Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T07:41:29.070Z Has data issue: false hasContentIssue false

11 - Invertebrate Zooarchaeology

from Part IV - Environmental Archaeology

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Invertebrates (“animals without backbones”) constitute around 95 per cent of all existing fauna, and are therefore the majority of all living animals today. The remaining 5 percent of all animals are those from the sub-phylum Vertebrata that include fish, amphibians, reptiles, birds, and mammals (Barnes et al. 2001). Despite being present in most archaeological sites, invertebrates are often not adequately recovered or studied, partly due to the prevailing view among archaeologists that they are marginal for the understanding of past human behavior (Kenward 2009). Invertebrates (and their products) have been exploited throughout human history, not only as sources of food, but also for utilitarian purposes as tools, decorative objects, fibres, dyes, waxes, mastics, sealants, medicines, and poisons (Thomas and Mannino 2001). Detailed discussion of these uses by humans is not the scope of this chapter, which aims to highlight why the remains of these invertebrates hold great potential for archaeological science, as well as for reconstructing past environments beyond the scope of archaeology alone.

Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 233 - 275
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M. E. and Jenkins, D. L. 2017. An early Holocene record of Cimex (Hemiptera: Cimicidae) from western North America. Journal of Medical Entomology 54:934944.Google Scholar
`Allen, M. J. (ed.) 2017a. Molluscs in Archaeology: Methods, Approaches and Applications. Oxford: Oxbow Books.Google Scholar
Allen, M. J. 2017b. The geoarchaeology of context: Sampling for land snails (on archaeological sites and colluvium). In: `Allen, M. J. (ed.) Molluscs in Archaeology: Methods, Approaches and Applications, pp. 3047.Oxford: Oxbow Books.CrossRefGoogle Scholar
Álvarez-Fernández, E., Ontañón-Peredo, R., and Molares-Vila, J. 2010. Archaeological data on the exploitation of the goose barnacle Pollicipes pollicipes (Gmelin, 1790) in Europe. Journal of Archaeological Science 37:402408.CrossRefGoogle Scholar
Andersen, S. H. 2000. ‘Køkkenmøddinger’ (shell middens) in Denmark: A survey. Proceedings of the Prehistoric Society 66:361384.Google Scholar
Andrews, M. V., Gilbertson, D. D., and Mellars, P. A. 1985. Biometric studies of morphological variation in the intertidal gastropod Nucella lapillus (L): Environmental and palaeoeconomic significance. Journal of Biogeography 12:7187.CrossRefGoogle Scholar
Andrus, C. F. T. 2011. Shell midden sclerochronology. Quaternary Science Reviews 30:28922905.CrossRefGoogle Scholar
Arriaza, B., Orellana, N. C., Barbosa, H. S., Menna-Barreto, R. F. S., Araújo, A., and Standen, V. 2012. Severe head lice infestation in an Andean mummy of Arica, Chile. Journal of Parasitology 98:433436.Google Scholar
Aspöck, H., Auer, H., Picher, O., and Platzer, W. 2000. Parasitological examination of the Iceman. In: `Bortenschlager, S. and `Oeggl, K. (eds.) The Iceman and his Natural Environment, pp. 127136. Vienna: Springer Verlag.Google Scholar
Atkinson, T. C., Briffa, K. R., Coope, G. R., Joachim, M., and Perry, D. W. 1986. Climatic calibration of coleopteran data. In: `Berglund, B. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology, pp. 851858. New York: Wiley.Google Scholar
Bailey, G. 1993. Shell mounds in 1972 and 1992: Reflections on recent controversies at Ballina and Weipa. Australian Archaeology 37:218.Google Scholar
Bailey, G. N. and Craighead, A. S. 2003. Late Pleistocene and Holocene coastal palaeoeconomies: A reconsideration of the molluscan evidence from Northern Spain. Geoarchaeology 18: 175204.Google Scholar
Bajnóczi, B., Schöll-Barna, G., Kalicz, N., Siklósi, Z., Hourmouziadis, G. H., Ifantidis, F., Kyparissi-Apostolika, A., Pappa, M., Veropoulidou, R., and Ziota, C. 2013. Tracing the source of Late Neolithic Spondylus shell ornaments by stable isotope geochemistry and cathodoluminescence microscopy. Journal of Archaeological Science 40:874882.Google Scholar
