratios. Geology 27:439442.Google Scholar
Hoppe, K. A., Koch, P. L. and Furutani, T. T. 2003. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. International Journal of Osteoarchaeology 13:2028.Google Scholar
Horstwood, M. S. A., Evans, J. and Montgomery, J. 2008. Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel. Geochimica et Cosmochimica Acta 72:56595674.CrossRefGoogle Scholar
Iacumin, P., Bocherens, H., Mariotti, A. and Longinelli, A. 1996. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: A way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters 142:16.Google Scholar
Iyengar, W. E., Kollmer, W. E. and Bowen, H. J. M. 1978. The Elemental Composition of Human Tissues and Body Fluids. New York: Verlag Chemie.Google Scholar
Jaubert, J., Hublin, J.-J., McPherron, S. P., Soressi, M., Bordes, J.-G., Claud, E., Cochard, D., Delagnes, A., Mallye, J.-B., Michel, A., Niclot, M., Niven, L., Park, S.-J., Rendu, W., Richards, M., Richter, D., Roussel, M., Steele, T. E., Texier, J.-P. and Thiébaut, C. 2008. Paléolithique moyen récent et Paléolithique supérieur ancien a Jonzac (Charente-Maritime): premiers résultats des campagnes 2004-2006. In: `Jaubert, J., `Bordes, J.-G. and `Ortega, I. (eds.) Les Sociétés du Paléolithique dans un Grand Sud-ouest de la France: nouveaux gisements, nouveaux résultats, nouvelles méthods. Paris: Mémoire de la Société Préhistorique Française.Google Scholar
Johnson, C. M., Lipman, P. W. and Czamanske, G. K. 1990. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and the relations between evolution of a continental magmatic center and modifications of the lithosphere. Contributions to Mineralogy and Petrology 104:99124.Google Scholar
Kelly, T. E. 2007. Strontium isotope tracing in animal teeth at the Neanderthal site of Les Pradelles, Charente, France. B.Sc. Thesis, The Australian National University.Google Scholar
Kennedy, M. J., Chadwick, O. A., Vitousek, P. M., Derry, L. A. and Hendricks, D. M. 1998. Changing sources of base cations during ecosystem developement, Hawaiian Islands. Geology 26:10151018.Google Scholar
Kirsanow, K., Makarewicz, C. and Tuross, N. 2008. Stable oxygen (δ18O) and hydrogen (δD) isotopes in ovicaprid dentinal collagen record seasonal variation. Journal of Archaeological Science 35:31593167.Google Scholar
Knudson, K. J., Price, T. D., Buikstra, J. E. and Blom, D. E. 2004. The use of strontium isotope analysis to investigate Tiwanaku migration and mortuary ritual in Bolivia and Peru. Archaeometry 46:518.Google Scholar
Koch, P. L., Halliday, A. N., Walter, L. M., Stearley, R. F., Huston, T. J. and Smith, G. R. 1992. Sr isotopic composition of hydroxyapatite from recent and fossil salmon: The record of lifetime migration and diagenesis. Earth and Planetary Science Letters 108 :277287.CrossRefGoogle Scholar
Koch, P. L., Tuross, N. and Fogel, M. L. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24:417429.Google Scholar
Kohn, M. J. 1996. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:48114829.Google Scholar
Kohn, M. J. and Cerling, T. E. 2002. Stable isotope compositions of biological apatite. In: `Kohn, M. J., `Rakovan, J. F. and `Hughes, J. M. (eds.) Phosphates: Geochemical, Geobiological, and Materials Importance, pp. 455488. Washington, DC: Mineralogical Society of America.Google Scholar
Kohn, M. J., Schoeninger, M. J. and Barker, W. W. 1999. Altered states: Effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63:27372747.Google Scholar
Kohn, M. J., Schoeninger, M. J. and Valley, J. W. 1996. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochimica et Cosmochimica Acta 60:38893896.Google Scholar
