Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T04:55:53.177Z Has data issue: false hasContentIssue false

8 - Dental Histology

from Part III - Bioarchaeology

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Because they are highly mineralised, teeth are one of the best preserved and most commonly recovered elements in archaeological and fossil assemblages. They have inspired more than a century of comparative studies of hominin tooth size and shape (e.g., Bailey 2002; Brace et al. 1991; Dubois 1892; Hanihara 2008; Hanihara and Ishida 2005; Hooijer 1948; Irish and Guatelli-Steinberg 2003; Keith 1913; Le Gros Clark 1950; Weidenreich 1937; Wolpoff 1971; Wood et al. 1991). Additional valuable information is recorded on outer surfaces and inner aspects of the dental hard tissues (enamel, dentine, and cementum) that make up tooth crowns and roots, providing a permanent record of growth. Initial study of dental histology, or microscopic tooth structure, predates the fields of archaeology and evolutionary biology by several centuries. The innovative microscopist Anthony Leeuwenhoeck first described the structure of enamel in the 1600s, noting that it was made of longitudinal “pipes” (enamel prisms) that appeared as “globules” when viewed end-on (Leeuwenhoeck 1677–1678). During the 1800s and early 1900s, microscopic investigations revealed the tubular nature of dentine and the presence of successive temporal lines in enamel and dentine (reviewed in Dean 1995; Smith 2006). By the 1940s, American and Japanese teams had experimentally demonstrated the presence of circadian structural features, as well as the neonatal (birth) line, which allows one to relate developmental time to chronological (calendar) age in juvenile dentitions. These incremental features form the basis of a growing area of anthropological study that is illuminating aspects of human evolutionary developmental biology, as well as the health and demography of past human populations.

Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 170 - 197
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoine, D. 2000. Evaluating the periodicity of incremental structures in dental enamel as a means of studying growth in children from past human populations. Doctoral thesis, University College London.Google Scholar
Antoine, D., Dean, C., and Hillson, S. 1999. The periodicity of incremental structures in dental enamel based on the developing dentition of post-medieval known-age children. In: `Mayhall, J. T. and `Heikkinen, T. (eds.) Dental Morphology ‘98: Proceedings of the 11th International Symposium on Dental Morphology, pp. 4855. Oulu: Oulu University Press.Google Scholar
Antoine, D., Hillson, S., and Dean, M. C. 2009. The developmental clock of dental enamel: A test for the periodicity of prism cross-striations in modern humans and an evaluation of the most likely sources of error in histological studies of this kind. Journal of Anatomy 214:4555.Google Scholar
Austin, C.*, Smith, T. M.*, Bradman, A., Hinde, K., Joannes-Boyau, R., Bishop, D., Hare, D. J., Doble, P., Eskenazi, B., and Arora, M. 2013. Barium distributions in teeth reveal early life dietary transitions in primates. Nature 498:216219. *These authors contributed equally to this work.Google Scholar
Bailey, S. E. 2002. Neandertal dental morphology: Implications for modern human origins. Doctoral thesis, Arizona State University.Google Scholar
Beaumont, J., Montgomery, J., Buckberry, J., and Jay, M. 2015. Infant mortality and isotopic complexity: New approaches to stress, maternal health, and weaning. American Journal of Physical Anthropology 157:441457.Google Scholar
Bell, L. S., Boyde, A., and Jones, S. J. 1991. Diagenetic alteration to teeth in situ illustrated by backscattered electron imaging. Scanning 13:173183.Google Scholar
Berten, J. 1895. Hypoplasie des Schmelzes (Congenitale Schmelzdefecte; Erosionen). Deutsche Monatsschrift für Zahnheilkunde 13:425439, 483–498, 533–548, 587–606.Google Scholar