Baker, A. S. 2009. Acari in archaeology. Experimental and Applied Acarology 49:147160.CrossRefGoogle ScholarPubMed
Barnes, R. S. K., Calow, P., Olive, P. J. W., Golding, D. W., and Spicer, J. I. 2001. The Invertebrates: A Synthesis, 3rd ed. Oxford: Blackwell Science.Google Scholar
Barrett, J., Hall, A., Johnstone, C., Kenward, H., O’Connor, T., and Ashby, S. 2007. Interpreting the plant and animal remains from Viking-age Kaupang. In: `Skre, D. (ed.) Kaupang in Skiringssal, pp. 283310. Aarhus: Aarhus University Press and The Kaupang Excavation Project, University of Oslo.Google Scholar
`Bar-Yosef Mayer, D. E. (ed.) 2005. Archaeomalacology: Molluscs in Former Environments of Human Behaviour. Oxford: Oxbow Books.Google Scholar
Bianucci, R., Mattutino, G., Lallo, R., Charlier, P., Jouin-Spriet, H., Peluso, A., Higham, T., Torre, C., and Rabino Massa, E. 2008. Immunological evidence of Plasmodium falciparum infection in an Egyptian child mummy from the Early Dynastic Period. Journal of Archaeological Science 35:18801885.Google Scholar
Black, H. D., Andrus, C. F. T., Lambert, W. J., Rick, T. C., and Gillikin, D. P. 2017. δ15N values in Crassostrea virginica shells provides early direct evidence for nitrogen loading to Chesapeake Bay. Scientific Reports 7:44241.Google Scholar
Bonizzoni, L., Bruni, S., Girod, A., and Guglielmi, V. 2009. Archaeometric study of shells of Helicidae from the Edera cave (northeastern Italy). Archaeometry 51:151173.CrossRefGoogle Scholar
Bonomo, M. and Aguirre, M. L. 2009. Holocene molluscs from archaeological sites of the Pampean region of Argentina: Approaches to past human uses. Geoarchaeology 24:5985.Google Scholar
Bosch, M. D., Mannino, M. A., Prendergast, A. L., Wesselingh, F. P., O’Connell, T. C., and Hublin, J.-J. 2017. Year-round shellfish exploitation in the Levant and implications for Upper Palaeolithic hunter-gatherer subsistence. Journal of Archaeological Science: Reports.Google Scholar
Bosch, M. D., Wesselingh, F. P., and Mannino, M. A. 2015. The Ksâr Άkil (Lebanon) mollusc assemblage: Zooarchaeological and taphonomic investigations on Upper Palaeolithic shells. Quaternary International 390:85101.Google Scholar
Buckland, P. C., Panagiotakopulu, E., and Sveinbjarnardóttir, G. 2009. A failed invader in the North Atlantic, the case of Aglenus brunneus Gyll. (Col., Colydiidae), a blind flightless beetle from Iceland. Biological Invasions 11:12391245.CrossRefGoogle Scholar
Burchell, M., Hallmann, N., Martindale, A., Cannon, A., and Schöne, B. R. 2013. Seasonality and intensity of shellfish harvesting on the north coast of British Columbia. Journal of Island and Coastal Archaeology 8:152169.CrossRefGoogle Scholar
Campbell, G. 2008. Sorry, wrong phylum: A neophyte archaeomalacologist’s experiences in analyzing a European Atlantic sea urchin assemblage. Archaeofauna 17:7790.Google Scholar
Campbell, G. 2017. The collection, processing and curation of archaeological marine shells. In: `Allen, M.J. (ed.) Molluscs in Archaeology: Methods, Approaches and Applications, pp. 273288. Oxford: Oxbow Books.Google Scholar
Cannon, A. and Burchell, M. 2009. Clam growth-stage profiles as a measure of harvest intensity and resource management on the central coast of British Columbia. Journal of Archaeological Science 36:10501060.Google Scholar
Carré, M., Bentaleb, I., Blamart, D., Ogle, N., Cardenas, F., Zevallos, S., Kalin, R.M., Ortlieb, L., and Fontugne, M. 2005. Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: Potential application to Peruvian paleoceanographic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 228:425.Google Scholar
Carré, M., Sachs, J. P., Purca, S., Schauer, A. J., Braconnot, P., Falcón, R. A., Julien, M., and Lavallée, D. 2014. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science 345: 10451048.Google Scholar
Carrott, J. and Kenward, H. 2001. Species associations among insect remains from urban archaeological deposits and their significance in reconstructing the past human environment. Journal of Archaeological Science 28:887905.Google Scholar
Carter, S. P. 1990. The stratification and taphonomy of shells in calcareous soils: Implications for land snail analysis in archaeology. Journal of Archaeological Science 17:495507.Google Scholar
