Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T14:30:58.415Z Has data issue: false hasContentIssue false

Part III - Bioarchaeology

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 145 - 212
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Acsádi, G. and Nemeskéri, J. 1970. History of Human Life Span and Mortality. Budapest: Akadémiai Kiadó.Google Scholar
Ahlqvist, J. and Damsten, O. 1969. Modification of Kerley’s method for the microscopic determination of age in human bone. Journal of Forensic Sciences 14:205212.Google Scholar
Algee-Hewitt, B. F. B. 2013. Age estimation in modern forensic anthropology. In: `Tersigni-Tarrant, M. T. A. and `Shirley, N. R. (eds.) Forensic Anthropology: An Introduction, pp. 181230. Boca Raton: CRC Press.Google Scholar
Aufderheide, A. C. and Rodriguez-Martin, C. 1998. The Cambridge Encyclopedia of Human Paleopathology. Cambridge: Cambridge University Press.Google Scholar
Bailey, S. E. 2008. Inter- and intra-specific variation in Pan crown tooth morphology: Implications for Neandertal taxonomy. In: `Irish, J. D. and `Nelson, G. C. (eds.) Technique and Application in Dental Anthropology, pp. 293316. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bass, W. M. 2005. Human Osteology: A Laboratory and Field Manual, 5th ed. Columbia: Missouri Archaeological Society.Google Scholar
Behrensmeyer, A. K. 1978. Taphonomic and ecological information from bone weathering. Paleobiology 4:150162.Google Scholar
Black, T. K. 1978. Sexual dimorphism in the tooth-crown diameters of deciduous teeth. American Journal of Physical Anthropology 48:7782.Google Scholar
Bocquet-Appel, J. and Masset, C. 1982. Farewell to paleodemography. Journal of Human Evolution 11:321333.Google Scholar
Bogin, B. 1998. Social and economic class. In: `Ulijaszek, S. J., `Johnston, F. E., and `Preece, M. A. (eds.) Cambridge Encyclopedia of Human Growth and Development, pp. 399401. Cambridge: Cambridge University Press.Google Scholar
Boldsen, J. L., Milner, G. R., Konigsberg, L. W. and Wood, J. W. 2002. Transition analyses: A new method for estimating age from skeletons. In: `Hoppa, R. D. and `Vaupel, J. W. (eds.) Paleodemography: Age Distributions from Skeletal Samples, pp. 73106. Cambridge: Cambridge University Press.Google Scholar
Boylston, A. 2004. Recording of weapon trauma. In: `Brickley, M. B. and `McKinley, J. I. (eds.) Guidelines to the Standards for Recording Human Remains, pp. 4042. IFA Paper No. 7. Reading: Institute of Field Archaeologists.Google Scholar
Bräuer, G. 1988. Osteometrie. In: `Knussmann, R. (ed.) Anthropologie: Handbuch der Vergleichenden Biologie des Menschen, pp. 160232. Stuttgart: Fischer.Google Scholar
Brickley, M. and Ives, R. 2008. The Bioarchaeology of Metabolic Bone Disease. Oxford: Elsevier.CrossRefGoogle Scholar
Brothwell, D. R. 1981. Digging Up Bones: The Excavation, Treatment, and Study of Human Skeletal Remains. Ithaca, NY: Cornell University Press.Google Scholar
Brothwell, D. and Zakrzewski, S. 2004. Metric and non-metric studies of archaeological human bone. In: `Brickley, M. B. and `McKinley, J. I. (eds.) Guidelines to the Standards for Recording Human Remains, pp. 1417. IFA Paper No. 7. Reading: Institute of Field Archaeologists.Google Scholar
Buckberry, J. L. and Chamberlain, A. T. 2002. Age estimation from the auricular surface of the ilium: A revised method. American Journal of Physical Anthropology 119:231239.Google Scholar
Buikstra, J. E. and Ubelaker, D. H. 1994. Standards for Data Collection from Human Skeletal Remains. Fayetteville: Arkansas Archaeological Survey.Google Scholar