Beynon, A. D. 1987. Replication technique for studying microstructure in fossil enamel. Scanning Microscopy 1:663669.Google ScholarPubMed
Beynon, A. D., Clayton, C. B., Ramirez Rozzi, F. V., and Reid, D. J. 1998. Radiographic and histological methodologies in estimating the chronology of crown development in modern humans and great apes: A review, with some applications for studies on juvenile hominids. Journal of Human Evolution 35:351370.Google Scholar
Bowman, J. E. 1991. Life history, growth and dental development in young primates: A study using captive rhesus macaques. Doctoral thesis, Cambridge University.Google Scholar
Boyde, A. 1963. Estimation of age at death of young human skeletal remains from incremental lines in the dental enamel. Excerpta Medica International Congress Series 80:3646.Google Scholar
Boyde, A. 1970. The surface of the enamel in human hypoplastic teeth. Archives of Oral Biology 15:897898.Google Scholar
Boyde, A. 1989. Enamel. In: `Oksche, A. and `Vollrath, L. (eds.) Handbook of Microscopic Anatomy, Vol. V/6: Teeth, pp. 309473. Berlin: Springer-Verlag.Google Scholar
Boyde, A. 1990. Developmental interpretations of dental microstructure. In: De `Rousseau, C. J. (ed.) Primate Life History and Evolution, pp. 229267. New York: Wiley-Liss.Google Scholar
Boyde, A., Fortelius, M., Lester, K. S., and Martin, L. B. 1988. Basis of the structure and development of mammalian enamel as seen by scanning electron microscopy. Scanning Microscopy 2:14791490.Google Scholar
Boyde, A. and Jones, S. J. 1983. Backscattered electron imaging of dental tissues. Anatomy and Embryology 168:211226.CrossRefGoogle ScholarPubMed
Boyde, A. and Martin, L. 1987. Tandem scanning reflected light microscopy of primate enamel. Scanning Microscopy 1:19351948.Google Scholar
Brace, C. L., Smith, S. L., and Hunt, K. D. 1991. What big teeth you had grandma! Human tooth size, past and present. In: `Kelly, and `Larsen, (eds.) Advances in Dental Anthropology, pp. 3357. New York: Wiley-Liss.Google Scholar
Bracha, H. S. 2004. Can premorbid episodes of diminished vagal tone be detected via histological markers in patients with PTSD? International Journal of Psychophysiology 51:127133.CrossRefGoogle ScholarPubMed
Bromage, T. G. 1991. Enamel incremental periodicity in the pig-tailed macaque: A polychrome fluorescent labeling study of dental hard tissues. American Journal of Physical Anthropology 86:205214.Google Scholar
Bullion, S. K. 1987. Incremental structures of enamel and their applications to archaeology. Doctoral thesis, University of Lancaster.Google Scholar
Caropreso, S., Bondioli, L. Capannolo, D., Cerroni, L., Macchiarelli, R., and Condò, S. G. 2000. Thin sections for hard tissue histology: A new procedure. Journal of Microscopy 199:244247.Google Scholar
Dean, M. C. 1995. The nature and periodicity of incremental lines in primate dentine and their relationship to periradicular bands in OH 16 (Homo habilis). In: `Moggi-Cecchi, J. (ed.) Aspects of Dental Biology: Paleontology, Anthropology and Evolution, pp. 239265. Florence: International Institute for the Study of Man.Google Scholar
Dean, M. C. 2004. 2D or not 2D, and other interesting questions about enamel: Reply to Macho et al. (2003). Journal of Human Evolution 46:633640.Google Scholar
Dean, M. C. 2006. Tooth microstructure tracks the pace of human life-history evolution. Proceedings of the Royal Society B-Biological Sciences 273:27992808.Google Scholar
Dean, M. C. and Beynon, A. D. 1991. Histological reconstruction of crown formation times and initial root formation times in a modern human child. American Journal of Physical Anthropology 86:215228.Google Scholar
Dean, M. C., Beynon, A. D., and Reid, D. J. 1992. Microanatomical estimates of rates of root extension in a modern human child from Spitalfields, London. In: `Smith, P. and `Tchernov, E. (eds.) Structure, Function and Evolution of Teeth, pp. 311333. London: Freund.Google Scholar