Claassen, C. 1998. Shells. Cambridge: Cambridge University Press.Google Scholar
Colonese, A. C. 2017. Stable isotope ecology of terrestrial gastropod shells. In: `Allen, M. J. (ed.) Molluscs in Archaeology: Methods, Approaches and Applications, pp. 400413. Oxford: Oxbow Books.CrossRefGoogle Scholar
Colonese, A. C., Mannino, M. A., Bar-Yosef Mayer, D. E., Fa, D. A., Finlayson, J. C., Lubell, D., and Stiner, M. C. 2011. Marine mollusc exploitation in Mediterranean prehistory: An overview. Quaternary International 239:86103.Google Scholar
Colonese, A. C., Netto, S. A., Francisco, A. S., DeBlasis, P., Villagran, X. S., de Almeida Rocha Ponzoni, R., Hancock, Y., Hausmann, N., Sunderlick Eloy de Farias, D., Prendergast, A., Schöne, B., William da Cruz, F., and Fonseca Giannini, P. C. 2017. Shell sclerochronology and stable isotopes of the bivalve Anomalocardia flexuosa (Linnaues, 1767) from southern Brazil: Implications for environmental and archaeological studies. Palaeogeography, Palaeoclimatology, Palaeoecology 484:721.Google Scholar
Colonese, A. C., Zanchetta, G., Fallick, A. E., Martini, F., Manganelli, G., and Drysdale, R. N. 2009. Stable isotope composition of Helix ligata (Müller, 1774) from Late Pleistocene-Holocene archaeological record from Grotta della Serratura (Southern Italy): Palaeoclimatic implications. Global and Planetary Change 71:249257.CrossRefGoogle Scholar
Coope, G. R. and Kenward, H. K. 2007. Evidence from coleopteran assemblages for a short but intense cold interlude during the latter part of the MIS11 Interglacial from Quinton, West Midlands, UK. Quaternary Science Reviews 26:32763285.CrossRefGoogle Scholar
Crabtree, P. J., Reilly, E., Wouters, B., Devos, Y., Bellens, T., and Schryvers, A. 2017. Environmental evidence from early urban Antwerp: New data from archaeology, micromorphology, macrofauna and insect remains. Quaternary International 460:108123.Google Scholar
Culleton, B. J., Kennett, D. J., and Jones, T. L. 2009. Oxygen isotope seasonality in a temperate estuarine shell midden: A case study from CA-ALA-17 on the San Francisco Bay, California. Journal of Archaeological Science 36:13541363.Google Scholar
Davies, P. 2008. Snails: Archaeology and Landscape Change. Oxford: Oxbow Books.Google Scholar
Davis, L. G. and Muehlenbachs, K. 2001. A Late Pleistocene to Holocene record of precipitation reflected in Margaritifera falcata shell δ18O from three archaeological sites in the Lower Salmon River Canyon, Idaho. Journal of Archaeological Science 28:291303.CrossRefGoogle Scholar
Deith, M. R. 1983. Molluscan calendars: The use of growth-line analysis to establish seasonality of shellfish collection at the Mesolithic site of Morton, Fife. Journal of Archaeological Science 10:423440.CrossRefGoogle Scholar
Deith, M. R. 1986. Subsistence strategies at a Mesolithic camp site: Evidence from stable isotope analyses of shells. Journal of Archaeological Science 13:6178.Google Scholar
Demarchi, B., O’Connor, S., de Lima Ponzoni, A., de Almeida Rocha Ponzoni, R., Sheridan, A., Penkman, K., Hancock, Y., and Wilson, J. 2014. An integrated approach to the taxonomic identification of prehistoric shell ornaments. PloS One 9(6):e99839.Google Scholar
d’Errico, F., Vanhaeren, M., and Wadley, L. 2008. Possible shell beads from the Middle Stone Age layers of Sibudu Cave, South Africa. Journal of Archaeological Science 35:26752685.Google Scholar
Douka, K. 2017. Radiocarbon dating of marine and terrestrial shell. In: `Allen, M. J. (ed.) Molluscs in Archaeology: Methods, Approaches and Applications, pp. 381399. Oxford: Oxbow Books.Google Scholar
Dupont, C. 2006. La malacofaune de sites mésolithiques et néolithiques de la façade atlantique: contribution à l’économie et à l’identité culturelle des groupes concernés. British Archaeological Reports S1571. Oxford: Archaeopress.Google Scholar
Eerkens, J. W., Herbert, G. S., Rosenthal, J. S., and Spero, H. J. 2005. Provenance analysis of Olivella biplicata shell beads from the California and Oregon Coast by stable isotope fingerprinting. Journal of Archaeological Science 32:15011514.Google Scholar
Elias, S. A. 1994. Quaternary Insects and their Environments. Washington D.C.: Smithsonian Institution Press.Google Scholar