Kolodny, Y., Luz, B. and Navon, O. 1983. Oxygen isotope variations in phosphate of biogenic apatites. 1. Fish bone apatite – rechecking the rules of the game. Earth and Planetary Science Letters 64:398404.Google Scholar
Laffoon, J. E., Plomp, E., Davies, G. R., Hoogland, M. L. P. and Hofman, C. L. 2013. The movement and exchange of dogs in the Prehistoric Caribbean: An isotopic investigation. International Journal of Osteoarchaeology 25:454465.CrossRefGoogle Scholar
Lamb, A. L., Evans, J. E., Buckley, R. and Appleby, J. 2014. Multi-isotope analysis demonstrates significant lifestyle changes in King Richard III. Journal of Archaeologial Science 50:559565.Google Scholar
Leach, S., Lewis, M., Chenery, C., Müldner, G. and Eckardt, H. 2009. Migration and diversity in Roman Britain: A multidisciplinary approach to the identification of immigrants in Roman York, England. American Journal of Physical Anthropology 140:546561.Google Scholar
Lee-Thorp, J. A. 2008. On isotopes and old bones. Archaeometry 50:925950.Google Scholar
Longinelli, A. 1965. Oxygen isotopic composition of orthophosphate from shells of living marine organisms. Nature 207:716719.Google Scholar
Longinelli, A. 1966. Ratios of Oxygen-18: Oxygen-16 in phosphate and carbonate from living and fossil marine organisms. Nature 211:923927.CrossRefGoogle ScholarPubMed
Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48:385390.Google Scholar
Longinelli, A. and Nuti, S. 1968. Oxygen-isotope ratios in phosphate from fossil marine organisms. Science 160:879882.CrossRefGoogle ScholarPubMed
Longinelli, A. and Nuti, S. 1973. Oxygen isotope measurements of phosphate from fish teeth and bones. Earth and Planetary Science Letters 20:337340.Google Scholar
Luz, B., Kolodny, Y. and Horowitz, M. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48:16891693.Google Scholar
Martin, C., Bentaleb, I., Kaandorp, R., Iacumin, P. and Chatri, K. 2008. Intra-tooth study of modern rhinoceros enamel delta O-18: Is the difference between phosphate and carbonate delta O-18 a sound diagenetic test? Palaeogeography, Palaeoclimatology, Palaeoecology 266:183187.Google Scholar
Montgomery, J. 2002. Lead and strontium isotope compositions of human dental tissues as an indicator of ancient exposure and population dynamics: The application of isotope source-tracing methods to identify migrants among British archaeological burials and a consideration of ante-mortem uptake, tissue stability and post-mortem diagenesis. Doctoral thesis, University of Bradford.Google Scholar
Montgomery, J., Evans, J. and Cooper, R. E. 2007. Resolving archaeological populations with Sr-isotope mixing models. Applied Geochemistry 22:15021514.Google Scholar
Montgomery, J., Evans, J. A. and Neighbour, T. 2003. Sr isotope evidence for population movement within the Hebridean Norse community of NW Scotland. Journal of the Geological Society 160:649653.Google Scholar
Montgomery, J., Evans, J., Powlesland, D. and Roberts, C. A. 2005. Continuity or colonization in Anglo-Saxon England? Isotope evidence for mobility, subsistence practice and status at West Heslerton. American Journal of Physical Anthroplogy 126:123138.Google Scholar
Morgan, J. E., Richards, S. P. G. and Morgan, A. J. 2001. Stable strontium accumulation by earthworms: A paradigm for radiostrontium interactions with its cationic analogue, calcium. Environmental Toxicology and Chemistry 20:12361243.Google Scholar
Müldner, G., Montgomery, J., Cook, G., Ellam, R., Gledhill, A. and Lowe, C. 2009. Isotopes and individuals: Diet and mobility among the medieval Bishops of Whithorn. Antiquity 83:11191133.Google Scholar