Burns, K. R. and Maples, W. R. 1976. Estimation of age from individual adult teeth. Journal of Forensic Sciences 21:343356.Google Scholar
Chamberlain, A. T. 2000. Problems and prospects in palaeodemography. In: `Cox, M. and `Mays, S. (eds.) Human Osteology in Archaeology and Forensic Science, pp. 101115. London: Greenwich Medical Media.Google Scholar
Chamberlain, A. T. 2006. Demography in Archaeology. Cambridge: Cambridge University Press.Google Scholar
DeVito, C. and Saunders, S. R. 1990. A discriminant function analysis of deciduous teeth to determine sex. Journal of Forensic Sciences 35:845858.Google Scholar
Duday, H. 2009. The Archaeology of the Dead: Lectures in Archaeothanatology. Oxford: Oxbow.Google Scholar
Eveleth, P. B. and Tanner, J. M. 1990. Worldwide Variation in Human Growth, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Falys, C. G., Schutkowski, H. and Weston, D. A. 2005. The distal humerus – a blind test of Rogers’ sexing technique using a documented skeletal collection. Journal of Forensic Sciences 50:15.Google Scholar
Falys, C. G., Schutkowski, H. and Weston, D. A. 2006. Auricular surface ageing – worse than expected? Results from a blind test using a documented skeletal collection. American Journal of Physical Anthropology 130:508513.Google Scholar
Fazekas, I. G. and Kosa, F. 1978. Forensic Fetal Osteology. Budapest: Akadémiai Kiadó.Google Scholar
Fully, G. 1956. Une nouvelle méthode de détermination de la taille. Annales de Médecine Légale 36:266273.Google Scholar
Giles, E. and Elliot, O. 1963. Sex determination by discriminant function analysis of crania. American Journal of Physical Anthropology 21:5368.Google Scholar
`Goodman, A. H. and `Leatherman, T. L. (eds.) 1998. Building a New Biocultural Synthesis: Political-Economic Perspectives on Human Biology. Ann Arbor: University of Michigan Press.Google Scholar
Grauer, A. L. 2007. Macroscopic analysis and data collection in palaeopathology. In: `Pinhasi, R. and `Mays, S. (eds.) Advances in Human Palaeopathology, pp. 5776. Chichester: John Wiley and Sons.Google Scholar
Gustafson, G. 1950. Age determination on teeth. Journal of the American Dental Association 41:4554.Google Scholar
Hackett, C. J. 1976. Diagnostic Criteria of Syphilis, Yaws and Treponarid (Treponematoses) and of Some Other Diseases in Dry Bones (for Use in Osteo-Archaeology). Berlin: Springer.Google Scholar
Hillier, M. L. and Bell, L. S. 2007. Differentiating human bone from animal bone: A review of histological methods. Journal of Forensic Sciences 52:249263.Google Scholar
Hillson, S. 1996. Dental Anthropology. Cambridge: Cambridge University Press.Google Scholar
Holliday, T. W. and Hilton, C. E. 2010. Body proportions of circumpolar peoples as evidenced from skeletal data: Ipiutak and Tigara (Point Hope) versus Kodiak Island Inuit. American Journal of Physical Anthropology 142:287302.Google Scholar
Howells, W. W. 1973. Cranial Variation in Man: A Study by Multivariate Analysis of Patterns of Difference among Recent Human Populations. Papers of the Peabody Museum 67. Cambridge, Mass: Peabody Museum, Harvard University.Google Scholar
Howells, W. W. 1989. Skull Shapes and the Map: Craniometric Analyses in the Dispersion of Modern Homo. Papers of the Peabody Museum of Archaeology and Ethnology, Vol. 79. Cambridge, Mass: Peabody Museum, Harvard University.Google Scholar
Iordanidis, P. 1961. Détermination du sexe par les os du squelette (atlas, axis, clavicule, omoplate, sternum). Annales de Médecine Légale 41:280291.Google Scholar
Işcan, M. and Loth, S. 1986a. Determination of age from the sternal rib in white males: A test of the phase method. Journal of Forensic Science 31:122132.Google Scholar