Elias, S. A., 2010. Advances in Quaternary Entomology. Developments in Quaternary Sciences 12. Amsterdam: Elsevier.Google Scholar
Elias, S. A., Webster, L., and Amer, M. 2009. A beetle’s eye view of London from the Mesolithic to Late Bronze Age. Geological Journal 44:537567.Google Scholar
Erlandson, J. M. 2013. Shell middens and other anthropogenic soils as global stratigraphic signatures of the Anthropocene. Anthropocene 4:2432.Google Scholar
Erlandson, J. M. and Moss, M. L. 2001. Shellfish feeders, carrion eaters, and the archaeology of aquatic adaptations. American Antiquity 66:413432.Google Scholar
Erlandson, J. M., Rick, T. C., Braje, T. J., Steinberg, A., and Vellanoweth, R. L. 2008. Human impacts on ancient shellfish: A 10,000 year record from San Miguel Island, California. Journal of Archaeological Science 35:21442152.Google Scholar
Evans, J. G. 1972. Land Snails in Archaeology. London: Seminar Press.Google Scholar
Faulkner, P. 2009. Focused, intense and long-term: Evidence for granular ark (Anadara granosa) exploitation from late Holocene shell mounds of Blue Mud Bay, northern Australia. Journal of Archaeological Science 36:821834.Google Scholar
Fernández-López de Pablo, J., Badal, E., Ferrer García, C., Martínez-Ortí, A., and Sanchis Serra, A. 2014. Land snails as a diet diversification proxy during the early Upper Palaeolithic in Europe. PLoS One 9(8):e104898.CrossRefGoogle ScholarPubMed
Fitzgerald, R. T., Jones, T. L., and Schroth, A. 2005. Ancient long-distance trade in Western North America: New AMS radiocarbon dates from Southern California. Journal of Archaeological Science 32:423434.Google Scholar
Forbes, V., Dugmore, A. J., and Ólafsson, E. 2016. The life and death of barn beetles: Faunas from manure and stored hay inside farm buildings in northern Iceland. Ecological Entomology 41:480499.Google Scholar
Giovas, C. M., Fitzpatrick, S. M., Clark, M., and Abed, M. 2010. Evidence for size increase in an exploited mollusc: Humped conch (Strombus gibberulus) at Chelechol ra Orrak, Palau from ca. 3000–0 BP. Journal of Archaeological Science 37:27882798.Google Scholar
Goodfriend, G. A. 1992. The use of land snail shells in paleoenvironmental reconstruction. Quaternary Science Reviews 11:665685.Google Scholar
Gutiérrez Zugasti, F. I. 2009. La explotación de moluscos y otros recursos litorales en la región cantábrica durante el Pleistoceno final y el Holoceno inicial. Santander: Ediciones de la Universidad de Cantabria.Google Scholar
Hallmann, N., Burchell, M., Schöne, B. R., Irvine, G. V., and Maxwell, D. 2009. High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: Techniques for revealing environmental archives and archaeological seasonality. Journal of Archaeological Science 36:23532364.Google Scholar
Hardy, K., Camara, A., Piqué, R., Dioh, E., Guèye, M., Diadhiou, H. D., Faye, M., and Carré, M. 2016. Shellfishing and shell midden construction in the Saloum Delta, Senegal. Journal of Anthropological Archaeology 41:1932.CrossRefGoogle Scholar
Hausmann, N. and Meredith-Williams, M. 2017. Exploring accumulation rates of shell deposits through seasonality data. Journal of Archaeological Method and Theory 24:776795.CrossRefGoogle Scholar
Hawass, Z., Gad, Y. Z., Ismail, S., Khairat, R., Fathalla, D., Hasan, N., Ahmed, A., Elleithy, H., Ball, M., Gaballah, F., Wasef, S., Fateen, M., Amer, H., Gostner, P., Selim, A., Zink, A., and Pusch, C. M. 2010. Ancestry and pathology in King Tutankhamun’s family. Journal of the American Medical Association 303:8647.Google ScholarPubMed
Hunt, C. O. and Hill, E. A. 2017. Caves and molluscs. In: `Allen, M. J. (ed.) Molluscs in Archaeology: Methods, Approaches and Applications, pp. 100110. Oxford: Oxbow Books.Google Scholar
Jerardino, A. 1997. Changes in shellfish species composition and mean shell size from a Late-Holocene record of the west coast of Southern Africa. Journal of Archaeological Science 24:10311044.Google Scholar
Jerardino, A. and Marean, C. W. 2010. Shellfish gathering, marine paleoecology and modern human behavior: Perspectives from cave PP13B, Pinnacle Point, South Africa. Journal of Human Evolution 59:412424.Google Scholar