Nelson, D. E., DeNiro, M. J., Schoeninger, M. J., DePaolo, D. J. and Hare, P. E. 1986. Effects of diagenesis on strontium, carbon, nitrogen, and oxygen concentration and isotopic composition of bone. Geochimica et Cosmochimica Acta 50:19411949.Google Scholar
Németh, T., Kiss, Z., Kismányoky, T. and Lehoczky, E. 2006. Effect of long-term fertilization on the strontium content of soil. Communications in Soil Science and Plant Analysis 37:27512758.Google Scholar
Nielsen-Marsh, C. M., Gernaey, A., Turner-Walker, G., Hedges, R. E. M., Pike, A. and Collins, M. 2000. The chemical degradation of bone. In: `Cox, M. and `Mays, S. (eds.) Human Osteology in Archaeology and Forensic Science, pp. 439454. London: GMM.Google Scholar
Nielsen-Marsh, C. M. and Hedges, R. E. M. 2000a. Patterns of diagenesis in bone II: Effects of acetic acid treatment and removal of diagenetic CO3. Journal of Archaeological Science 27:11511159.Google Scholar
Nielsen-Marsh, C. M. and Hedges, R. E. M. 2000b. Patterns of diagenesis in bone I: The effects of site environments. Journal of Archaeological Science 27:11391150.Google Scholar
Nowell, G. M. and Horstwood, M. S. A. 2009. Comments on Richards et al. Journal of Archaeological Science 35, 2008 ‘Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS’. Journal of Archaeological Science 36:13341341.Google Scholar
Pederzani, S. and Britton, K., 2019. Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. Earth-Science Reviews 188, 77107.Google Scholar
Pellegrini, M., Donahue, R. E., Chenery, C., Evans, J., Lee-Thorp, J., Montgomery, J. and Mussi, M. 2008. Faunal migration in late-glacial central Italy: Implications for human resource exploitation. Rapid Communications in Mass Spectrometry 22:17141726.Google Scholar
Podlesak, D. W., Torregrossa, A.-M., Ehleringer, J. R., Dearing, M. D., Passey, B. H. and Cerling, T. E. 2008. Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal. Geochimica et Cosmochimica Acta 72:1935.Google Scholar
Price, T. D., Blitz, J., Burton, J. H. and Ezzo, J. A. 1992. Diagenesis in prehistoric bone: Problems and solutions. Journal of Archaeological Science 19:513529.Google Scholar
Price, T. D., Burton, J. H. and Bentley, R. A. 2002. The characterization of biological available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44:117135.Google Scholar
Price, T. D., Meiggs, D., Weber, M.-J. and Pike-Tay, A. 2017. The migration of Late Pleistocene reindeer: Isotopic evidence from northern Europe. Archaeological and Anthropological Sciences 9:371394.CrossRefGoogle Scholar
Reitsema, L. J. 2013. Beyond diet reconstruction: Stable isotope applications to human physiology, health, and nutrition. American Journal of Human Biology 25:445456.Google Scholar
Richards, M. P., Harvati, K., Grimes, V., Smith, C., Smith, T., Hublin, J. J., Karkanas, P. and Panagopoulou, E. 2008a. Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS. Journal of Archaeological Science 35:12511256.Google Scholar
Richards, M. P., Taylor, G., Steele, T., McPherron, S. P., Soressi, M., Jaubert, J., Orschiedt, J., Mallye, J. B., Rendu, W. and Hublin, J. J. 2008b. Isotopic dietary analysis of a Neanderthal and associated fauna from the site of Jonzac (Charente-Maritime), France. Journal of Human Evolution 55:179185.Google Scholar
Royer, A., Daux, V., Fourel, F. and Lécuyer, C. 2017. Carbon, nitrogen and oxygen isotope fractionation during food cooking: Implications for the interpretation of the fossil human record. American Journal of Physical Anthropology 163:759771.Google Scholar
Schoeller, D. A. 1999. Isotope fractionation: Why aren’t we what we eat? Journal of Archaeological Science 26:667673.Google Scholar