Işcan, M. and Loth, S. 1986b. Determination of age from the sternal rib in white females: A test of the phase method. Journal of Forensic Science 31:990999.Google Scholar
Jackes, M., Silva, A. M. and Irish, J. 2001. Dental morphology: A valuable contribution to our understanding of prehistory. Journal of Iberian Archaeology 3:97119.Google Scholar
Jit, I. and Singh, S. 1966. The sexing of adult clavicles. Indian Journal of Medical Research 54:551571.Google Scholar
Johanson, G. 1971. Age determination from human teeth. Odontologisk Revy 22:1126.Google Scholar
Katz, D. and Suchey, J. M. 1986. Age determination of the male os pubis. American Journal of Physical Anthropology 69:427435.Google Scholar
Kerley, E. R. 1965. The microscopic determination of age in human bone. American Journal of Physical Anthropology 23:149164.Google Scholar
Kerley, E. R. and Ubelaker, D. H. 1978. Revisions in the microscopic method of estimating age at death in human cortical bone. American Journal of Physical Anthropology 49:545546.CrossRefGoogle ScholarPubMed
Larsen, C. S. 1997. Bioarchaeology. Cambridge: Cambridge University Press.Google Scholar
Lovejoy, C. O., Meindl, R. S., Mensforth, R. P. and Barton, T. J. 1985a. Multifactorial determination of skeletal age at death: A method and blind test of its accuracy. American Journal of Physical Anthropology 68:114.Google Scholar
Lovejoy, C. O., Meindl, R. S., Pryzbeck, T. R. and Mensforth, R. P. 1985b. Chronological metamorphosis of the auricular surface of the ilium: A new method for the determination of age at death. American Journal of Physical Anthropology 68:1528.Google Scholar
Lovell, N. 1997. Trauma analysis in paleopathology. Yearbook of Physical Anthropology 40:139170.Google Scholar
Lovell, N. 2000. Paleopathological description and diagnosis. In: `Katzenberg, M. A. and `Saunders, S. R. (eds.) Biological Anthropology of the Human Skeleton, pp. 217248. New York: Wiley Liss.Google Scholar
Maat, G. J., Maes, A., Aarents, M. J. and Nagelkerke, N. J. 2006. Histological age prediction from the femur in a contemporary Dutch sample: The decrease of nonremodeled bone in the anterior cortex. Journal of Forensic Sciences 51(2):230237.Google Scholar
Maresh, M. M. 1970. Measurements from roentgenograms. In: `McCammon, R. W. (ed.) Human Growth and Development, pp. 157199. Springfield: Charles C. Thomas.Google Scholar
Martin, R. and Saller, K. 1957. Lehrbuch der Anthropologie. Stuttgart: Fischer.Google Scholar
Mays, S. A. 1999. Linear and appositional long bone growth in earlier human populations: A case study from Mediaeval England. In: `Hoppa, R. D. and `FitzGerald, C. M. (eds.) Human Growth in the Past: Studies from Bones and Teeth, pp. 290312. Cambridge: Cambridge University Press.Google Scholar
Mays, S. and Cox, M. 2000. Sex determination in skeletal remains. In: `Cox, M. and `Mays, S. (eds.) Human Osteology in Archaeology and Forensic Science, pp. 117130. London: Greenwich Medical Media.Google Scholar
McKern, T. W. and Stewart, T. D. 1957. Skeletal age changes in young American males, analysed from the standpoint of age identification. Headquarters Quartermaster Research and Development Command, Technical Report EP-45. Natick, MA.Google Scholar
McKinley, J. I. 2004. Compiling a skeletal inventory: Disarticulated and co-mingled remains. In: `Brickley, M. B. and `McKinley, J. I. (eds.) Guidelines to the Standards for Recording Human Remains, pp. 1417. IFA Paper No. 7. Reading: Institute of Field Archaeologists.Google Scholar