Jerardino, A. and Navarro, R. 2002. Cape rock lobster (Jasus lalandii) remains from South African west coast shell middens: Preservational factors and possible bias. Journal of Archaeological Science 29:993999.Google Scholar
Joordens, J. C. A, d’Errico, F., Wesselingh, F. P., Munro, S., de Vos, J., Wallinga, J., Ankjærgaard, C., Reimann, T., Wijbrans, J. R., Kuiper, K. F., Mücher, H. J., Coqueugniot, H., Prié, V., Joosten, I., van Os, B., Schulp, A. S., Panuel, M., van der Haas, V., Lustenhouwer, W., Reijmer, J. J. G., and Roebroeks, W. 2015. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 518:228231.CrossRefGoogle ScholarPubMed
Kenward, H. 2001. Pubic lice in Roman and Medieval Britain. Trends in Parasitology 17:167168.Google Scholar
Kenward, H. 2004. Do insect remains from historic-period archaeological occupation sites track climate change in Northern England? Environmental Archaeology 9:4759.Google Scholar
Kenward, H., 2009. Invertebrates in Archaeology in the North of England. Environmental Studies Report. Northern Regional Review of Environmental Archaeology. Research Department Report Series no. 12-2009. London: English Heritage.Google Scholar
Kenward, H. and Hall, A. R. 1995. Biological Evidence from 16–22 Coppergate. Archaeology of York Fascicule 14/7. York: York Archaeological Trust.Google Scholar
Kenward, H. and Tipper, J. 2008. Insect invaders of reconstructed Anglo-Saxon houses at West Stow, Suffolk, England. Environmental Archaeology 13:5157.Google Scholar
King, G. A. 2012. Isotopes as palaeoeconomic indicators: New applications in archaeoentomology. Journal of Archaeological Science 39:511520.Google Scholar
King, G. A., Gilbert, M. T. P., Willerslev, E., Collins, M. J., and Kenward, H. 2009. Recovery of DNA from archaeological insect remains: First results, problems and potential. Journal of Archaeological Science 36:11791183.Google Scholar
King, G. A., Kenward, H., Schmidt, E., and Smith, D. 2014. Six-legged hitchhikers: An archaeobiogeographical account of the early dispersal of grain beetles. Journal of the North Atlantic 23:118.Google Scholar
Kintigh, K. W., Altschul, J. H., Beaudry, M. C., Drennan, R. D., Kinzig, A. P., Kohler, T. A., Limp, W. F., Maschner, H. D. G., Michener, W. K., Pauketat, T. R., Peregrine, P., Sabloff, J. A., Wilkinson, T. J., Wright, H. T., and Zeder, M.A. 2014. Grand challenges for archaeology. Proceedings of the National Academy of Sciences of the USA 111:879880.Google Scholar
Leles, D., Reinhard, K. J., Fugassa, M., Ferreira, L. F., Iñiguez, A. M., and Araújo, A. 2010. A parasitological paradox: Why is ascarid infection so rare in the prehistoric America? Journal of Archaeological Science 37:15101520.Google Scholar
Leng, M. J. and Lewis, J. P. 2016. Oxygen isotopes in molluscan shell: Applications in environmental archaeology. Environmental Archaeology 21:295306.Google Scholar
Losey, R. J., Yamada, S. B., and Largaespada, L. 2004. Late-Holocene Dungeness crab (Cancer magister) harvest at an Oregon coast estuary. Journal of Archaeological Science 31:16031612.Google Scholar
Lubell, D. 2004. Are land snails a signature for the Mesolithic-Neolithic transition? Documenta Praehistorica 31:124.CrossRefGoogle Scholar
Mannino, M. A., Spiro, B. F., and Thomas, K. D. 2003. Sampling shells for seasonality: oxygen isotope analysis on shell carbonates of the inter-tidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. Journal of Archaeological Science 30:667679.Google Scholar
Mannino, M. A. and Thomas, K. D. 2001. Intensive Mesolithic exploitation of coastal resources? Evidence from a shell deposit on the Isle of Portland (Southern England) for the impact of human foraging on populations of inter-tidal rocky shore molluscs. Journal of Archaeological Science 28:11011114.Google Scholar
Mannino, M. A., Thomas, K. D., Leng, M. J., and Sloane, H. J. 2008. Shell growth and oxygen isotopes in the topshell Osilinus turbinatus (von Born): Resolving past inshore sea surface temperatures. Geo-Marine Letters 28:309325.Google Scholar
Mannino, M. A., Thomas, K. D., Leng, M. J., Piperno, M., Tusa, S., and Tagliacozzo, A. 2007. Marine resources in the Mesolithic and Neolithic at the Grotta dell’Uzzo (Sicily): Evidence from isotope analyses of marine shells. Archaeometry 49:117133.Google Scholar