Dean, M. C., Beynon, A. D., Reid, D. J., and Whittaker, D. K. 1993. A longitudinal study of tooth growth in a single individual based on long- and short-period incremental markings in dentine and enamel. International Journal of Osteoarchaeology 3:249264.Google Scholar
Dirks, W., Reid, D. J., Jolly, C. J., Phillips-Conroy, J. E., and Brett, F. L. 2002. Out of the mouths of baboons: Stress, life history, and dental development in the Awash National Park hybrid zone, Ethiopia. American Journal of Physical Anthropology 118:239252.CrossRefGoogle ScholarPubMed
Dubois, E. 1892. Palaeontologische onderzoekingen op Java. Extra bijvoegsel der Javasche Courant, Verslag van het Mijnwezen over het 3e kwartaal 1891:12–14.Google Scholar
FitzGerald, C. M. 1995. Tooth crown formation and the variation of enamel microstructural growth markers in modern humans. Doctoral thesis, University of Cambridge.Google Scholar
FitzGerald, C. M. 1998. Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. Journal of Human Evolution 35:371386.CrossRefGoogle Scholar
FitzGerald, C. M. and Hillson, S. 2009. Deciduous tooth growth in an ancient Greek infant cemetery. In: `Koppe, T., `Meyer, G. and `Alt, A. W. (eds.) Comparative Dental Morphology, pp. 178183. Basel: Karger.Google Scholar
FitzGerald, C. M. and Saunders, S. R. 2005. Test of histological methods of determining chronology of accentuated striae in deciduous teeth. American Journal of Physical Anthropology 127:277290.Google Scholar
FitzGerald, C. M., Saunders, S. R., Bondioli, L., and Macchiarelli, R. 2006. Health of infants in an imperial Roman skeletal sample: Perspective from dental microstructure. American Journal of Physical Anthropology 130:179189.Google Scholar
FitzGerald, C. M., Saunders, S. R., Macchiarelli, R., and Bondioli, L. 1999. Large scale assessment of deciduous crown formation. In: `Mayhall, J. T. and `Heikkinen, T. (eds.) Dental Morphology ’98: Proceedings of the 11th International Symposium on Dental Morphology, pp. 92101. Oulu: Oulu University Press.Google Scholar
Füsun, A., Füsun, Ö., Sema, B., and Solen, K. 2005. Acetate peel technique: A rapid way of preparing sequential surface replicas of dental hard tissues for microscopic examination. Archives of Oral Biology 50:837842.Google Scholar
Goodman, A. H., Armelagos, G. F., and Rose, J. C. 1980. Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois (AD 950–1300). Human Biology 52:515528.Google Scholar
Goodman, A. H. and Rose, J. C. 1990. Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Yearbook of Physical Anthropology 33:59110.Google Scholar
Goodman, A. H. and Song, R.-J. 1999. Sources of variation in estimated ages at formation of linear enamel hypoplasias. In: `Hoppa, R. D. and `FitzGerald, C. M. (eds.) Human Growth in the Past: Studies from Bones and Teeth, pp. 210240. Cambridge: Cambridge University Press.Google Scholar
Gray, J. A. and Opdyke, D. L. 1962. A device for thin sectioning of hard tissues. Journal of Dental Research 41:172181.Google Scholar
Guatelli-Steinberg, D. 2001. What can developmental defects of enamel reveal about physiological stress in nonhuman primates? Evolutionary Anthropology 10:138151.Google Scholar
Guatelli-Steinberg, D. 2004. Analysis and significance of linear enamel hypoplasia in Plio-Pleistocene hominins. American Journal of Physical Anthropology 123:199215.Google Scholar
Guatelli-Steinberg, D. and Benderlioglu, Z. 2006. Brief communication: Linear enamel hypoplasia and the shift from irregular to regular provisioning in Cayo Santiago rhesus monkeys (Macaca mulatta). American Journal of Physical Anthropology 131:416419.Google Scholar
Guatelli-Steinberg, D. and Mitchell, J. 2003. Repliset: High resolution impressions of the teeth of human ancestors. Structure: Struers Journal of Materialography 40:912.Google Scholar
Guatelli-Steinberg, D. and Reid, D. J. 2008. What molars contribute to an emerging understanding of lateral enamel formation in Neandertals vs. modern humans. Journal of Human Evolution 54:236250.Google Scholar