Meindl, R. S. and Lovejoy, C. O. 1985. Ectocranial suture closure: A revised method for the determination of skeletal age at death based on the lateral-anterior sutures. American Journal of Physical Anthropology 68:5766.Google Scholar
Merchant, V. L and Ubelaker, D. H. 1977. Skeletal growth of the protohistoric Arikara. American Journal of Physical Anthropology 46:6172.Google Scholar
Miles, A. E. W. 1963. The dentition in the assessment of individual age in skeletal material. In: `Brothwell, D. R. (ed) Dental Anthropology, pp. 191209. Oxford: Pergamon Press.Google Scholar
Molleson, T. and Cox, M. 1993. The Spitalfields Project. Volume 2: The Anthropology. CBA Research Report 86.Google Scholar
Moore, H. 1994. A Passion for Difference: Essays in Anthropology and Gender. Cambridge: Polity Press.Google Scholar
Ogden, A. 2008. Advances in the palaeopathology of teeth and jaws. In: `Pinhasi, R. and `Mays, S. (eds.) Advances in Human Palaeopathology, pp. 283308. Chichester: John Wiley and Sons.Google Scholar
Ortner, D. J. 2003. Identification of Pathological Conditions in Human Skeletal Remains, 2nd ed. London: Academic Press.Google Scholar
Pearson, K. and Bell, J. 1917/1919. A study of the long bones of the English skeleton. I. the femur. Drapers’ Company Research Memoirs. Biometric Series X. Department of Applied Mathematics, University College, University of London.Google Scholar
Phenice, T. 1969. A newly developed visual method of sexing in the os pubis. American Journal of Physical Anthropology 30:297301.Google Scholar
Powell, M. L. and Cook, D. C. 2005. The Myth of Syphilis: The Natural History of Treponematosis in North America. Gainsville: University Press of Florida.Google Scholar
Powers, N. 2008. Age at death estimation. In: `Powers, N. (ed.) Human Osteology Method Statement. London: Museum of London.Google Scholar
Raxter, M. H., Auerbach, B. M. and Ruff, C. B. 2006. Revision of the Fully technique for estimating statures. American Journal of Physical Anthropology 130:274384.Google Scholar
Resnick, D. 2002. Diagnosis of Bone and Joint Disorders, 4th ed. London: WB Saunders Co.Google Scholar
Roberts, C. A. 2009. Human Remains in Archaeology: A Handbook. York: Council for British Archaeology.Google Scholar
Roberts, C. A and Buikstra, J. E. 2003. The Bioarchaeology of Tuberculosis: A Global View on a Reemerging Disease. Gainsville: University Press of Florida.Google Scholar
`Roberts, C. A, `Lewis, M. E. and `Manchester, K. (eds.) 2002. The Past and Present of Leprosy: Archaeological, Historical, Palaeopathological and Clinical Approaches – Proceeding of the International Congress on the Evolution and Palaeoepidemiology the Infectious Diseases 3 (ICEPID). BAR Report S1045. Oxford: Archaeopress.Google Scholar
Roberts, C. A. and Manchester, K. 1995. The Archaeology of Disease, 2nd ed. Stroud: Sutton Publishing Ltd.Google Scholar
Rogers, J. and Waldron, T. 1995. A Field Guide to Joint Disease in Archaeology. Chichester: John Wiley and Sons.Google Scholar
Rogers, J., Waldron, T., Dieppe, P. and Watt, I. 1987. Arthropathies in palaeopathology: The basis of classification according to most probable cause. Journal of Archaeological Science 14:179193.Google Scholar
Rogers, T. L. 1999. A visual method of determining the sex of skeletal remains using the distal humerus. Journal of Forensic Sciences 44:5760.Google Scholar
Ruff, C. 2002. Variation in human body size and shape. Annual Review of Anthropology 31:211232.Google Scholar
Saunders, S., Hoppa, R. and Southern, R. 1993. Diaphyseal growth in a nineteenth-century skeletal sample of subadults from St Thomas’ Church, Belleville, Ontario. International Journal of Osteoarchaeology 3:265281.Google Scholar