Marean, C. W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., Herries, A. I. R., Jacobs, Z., Jerardino, A., Karkanas, P., Minichillo, T., Nilssen, P. J., Thompson, E., Watts, I., and Williams, H. M. 2007. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449:905908.Google Scholar
Meehan, B. 1982. Shell Bed to Shell Midden. Canberra: Australian Institute of Aboriginal Studies.Google Scholar
Milner, N. 2001. At the cutting edge: Using thin sectioning to determine season of death of the European oyster, Ostrea edulis. Journal of Archaeological Science 28:861873.Google Scholar
Mitchell, P. D. 2013. The origins of human parasites: Exploring the evidence for endoparasitism throughout human evolution. International Journal of Palaeopathology 3:1198.Google Scholar
Mitchell, P. D. 2017. Human parasites in the Roman World: Health consequences of conquering an empire. Parasitology 144:4858.Google Scholar
Mitchell, P. D., Yeh, H.-Y., Appleby, J., and Buckley, R. 2013. The intestinal parasites of King Richard III. Lancet 382:888.CrossRefGoogle ScholarPubMed
Montenegro, A., Araujo, A., Eby, M., Ferreira, L. F., Hetherington, R., and Weaver, A. J. 2006. Parasites, paleoclimate, and the peopling of the Americas. Current Anthropology 47:193200.Google Scholar
Moss, M. L. and Erlandson, J. M. 2010. Diversity in North Pacific shellfish assemblages: The barnacles of Kit’n’Kaboodle Cave, Alaska. Journal of Archaeological Science 37:33593369.Google Scholar
Nystrom, K. C., Goff, A., and Lee Goff, M. 2005. Mortuary behavior reconstruction through palaeoentomology: A case study from Chachapoya, Perú. International Journal of Osteoarchaeology 15:175185.Google Scholar
Panagiotakopulu, E. 2001. New records for ancient pests: Archaeoentomology in Egypt. Journal of Archaeological Science 28:12351246.Google Scholar
Panagiotakopulu, E. and Buckland, P. C. 2017. A thousand bites – Insect introductions and late Holocene environments. Quaternary Science Reviews 156:2335.Google Scholar
Panagiotakopulu, E., Skidmore, P., and Buckland, P. 2007. Fossil insect evidence for the end of the Western Settlement in Norse Greenland. Naturwissenschaften 94:300306.Google Scholar
Penkman, K. E. H., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T., Parfitt, S. A., White, T. S., and Collins, M. J. 2013. An aminostratigraphy for the British Quaternary based on Bithynia opercula. Quaternary Science Reviews 61:111134.Google Scholar
Plarre, R. 2010. An attempt to reconstruct the natural and cultural history of the granary weevil, Sitophilus ggranaries (Coleoptera: Curculionidae). European Journal of Entomology 107:111.Google Scholar
Preece, R. C. and Bridgland, D. R. 1999. Holywell Coombe, Folkestone: A 13,000 year history of an English chalkland valley. Quaternary Science Reviews 18:10751125.Google Scholar
Prendergast, A. L., Azzopardi, M., O’Connell, T. C., Hunt, C., Barker, G., and Stevens, R. E. 2013. Oxygen isotopes from Phorcus (Osilinus) turbinatus shells as a proxy for sea surface temperature in the central Mediterranean. Chemical Geology 345:7786.Google Scholar
Prendergast, A. L., Stevens, R. E., O’Connell, T. C., Hill, E. A., Hunt, C. O., and Barker, G. W. 2016. A late Pleistocene refugium in Mediterranean North Africa? Palaeoenvironmental reconstruction from stable isotope analyses of land snail shells (Haua Fteah, Libya). Quaternary Science Reviews 139:94109.Google Scholar
Prendergast, A. L., Versteegh, E. A. A., and Schöne, B.R. 2017. New research on the development of high-resolution palaeoenvironmental proxies from geochemical properties of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 484:16.Google Scholar
Price, P. W. 1997. Insect Ecology. New York: Wiley.Google Scholar
Reese, D. S. 1991. The trade of Indo-Pacific shells into the Mediterranean basin and Europe. Oxford Journal of Archaeology 10:159196.Google Scholar
Reilly, E. 2012. Fair and foul: analysis of sub-fossil insect remains from Troitsky XI-XIII, Novgorod (1996–2002). In: `Brisbane, M. A., `Makarov, N.A., and `Nosov, E. N. (eds.) The Archaeology of Medieval Novgorod in Context. Studies in Centre/Periphery Relations, pp. 265282. Oxford: Oxbow Books.Google Scholar