Gustafson, A.-G. 1955. The similarity between contralateral pairs of teeth. Odontologisk Tidskrift 63:245248.Google Scholar
Gustafson, A.-G. 1959. A morphologic investigation of certain variations in the structure and mineralization of human dental enamel. Odontologisk Tidskrift 67: 366472.Google Scholar
Gysi, A. 1931. Metabolism in adult enamel. Dental Digest 37:661668.Google Scholar
Hanihara, T. 2008. Morphological variation of major human populations based on nonmetric dental traits. American Journal of Physical Anthropology 136:169182.Google Scholar
Hanihara, T. and Ishida, H. 2005. Metric dental variation of major human populations. American Journal of Physical Anthropology 128:287298.Google Scholar
Hayakawa, T., Mishima, H., Yokota, I., Sakae, T., Kozawa, Y., and Nemoto, K. 2000. Application of high resolution microfocus X-ray CT for the observation of human tooth. Dental Materials Journal 19:8795.Google Scholar
Hillson, S. W. 1992a. Impression and replica methods for studying hypoplasia and perikymata on human tooth crown surfaces from archeological sites. International Journal of Osteoarchaeology 2:6578.Google Scholar
Hillson, S. W. 1992b. Dental enamel growth, perikymata and hypoplasia in ancient tooth crowns. Journal of the Royal Society of Medicine 85:460466.CrossRefGoogle ScholarPubMed
Hillson, S. W. 1996. Dental Anthropology. Cambridge: Cambridge University Press.Google Scholar
Hillson, S. W. 2014. Tooth Development in Human Evolution and Bioarchaeology. Cambridge: Cambridge University Press.Google Scholar
Hillson, S. W., Antoine, D. M., and Dean, M. C. 1999. A detailed developmental study of the defects of dental enamel in a group of post-medieval children from London. In: `Mayhall, J. T. and `Heikkinen, T. (eds.) Dental Morphology ‘98: Proceedings of the 11th International Symposium on Dental Morphology, pp. 102111. Oulu: Oulu University Press.Google Scholar
Hillson, S. W. and Bond, S. 1997. Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion. American Journal of Physical Anthropology 104:89103.Google Scholar
Hillson, S. W. and Jones, B. K. 1989. Instruments for measuring surface profiles: An application in the study of ancient human tooth crown surfaces. Journal of Archaeological Science 16:95105.Google Scholar
Hooijer, D. A. 1948. Prehistoric teeth of man and of the orang-utan from central Sumatra, with notes on the fossil orang-utan from Java and southern China. Zoologische Mededeelingen 29:175301.Google Scholar
Huda, T. F. J. and Bowman, J. E. 1995. Age determination from dental microstructure in juveniles. American Journal of Physical Anthropology 97:135150.Google Scholar
Humphrey, L. T., Dean, M. C., and Jeffries, T. E., 2007. An evaluation of changes in strontium/calcium ratios across the neonatal line in human deciduous teeth. In: `Bailey, S. E. and `Hublin, J.-J. (eds.) Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology, pp. 303319. Dordrecht: Springer.CrossRefGoogle Scholar
Humphrey, L. T., Dean, M. C., Jeffries, T. E., and Penn, M. 2008a. Unlocking evidence of early diet from tooth enamel. Proceedings of the National Academy of Sciences 105:68346839.Google Scholar
Humphrey, L. T., Dirks, W., Dean, M. C., and Jeffries, T. E. 2008b. Tracking dietary transitions in weanling Baboons (Papio hamadryas anubis) using Strontium/Calcium ratios in enamel. Folia Primatologica 79:197212.Google Scholar
Irish, J. and Guatelli-Steinberg, D. 2003. Ancient teeth and modern human origins: An expanded comparison of African Plio-Pleistocene and recent world dental samples. Journal of Human Evolution 45:113144.Google Scholar
Katzenberg, M. A., Herring, D. A., and Saunders, S. R. 1996. Weaning and infant mortality: Evaluating the skeletal evidence. Yearbook of Physical Anthropology 39:177199.Google Scholar
Katzenberg, M. A., Oetelaar, G., Oetelaar, J., Fitzgerald, C., Yang, D., and Saunders, S. R. 2005. Identification of historical human skeletal remains: A case study using skeletal and dental age, history and DNA. International Journal of Osteoarchaeology 15:6172.Google Scholar