Scheuer, L. and Black, S. 2000. Developmental Juvenile Osteology. London: Academic Press.Google Scholar
Scheuer, L. and Black, S. 2004. The Juvenile Skeleton. London: Elsevier Academic Press.Google Scholar
Schulter-Ellis, F. P., Hayek, L. C. and Schmidt, D. J. 1985. Determination of sex with a discriminate analysis of new pelvic bone measurements: Part II. Journal of Forensic Sciences 30:178185.CrossRefGoogle ScholarPubMed
Schulter-Ellis, F. P., Schmidt, D. J., Hayek, L. C. and Craig, J. 1983. Determination of sex with a discriminate analysis of new pelvis bone measurements: Part I. Journal of Forensic Sciences 28:169180.Google Scholar
Schutkowski, H. 1990. Zur Geschlechtsdiagnose von Kinderskeletten. Morphognostische, metrische und diskriminanzanalytische Untersuchugen. Doctoral thesis, University of Goettingen.Google Scholar
Schutkowski, H. 1993. Sex determination of infant and juvenile skeletons: 1. Morphognotic features. American Journal of Physical Anthropology 90:199205.CrossRefGoogle Scholar
Scott, G. R. and Turner, C. G. II. 1997. The Anthropology of Modern Human Teeth: Dental Anthropology and its Variation in Recent Human Populations. Cambridge: Cambridge University Press.Google Scholar
Singh, G., Singh, S. P. and Singh, S. 1973. Identification of sex from the radius. Journal of the Indian Academy of Forensic Sciences 13:1016.Google Scholar
Singh, I. J. and Gunberg, D. L. 1970. Estimation of age at death in human males from quantitative histology of bone fragments. American Journal of Physical Anthropology 33:373382.Google Scholar
Smith, B. H. 1991. Standards of human tooth formation and dental age assessment. In: `Kelley, M. A and `Larsen, C. S. (eds.) Advances in Dental Anthropology, pp. 143168. New York: Wiley-Liss.Google Scholar
Steele, D. G. 1970. Estimation of stature from fragments of long limb bones. In: `Stewart, T. D. (ed.) Personal Identification in Mass Disasters, pp. 8597. Washington, DC: Smithsonian Institution.Google Scholar
Steele, D. G. and Bramblett, C. A. 1988. The Anatomy and Biology of the Human Skeleton. College Station: Texas AandM University Press.Google Scholar
Steele, J. 2000. Skeletal indicators of handedness. In: `Cox, M. and `Mays, S. (eds.) Human Osteology in Archaeology and Forensic Science, pp. 307323. London: Greenwich Medical Media.Google Scholar
Steinbock, R. T. 1976. Paleopathological Diagnosis and Interpretation: Bone Diseases in Ancient Human Populations. Springfield: Charles C. Thomas.Google Scholar
Stewart, T. D. 1979. Essentials of Forensic Anthropology Especially as Developed in the United States. Springfield: Charles C. Thomas.Google Scholar
Storm, R. A. and Knüsel, C. J. 2005. Fluctuating asymmetry: A potential osteological application. In: `Zakrzewski, S. R. and `Clegg, M. (eds.) Proceedings of the Fifth Annual Conference of the British Association for Biological Anthropology and Osteoarchaeology, pp. 113118. BAR Report S1383. Oxford: Archaeopress.Google Scholar
Stout, S. D. 1992. Methods of determining age at death using bone microstructure. In: `Saunders, S. R. and `Katzenberg, M. A. (eds.) Skeletal Biology of Past Peoples, pp. 2135. New York: Wiley.Google Scholar
Sundick, R. I. 1978. Human skeletal growth and age determination. Homo 29:228249.Google Scholar
Susanne, C. 1980. Socioeconomic differences in growth patterns. In: `Johnston, F. E., `Roche, A. F. and `Susanne, C. (eds.) Human Physical Growth and Maturation: Methods and Factors, pp. 329356. New York: Plenum Press.Google Scholar