Reinhard, K. J. 1990. Archaeoparasitology in North America. American Journal of Physical Anthropology 82:145163.Google Scholar
Reinhard, K. J. and Araújo, A. 2008. Archaeoparasitology. In: `Pearsall, D. M. (ed.) Encyclopedia of Archaeology, pp. 494501. New York: Elsevier.Google Scholar
Rick, T. C., Reeder-Myers, L. A., Hofman, C. A., Breitburg, D., Lockwood, R., Henkes, G., Kellogg, L., Lowery, D., Luckenbach, M. W., Mann, R., Ogburn, M. B., Southworth, M., Wah, J., Wesson, J., and Hines, A. H. 2016. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery. Proceedings of the National Academy of Sciences of the USA 113:65686573.Google Scholar
Rigaud, S., d’Errico, F., and Vanhaeren, M. 2015. Ornaments reveal resistance of North European cultures to the spread of farming. PLoS One 10(4):e0121166.Google Scholar
Robinson, M. 2001. Insects as Palaeoenvironmental Indicators. In: `Brothwell, D.R. and `Pollard, A. M. (eds.) Handbook of Archaeological Sciences, pp. 121133. Chichester: John Wiley and Sons, Ltd.Google Scholar
Rosendahl, D., Ulm, S., and Weisler, M. I. 2007. Using foraminifera to distinguish between natural and cultural shell deposits in coastal eastern Australia. Journal of Archaeological Science 34:15841593.Google Scholar
Sallares, R. and Gomzi, S. 2001. Biomolecular archaeology of malaria. Ancient Biomolecules 3:195213.Google Scholar
Schapira, D., Montaño, I. A., Antczak, A., and Posada, J. M. 2009. Using shell middens to assess effects of fishing on queen conch (Strombus gigas) populations in Los Roques Archipelago National Park, Venezuela. Marine Biology 156:787795.Google Scholar
Schelvis, J. 1992. The identification of archaeological dung deposits on the basis of remains of predatory Mites (Acari; Gamasida). Journal of Archaeological Science 19: 677682.Google Scholar
Schimmelmann, A., DeNiro, M. J., Poulicek, M., Voss-Foucart, M-.F., Goffinet, G., and Jeuniaux, C. 1986. Stable isotopic composition of chitin from arthropods recovered in archaeological contexts as palaeoenvironmental indicators. Journal of Archaeological Science 13:553566.Google Scholar
Schöne, B. R. 2008. The curse of physiology – challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Marine Letters 38:269285.Google Scholar
Shackleton, J. and Elderfield, H. 1990. Strontium isotope dating of the source of Neolithic European Spondylus shell artefacts. Antiquity 64:312315.Google Scholar
Shackleton, N. J. 1973. Oxygen isotope analysis as a means of determining season of occupation of prehistoric midden sites. Archaeometry 15:133141.Google Scholar
Shackleton, N. and Renfrew, C. 1970. Neolithic trade routes re-aligned by oxygen isotope analyses. Nature 228:10621065.Google Scholar
Skeates, R. 1993. Mediterranean coral: Its use and exchange in and around the Alpine region during the later Neolithic and Copper Age. Oxford Journal of Archaeology 12:281292.Google Scholar
Stephens, M., Mattey, D., Gilbertson, D. D., and Murray-Wallace, C.V. 2008. Shell-gathering from mangroves and the seasonality of the Southeast Asian Monsoon using high-resolution stable isotopic analysis of the tropical estuarine bivalve (Geloina erosa) from the Great Cave of Niah, Sarawak: methods and reconnaissance of molluscs of early Holocene and modern times. Journal of Archaeological Science 35:26862697.Google Scholar
Stone, T. 1995. Shell mound formation in coastal northern Australia. Marine Geology 129:77100.Google Scholar
Sutton, M. Q. 1995. Archaeological aspects of insect use. Journal of Archaeological Method and Theory 2:253298.Google Scholar
Szabó, K. 2008. Shell as a raw material: Mechanical properties and working techniques in the tropical Indo-West Pacific. Archaeofauna 17:125138.Google Scholar
Szabó, K. 2017. Shell middens. In: `Gilbert, A. S. (ed.) Encyclopedia of Geoarchaeology, pp. 772788. Dordrecht: Springer.Google Scholar
Taborin, Y. 1993. La parure en coquillage au Paleolithique. Gallia Préhistoire, Supplement 29.Google Scholar
Thakar, H. B. 2011. Intensification of shellfish exploitation: Evidence of species-specific deviation from traditional expectations. Journal of Archaeological Science 38:25962605.Google Scholar