Kay, R. F., Rasmussen, D. T., and Beard, K. C. 1984. Cementum annulus counts provide a means for age determination in Macaca mulatta (Primates, Anthropoidea). Folia Primatologica 42:8595.Google Scholar
Keith, A. 1913. Problems relating to the teeth of the earlier forms of prehistoric man. Proceedings of the Royal Society of Medicine 6:103113.Google Scholar
Kelley, J. 2008. Identification of a single birth cohort in Kenyapithecus kizili and the nature of sympatry between K. kizili and Gripopithecus alpani at Pasalar. Journal of Human Evolution 54:530537.Google Scholar
King, T., Hillson, S., and Humphrey, L. T. 2002. A detailed study of enamel hypoplasia in a post-medieval adolescent of known age and sex. Archives of Oral Biology 47:2939.Google Scholar
Lacruz, R. S., Dean, M. C., Ramirez-Rozzi, F., and Bromage, T. G. 2008. Megadontia, striae periodicity and patterns of enamel secretion in Plio-Pleistocene fossil hominins. Journal of Anatomy 213:148158.Google Scholar
Rozzi, F. R., and Bromage, T. 2006. Variation in enamel development of South African fossil hominids. Journal of Human Evolution 51(6):580590.Google Scholar
Le Cabec, A., Tang, N., and Tafforeau, P. 2015. Accessing developmental information of fossil hominin teeth using new synchrotron microtomography-based visualization techniques of dental surfaces and interfaces. PLoS One 10(4):e0123019.Google Scholar
Le Gros Clark, W. 1950. Hominid characters of the Australopithecine dentition. Journal of the Royal Anthropological Institute 80:3754.Google Scholar
Leeuwenhoeck, A. 1677–1678. Microscopical observations of the structure of teeth and other bones: Made and communicated, in a letter by Mr. Anthony Leeuwenhoeck. Philosophical Transactions 12:10021003.Google Scholar
Lieberman, D. E. 1994. The biological basis for seasonal increments in dental cementum and their application to archaeological research. Journal of Archaeological Science 21:525539.CrossRefGoogle Scholar
Liversidge, H. M. 2003. Variations in modern human dental development. In: `Thompson, J. L, `Krovitz, G. E., and `Nelson, A. J. (eds.) Patterns of Growth and Development in the Genus Homo, pp. 73113. Cambridge: Cambridge University Press.Google Scholar
Macchiarelli, R., Bondioli, L., Debénath, A., Mazurier, A., Tournepiche, J.-F., Birch, W., and Dean, C., 2006. How Neanderthal molar teeth grew. Nature 444:748751.Google Scholar
Marks, M., Rose, J., and Davenport, W. 1996. Technical Note: Thin section procedure for enamel histology. American Journal of Physical Anthropology 99:493498.Google Scholar
Martin, S. A., Guatelli-Steinberg, D., Sciulli, P. W., and Walker, P. L. 2008. Brief communication: Comparison of methods for estimating chronology age at linear enamel formation on anterior dentition. American Journal of Physical Anthropology 135:362365.Google Scholar
Moorrees, C. F. A., Fanning, E. A., and Hunt, E. E. 1963. Age variation of formation stages for ten permanent teeth. Journal of Dental Research 42:14901502.Google Scholar
Murphy, A. P. and McNeil, G. 1964. Precision Ultramicrotome of simplified design. The Review of Scientific Instruments 35:132134.Google Scholar
Neal, R. J. and Murphy, A. P. 1969. Technique for sectioning human enamel. Archives of Oral Biology 14:135139.Google Scholar
Nielsen-Marsh, C. M., Stegemann, C., Hoffmann, R., Smith, T., Feeney, R., Toussaint, M., Harvati, K., Panagopoulou, E., Hublin, J.-J., and Richards, M. P. 2009. Extraction and sequencing of human and Neanderthal mature enamel proteins using MALDI-TOF/TOF MS. Journal of Archaeological Science 36:17581763.Google Scholar
Nikiforuk, G. and Fraser, D. 1979. Etiology of enamel hypoplasia and interglobular dentin: The roles of hypocalcemia and hypophosphatemia. Metabolic Bone Disease and Related Research 2:1723.Google Scholar