Tibbetts, G. L. 1981. Estimation of stature from the vertebral column in American Blacks. Journal of Forensic Sciences 26:715723.Google Scholar
Todd, T. W. 1920. Age changes in the pubic bone I: The male white pubis. American Journal of Physical Anthropology 3:285334.Google Scholar
Todd, T. W. 1921. Age changes in the pubic bone. III: The pubis of the white female. IV: The pubis of the female white-negro hybrid. American Journal of Physical Anthropology 4:170.Google Scholar
Trotter, M. 1970. Estimation of stature from intact limb bones. In: `Stewart, T. D. (ed.) Personal Identification in Mass Disasters, pp. 7184. Washington, DC: National Museum of Natural History.Google Scholar
Turner, C. G. II, Nichol, C. R. and Scott, G. R. 1991. Scoring procedures for key morphological traits of the permanent dentition: The Arizona State University dental anthropology system. In: `Kelley, M. A. and `Larsen, C. S. (eds.) Advances in Dental Anthropology, pp. 1331. New York: Wiley.Google Scholar
Tyrell, A. 2000. Skeletal non-metric traits and the assessment of inter- and intra-population diversity: Past problems and future potential. In: `Cox, M. and `Mays, S. (eds.) Human Osteology in Archaeology and Forensic Science, pp. 289306. London: Greenwich Medical Media.Google Scholar
Ubelaker, D. H. 1989. Human Skeletal Remains: Excavation, Analysis, Interpretation, 2nd ed. Washington, DC: Taraxacum.Google Scholar
Van Beek, G. C. 1983. Dental Morphology: An Illustrated Guide. Bristol: Wright PSG.Google Scholar
Vasiliadis, L., Darling, A. I. and Levers, B. G. H. 1983a. The amount and distribution of sclerotic human root dentine. Archives of Oral Biology 28:645649.Google Scholar
Vasiliadis, L., Darling, A. I. and Levers, B. G. H. 1983b. The histology of sclerotic human root dentine. Archives of Oral Biology 28:693700.Google Scholar
Vlak, D., Roksandic, M. and Schillaci, M. A. 2008. Greater sciatic notch as a sex indicator in juveniles. American Journal of Physical Anthropology 137:309315.Google Scholar
Waldron, T. 1994. Counting the Dead. New York: Wiley.Google Scholar
Waldron, T. 2009. Palaeopathology. Cambridge: Cambridge University Press.Google Scholar
Weston, D. A. 2008. Investigating the specificity of periosteal reactions in pathology museum specimens. American Journal of Physical Anthropology 137:4859.Google Scholar
Weston, D. A. 2012. Non-specific infection in palaeopathology: Interpreting periosteal reactions. In: `Grauer, A. L. (ed.) Companion to Paleopathology, pp. 492512. New York: Wiley-Blackwell.Google Scholar
White, T. D. and Folkens, P. A. 2000. Human Osteology. London: Academic Press.Google Scholar
White, T. D. and Folkens, P. A. 2005. The Human Bone Manual. London: Academic Press.Google Scholar
Wood, J. and Milner, G. 1994. Reply. Current Anthropology 35:631637.Google Scholar
Wood, J., Milner, G., Harpending, H. and Weiss, K. 1992. The osteological paradox. Current Anthropology 33:343370.Google Scholar

References

Antoine, D. 2000. Evaluating the periodicity of incremental structures in dental enamel as a means of studying growth in children from past human populations. Doctoral thesis, University College London.Google Scholar
Antoine, D., Dean, C., and Hillson, S. 1999. The periodicity of incremental structures in dental enamel based on the developing dentition of post-medieval known-age children. In: `Mayhall, J. T. and `Heikkinen, T. (eds.) Dental Morphology ‘98: Proceedings of the 11th International Symposium on Dental Morphology, pp. 4855. Oulu: Oulu University Press.Google Scholar