Schweissing, M. M. and Grupe, G. 2003. Stable strontium isotopes in human teeth and bone: A key to migration events of the late Roman period in Bavaria. Journal of Archaeological Science 30:13731383.Google Scholar
Sharp, Z. D., Atudorei, V. and Furrer, H. 2000. The effect of diagenesis on oxygen isotope ratios of biogenic phosphate. American Journal of Science 300:222237.Google Scholar
Sharp, Z. D. and Cerling, T. E. 1998. Fossil isotope records of seasonal climate and ecology: Straight from the horse’s mouth. Geology 26:219222.Google Scholar
Sillen, A., Hall, G., Richardson, S. and Armstrong, R. 1998. 87Sr/86Sr ratios in modern and fossil food-webs of the Sterkfontein Valley: Implications for early hominid habitat preference. Geochimica et Cosmochimica Acta 62:24632478.Google Scholar
Simonetti, A., Buzon, M. R. and Creaser, R. A. 2007. In-situ elemental and Sr isotope investigation of human tooth enamel by laser ablation-(MC)-ICP-MS: Successes and pitfalls. Archaeometry 50:371385.Google Scholar
Steadman, L. T., Brudevold, F. and Smith, F. A. 1958. Distribution of strontium in teeth from different geographic areas. Journal of the American Dental Association 57:340344.Google Scholar
Steele, J. D. and Pushkar, P. 1973. Strontium isotope geochemistry of the Scioto River basin and the 87Sr/86Sr ratios of the underlying lithologies. The Ohio Journal of Science 73:331338.Google Scholar
Terakado, Y., Shimizu, H. and Masuda, A. 1988. Nd and Sr isotopic variations in acidic rocks formed under a peculiar tectonic environment in Miocene Southwest Japan. Contributions to Mineralogy and Petrology 99:110.Google Scholar
Thornton, E. K. 2011. Reconstructing ancient Maya animal trade through strontium isotope (87Sr/86Sr) analysis. Journal of Archaeological Science 38:32543263.Google Scholar
Trickett, M. A., Budd, P., Montgomery, J. and Evans, J. 2003. An assessment of solubility profiling as a decontamination procedure for the 87Sr/86Sr analysis of archaeological human skeletal tissue. Applied Geochemistry 18:653658.Google Scholar
Tuross, N., Behrensmeyer, A. K. and Eanes, E. D. 1989. Strontium increases and crystalinity changes in taphonomic and archaeological bone. Journal of Archaeological Science 16:661672.Google Scholar
Urey, H. C., Lowenstam, H. A., Epstein, S. and McKinney, C. R. 1951. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Bulletin of the Geological Society of America 62:399416.Google Scholar
Vitousek, P. M., Kennedy, M. J., Derry, L. A. and Chadwick, O. A. 1999. Weathering versus atmospheric sources of strontium in ecosystems on young volcanic soils. Oecologia 121:255259.Google Scholar
Willmes, M., McMorrow, L., Kinsley, L., Armstrong, R., Aubert, M., Eggins, S., Falguères, C., Maureille, B., Moffat, I. and Grün, R. 2014. The IRHUM (Isotopic Reconstruction of Human Migration) database – bioavailable strontium isotope ratios for geochemical fingerprinting in France. Earth System Science Data 6:117122.Google Scholar
Wright, L. E. and Schwarcz, H. P. 1998. Stable carbon and oxygen isotopes in human tooth enamel: Identifying breastfeeding and weaning in prehistory. American Journal of Physical Anthropology 106:118.Google Scholar
Wu, J. P., Veitch, A., Checkley, S., Dobson, H. and Kutz, S. J., 2012. Linear enamel hypoplasia in caribou (Rangifer tarandus groenlandicus): A potential tool to assess population health. Wildlife Society Bulletin 36:554560.Google Scholar
Xin, G. and Hanson, G. N. 1994. Strontium isotope study of the Peconic river watershed, Long Island, New York. MSc thesis, State University of New York at Stony Brook.Google Scholar
Yurtsever, Y. 1975. Worldwide survey of stable isotopes in precipitation. Report Section Isotope Hydrology. Vienna: IAEA.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×