Olejniczak, A. J., Grine, F. E., and Martin, L. B. 2007. Micro-computed tomography of the post-canine dentition: Methodological aspects of three-dimensional data collection. In: `Bailey, S. E. and `Hublin, J.-J. (eds.) Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology, pp. 103116. Springer: DordrechtGoogle Scholar
Peyrégne, S., Slon, V., Mafessoni, F., de Filippo, C., Hajdinjak, M., Nagel, S., Nickel, B., Essel, E., Le Cabec, A., Wehrberger, K., Conard, N. J., Kind, C. J., Posth, C., Krause, J., Abrams, G., Bonjean, D., Di Modica, K., Toussaint, M., Kelso, J., Meyer, M., Pääbo, S., and Prüfer, K. 2019. Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe. Science Advances 5:eaaw5873.Google Scholar
Reid, D. J., Beynon, A. D., and Ramirez Rozzi, F. V. 1998b. Histological reconstruction of dental development in four individuals from a medieval site in Picardie, France. Journal of Human Evolution 35:463477.Google Scholar
Reid, D. J. and Dean, M. C. 2000. The timing of linear hypoplasias on human anterior teeth. American Journal of Physical Anthropology 113:135139.Google Scholar
Reid, D. J. and Dean, M. C. 2006. Variation in modern human enamel formation Times. Journal of Human Evolution 50: 329346.Google Scholar
Reid, D. J. and Ferrell, R., 2006. The relationship between number of striae of Retzius and their periodicity in imbricational enamel formation. Journal of Human Evolution 50:195202.Google Scholar
Reid, D. J., Guatelli-Steinberg, D., and Walton, P. 2008. Variation in modern human premolar enamel formation times: Implications for Neandertals. Journal of Human Evolution 54:225235.CrossRefGoogle ScholarPubMed
Renz, H. and Radlanski, R. J. 2006. Incremental lines in root cementum of human teeth – a reliable age marker? Homo 57:2950.Google Scholar
Reid, D. J., Schwartz, G. T., Dean, C., and Chandrasekera, M. S. 1998a. A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes. Journal of Human Evolution 35:427448.Google Scholar
Reynard, L. M. and Tuross, N. 2015. The known, the unknown and the unknowable: Weaning times from archaeological bones using nitrogen isotope ratios. Journal of Archaeological Science 53:618625.Google Scholar
Richards, M., Harvati, K., Grimes, V., Smith, C., Smith, T., Hublin, J. -J., Karkanas, P., and Panagopoulou, E. 2008. Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS. Journal of Archaeological Science 35:12511256.Google Scholar
Ritzman, T. B., Baker, B. J., and Schwartz, G. T. 2008. A fine line: A comparison of methods of estimating ages of linear enamel hypoplasia formation. American Journal of Physical Anthropology 135:348361.Google Scholar
Rose, J. C., Armelagos, G. J., and Lallo, J. W. 1978. Histological enamel indicator of childhood stress in prehistoric skeletal samples. American Journal of Physical Anthropology 49:511516.Google Scholar
Rose, J. J. 1983. A replication technique for scanning electron microscopy: Applications for anthropologists. American Journal of Physical Anthropology 62:255261.Google Scholar
Rushton, M. A. 1933. On the fine contour lines of the enamel of milk teeth. Dental Record 53:170171.Google Scholar
Schmidt, W. J. and Keil, A. 1971. Polarizing Microscopy of Dental Tissues. Oxford: Pergamon Press.Google Scholar
Schoeninger, M. J., Hallin, K., Reeser, H., Valley, J. W., and Fournelle, J. 2003. Isotopic alteration of mammalian tooth enamel. International Journal of Osteoarchaeology 13:1119.Google Scholar
Schour, I. 1936. The neonatal line in the enamel and dentin of human deciduous teeth and first permanent molar. Journal of the American Dental Association 23:19461955.Google Scholar
Schwartz, G. T. and Dean, C. 2001. Ontogeny of canine dimorphism in extant hominoids. American Journal of Physical Anthropology 115:269283.Google Scholar
Schwartz, J. H., Houghton, F., Macchiarelli, R., and Bondioli, L. 2010. Skeletal remains from Punic Carthage do not support systematic sacrifice of infants’, PLoS One 5(2):e9177.Google Scholar