Thomas, K. D. 2015a. Molluscs emergent, part I: Themes and trends in the scientific investigation of mollusc shells as resources for archaeological research. Journal of Archaeological Science 56:133140.Google Scholar
Thomas, K. D. 2015b. Molluscs emergent, part II: Themes and trends in the scientific investigation of molluscs and their shells as past human resources. Journal of Archaeological Science 56:159167.Google Scholar
Thomas, K. D. and Mannino, M. A. 2001. The exploitation of invertebrates and invertebrate products. In: `Brothwell, D. R. and `Pollard, A. M. (eds.) Handbook of Archaeological Sciences, pp. 427440. Chichester: John Wiley and Sons, Ltd.Google Scholar
Twaddle, R. W., Ulm, S., Hinton, J., Wurster, C. M., and Bird, M. I. 2016. Sclerochronological analysis of archaeological mollusc assemblages: Methods, applications and future prospects. Archaeological and Anthropological Sciences 8:359379.Google Scholar
Vanhaeren, M. and d’Errico, F. 2006. Aurignacian ethno-linguistic geography of Europe revealed by personal ornaments. Journal of Archaeological Science 33:11051128.Google Scholar
Vanhaeren, M., d’Errico, F., Billy, I., and Grousset, F. 2004. Tracing the source of Upper Palaeolithic shell beads by strontium isotope dating. Journal of Archaeological Science 31:14811488.Google Scholar
Vanhaeren, M., d’Errico, F., Stringer, C., James, S. L., Todd, J. A., and Mienis, H. K. 2006. Middle Paleolithic shell beads in Israel and Algeria. Science 312:17851788.Google Scholar
Vanin, S. and Huchet, J.-B. 2017. Forensic entomology and funerary archaeoentomology. In: `Schotsmans, E. M. J., `Márquez-Grant, N., and `Forbes, S. L. (eds.) Taphonomy of Human Remains: Forensic Analysis of the Dead and the Depositional Environment, pp. 167186. Chichester: John Wiley and Sons Ltd.Google Scholar
Vermeij, G. J. 1993. A Natural History of Shells. Princeton: Princeton University Press.Google Scholar
Walz, J. 2017. Toward an ethnoarchaeomalacology of Achatina in East Africa. Ethnobiology Letters 8:9096.Google Scholar
Waselkov, G. A. 1987. Shellfish and shell midden archaeology. Advances in Archaeological Method and Theory 10:93210.Google Scholar
Webb, S. C., Hedges, R. E. M., and Robinson, M. 1998. The seaweed fly Thoracochaeta zosterae (Hal.) (Diptera: Sphaerocidae) in inland archaeological contexts: δ13C and δ15N solves the puzzle. Journal of Archaeological Science 25:12531259.Google Scholar
Wefer, G. and Berger, W. H. 1991. Isotope paleontology: Growth and composition of extant calcareous species. Marine Geology 100:207248.Google Scholar
Whitaker, A. R. 2008. Incipient aquaculture in prehistoric California? Long-term productivity and sustainability vs. immediate returns for the harvest of marine invertebrates. Journal of Archaeological Science 35:11141123.Google Scholar
White, D., Preece, R. C., Shchetnikov, A. A., Parfitt, S. A., and Dlussky, K. G. 2008. A Holocene molluscan succession from floodplain sediments of the upper Lena River (Lake Baikal region), Siberia. Quaternary Science Reviews 27:962987.Google Scholar
Whitehouse, N. J. 2006. The Holocene British and Irish ancient forest fossil beetle fauna: implications for forest history, biodiversity and faunal colonization. Quaternary Science Reviews 25:17551789.Google Scholar
Yeh, H.-Y., Pluskowski, A., Kalējs, U., and Mitchell, P. D. 2014. Intestinal parasites in a mid-14th century latrine from Riga, Latvia: Fish tapeworm and the consumption of uncooked fish in the medieval eastern Baltic region. Journal of Archaeological Science 49:8389.Google Scholar
Zilhão, J., Angelucci, D. E., Badal-García, E., d’Errico, F., Daniel, F., Dayet, L., Douka, K., Higham, T. F. G., Martínez-Sánchez, M. J., Montes-Bernárdez, R., Murcia-Mascarós, S., Pérez-Sirvent, C., Roldán-García, C., Vanhaeren, M., Villaverde, V., Wood, R., and Zapata, J. 2010. Symbolic use of marine shells and mineral pigments by Iberian Neandertals. Proceedings of the National Academy of Sciences of the USA 107:10231028.Google Scholar
Zuschin, M., Stachowitsch, M., and Stanton, R. J. Jr. 2003. Patterns and processes of shell fragmentation in modern and ancient environments. Earth Science Reviews 63:3382.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×