Schwartz, G. T., Reid, D. J., Dean, M. C., and Zihlman, A. L. 2006. A faithful record of stressful life events preserved in the dental developmental record of a juvenile gorilla. International Journal of Primatology 22:837860.Google Scholar
Simpson, S. W. 1999. Reconstructing patterns of growth disruption from enamel microstructure. In: `Hoppa, R. D. and `Fitzgerald, C. M. (eds.) Human Growth in the Past: Studies from Bones and Teeth, pp. 241263. Cambridge: Cambridge University Press.Google Scholar
Skinner, M. F. 1986. Enamel hypoplasia in sympatric chimpanzee and gorilla. Human Evolution 1:289312.Google Scholar
Skinner, M. F. 1996. Developmental stress in immature hominines from late Pleistocene Eurasia: Evidence from enamel hypoplasia. Journal of Archaeological Science 23:833852.Google Scholar
Skinner, M. F. and Anderson, G. S. 1991. Individualization and enamel histology: A case report in forensic anthropology. Journal of Forensic Sciences 36:939948.Google Scholar
Skinner, M. F. and Hopwood, D. 2004. Hypothesis for the causes and periodicity of repetitive linear enamel hypoplasia in large, wild African (Pan troglodytes and Gorilla gorilla) and Asian (Pongo pygmaeus) apes. American Journal of Physical Anthropology 123:216235.Google Scholar
Smith, B. H. 1991. Standards of human tooth formation and dental age assessment. In: `Kelley, M. A. and `Spencer Larsen, C. (eds.) Advances in Dental Anthropology, pp. 143168. New York: Wiley-Liss.Google Scholar
Smith, T. M. 2006. Experimental determination of the periodicity of incremental features in enamel. Journal of Anatomy 208:99114.Google Scholar
Smith, T. M. 2008. Incremental dental development: Methods and applications in hominoid evolutionary studies. Journal of Human Evolution 54:205224.Google Scholar
Smith, T. M. 2013. Teeth and human life-history evolution. Annual Review of Anthropology 42:191208.Google Scholar
Smith, T. M. and Boesch, C. 2015. Developmental defects in the teeth of three wild chimpanzees from the Taï forest. American Journal of Physical Anthropology 157:556570.Google Scholar
Smith, T. M. and Reid, D. J. 2009. Temporal nature of periradicular bands (“striae periradicales”) on mammalian tooth roots. In: `Koppe, T., `Meyer, G., `Alt, K. W., `Brook, A., `Dean, M. C., `Kjaer, I., `Lukacs, J. R., `Smith, B. H., and `Teaford, M. F. (eds.) Comparative Dental Morphology, pp. 8692. Basle: Karger Medical and Scientific Publishers.Google Scholar
Smith, T. M. and Tafforeau, P. 2008. New visions of dental tissue research: Tooth development, chemistry, and structure. Evolutionary Anthropology 17:213226.Google Scholar
Smith, T.M., Austin, C., Green, D.R. Joannes-Boyau, R. Bailey, S., Dumitriu, D., Fallon, S., Grün, R., James, H.F., Moncel, M-H., Williams, I.S., Wood, R., and Arora, M. 2018. Wintertime stress, nursing, and lead exposure in Neanderthal children. Science Advances 4: eaau9483.Google Scholar
Smith, T. M., Harvati, K., Olejniczak, A. J., Reid, D. J., Hublin, J.-J., and Panagopoulou, E. 2009. Brief communication: Dental development and enamel thickness in the Lakonis Neanderthal molar. American Journal of Physical Anthropology 138:112118.Google Scholar
Smith, T. M., Martin, L. B., Reid, D. J., de Bouis, L., and Koufos, G. D. 2004. Anexamination of dental development in Graecopithecus freybergi (= Ouranopithecus macedoniensis). Journal of Human Evolution 46:551577.Google Scholar
Smith, T. M., Reid, D. J., Olejniczak, A. J., Tafforeau, P., Hublin, J.-J., and Toussaint, M. 2014. Dental development in and age at death of the Scladina 1-4A juvenile Neanderthal. In: `Toussaint, M. and `Bonjean, D. (eds.) The Scladina I-4A Juvenile Neandertal (Andenne, Belgium) Palaeoanthropology and Context, pp. 155166. Liège: Études et Recherches Archéologiques de l’ Université de Liège.Google Scholar
Smith, T. M.*, Tafforeau, P.*, Le Cabec, A., Bonnin, A., Houssaye, A., Pouech, J., Moggi-Cecchi, J., Manthi, F., Ward, C., Makaremi, M., and Menter, C. G. 2015. Dental ontogeny in Pliocene and early Pleistocene hominins. PLoS One 10(2): e0118118. *These authors contributed equally to this work.Google Scholar
Smith, T. M., Tafforeau, P. T., Reid, D. J., Grün, R., Eggins, S., Boutakiout, M., and Hublin, J.-J. 2007c. Earliest evidence of modern human life history in North African early Homo sapiens. Proceedings of the National Academy of Science of the United States of America 104:61286133.Google Scholar
Smith, T. M., Tafforeau, P., Reid, D. J., Pouech, J., Lazzari, V., Zermeno, J. P., Guatelli-Steinberg, D., Olejniczak, A. J., Hoffman, A., Radovčić, J., Masrour, M., Toussaint, M., Stringer, C., and Hublin, J.-J. 2010. Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proceedings of the National Academy of Science of the United States of America 107:2092320928.Google Scholar
Smith, T. M., Toussaint, M., Reid, D. J., Olejniczak, A. J., and Hublin, J.-J. 2007a. Rapid dental development in a Middle Paleolithic Belgian Neanderthal. Proceedings of the National Academy of Science of the United States of America 104:2022020225.Google Scholar
Sponheimer, M., Passey, B. H., de Ruiter, D. J., Guatelli-Steinberg, D., Cerling, T. E., and Lee-Thorp, J. A. 2006. Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science 314:980982.Google Scholar
Stringer, C. B., Dean, M. C., and Martin, R. D. 1990. A comparative study of cranial and dental development within a recent British sample and among Neandertals. In: `De Rousseau, C. J. (ed.) Primate Life History and Evolution, pp. 115152. New York: Wiley-Liss.Google Scholar
Tafforeau, P. 2004. Phylogenetic and functional aspects of tooth enamel microstructure and three-dimensional structure of modern and fossil primate molars: Contributions of X-ray synchrotron microtomography. Doctoral thesis, Universitè de Montpellier II.Google Scholar
Tafforeau, P., Boistel, R., Boller, E, Bravin, A., Brunet, M., Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., Jaeger, J.-J., Kay, R.F., Lazzari, V., Marivaux, L., Nel, A., Nemoz, C., Thibault, X., Vignaud, P., and Zabler, S. 2006. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics A-Materials Science and Processing 83:195202.Google Scholar
Tafforeau, P. T. and Smith, T. M. 2008. Nondestructive imaging of hominoid dental microstructure using phase contrast X-ray synchrotron microtomography. Journal of Human Evolution 54:272278.Google Scholar
Thomas, R. F. 2003. Enamel defects, well-being and mortality in a medieval Danish village. Doctoral thesis, Pennslvania State University.Google Scholar
Toussaint, M. and Pirson, S. 2006. Neanderthal studies in Belgium: 2000–2005. Periodicum Biologorum 108:373387.Google Scholar
Weidenreich, F. 1937. The dentition of Sinathropus pekinensis: A comparative odontography of the hominids. Geological survey of China, new series D 1: 1180.Google Scholar
Wittwer-Backofen, U., Buckberry, J., Czarnetzki, A., Doppler, S., Grupe, G., Hotz, G., Kemkes, A., Larsen, C. S., Prince, D., Wahl, J., Fabig, A., and Weise, S. 2008. Basics in paleodemography: A comparison of age indicators applied to the early medieval skeletal sample of Lauchheim. American Journal of Physical Anthropology 137:384396.CrossRefGoogle Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J. W. 2004. Tooth cementum annulation for age estimation: Results from a large known-age validation study. American Journal of Physical Anthropology 123:119124.Google Scholar
Witzel, C., Kierdorf, U., Schultz, M., and Kierdorf, H. 2008. Insights from the inside: Histological analysis of abnormal enamel microstructure associated with hypoplastic enamel defects in human teeth. American Journal of Physical Anthropology 139:193203.Google Scholar
Wolpoff, M. H. 1971. Metric Trends in Hominid Dental Evolution. Cleveland: Case Western Reserve University Press.Google Scholar
Wood, B. A., Li, Y., and Willoughby, C. 1991. Intraspecific variation and sexual dimorphism in cranial and dental variables among higher primates and their bearing on the hominid fossil record. Journal of Anatomy 174:185205.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×