Antoine, D., Hillson, S., and Dean, M. C. 2009. The developmental clock of dental enamel: A test for the periodicity of prism cross-striations in modern humans and an evaluation of the most likely sources of error in histological studies of this kind. Journal of Anatomy 214:4555.Google Scholar
Austin, C.*, Smith, T. M.*, Bradman, A., Hinde, K., Joannes-Boyau, R., Bishop, D., Hare, D. J., Doble, P., Eskenazi, B., and Arora, M. 2013. Barium distributions in teeth reveal early life dietary transitions in primates. Nature 498:216219. *These authors contributed equally to this work.Google Scholar
Bailey, S. E. 2002. Neandertal dental morphology: Implications for modern human origins. Doctoral thesis, Arizona State University.Google Scholar
Beaumont, J., Montgomery, J., Buckberry, J., and Jay, M. 2015. Infant mortality and isotopic complexity: New approaches to stress, maternal health, and weaning. American Journal of Physical Anthropology 157:441457.Google Scholar
Bell, L. S., Boyde, A., and Jones, S. J. 1991. Diagenetic alteration to teeth in situ illustrated by backscattered electron imaging. Scanning 13:173183.Google Scholar
Berten, J. 1895. Hypoplasie des Schmelzes (Congenitale Schmelzdefecte; Erosionen). Deutsche Monatsschrift für Zahnheilkunde 13:425439, 483–498, 533–548, 587–606.Google Scholar
Beynon, A. D. 1987. Replication technique for studying microstructure in fossil enamel. Scanning Microscopy 1:663669.Google Scholar
Beynon, A. D., Clayton, C. B., Ramirez Rozzi, F. V., and Reid, D. J. 1998. Radiographic and histological methodologies in estimating the chronology of crown development in modern humans and great apes: A review, with some applications for studies on juvenile hominids. Journal of Human Evolution 35:351370.Google Scholar
Bowman, J. E. 1991. Life history, growth and dental development in young primates: A study using captive rhesus macaques. Doctoral thesis, Cambridge University.Google Scholar
Boyde, A. 1963. Estimation of age at death of young human skeletal remains from incremental lines in the dental enamel. Excerpta Medica International Congress Series 80:3646.Google Scholar
Boyde, A. 1970. The surface of the enamel in human hypoplastic teeth. Archives of Oral Biology 15:897898.Google Scholar
Boyde, A. 1989. Enamel. In: `Oksche, A. and `Vollrath, L. (eds.) Handbook of Microscopic Anatomy, Vol. V/6: Teeth, pp. 309473. Berlin: Springer-Verlag.Google Scholar
Boyde, A. 1990. Developmental interpretations of dental microstructure. In: De `Rousseau, C. J. (ed.) Primate Life History and Evolution, pp. 229267. New York: Wiley-Liss.Google Scholar
Boyde, A., Fortelius, M., Lester, K. S., and Martin, L. B. 1988. Basis of the structure and development of mammalian enamel as seen by scanning electron microscopy. Scanning Microscopy 2:14791490.Google Scholar
Boyde, A. and Jones, S. J. 1983. Backscattered electron imaging of dental tissues. Anatomy and Embryology 168:211226.Google Scholar
Boyde, A. and Martin, L. 1987. Tandem scanning reflected light microscopy of primate enamel. Scanning Microscopy 1:19351948.Google Scholar
Brace, C. L., Smith, S. L., and Hunt, K. D. 1991. What big teeth you had grandma! Human tooth size, past and present. In: `Kelly, and `Larsen, (eds.) Advances in Dental Anthropology, pp. 3357. New York: Wiley-Liss.Google Scholar
Bracha, H. S. 2004. Can premorbid episodes of diminished vagal tone be detected via histological markers in patients with PTSD? International Journal of Psychophysiology 51:127133.Google Scholar
Bromage, T. G. 1991. Enamel incremental periodicity in the pig-tailed macaque: A polychrome fluorescent labeling study of dental hard tissues. American Journal of Physical Anthropology 86:205214.Google Scholar
Bullion, S. K. 1987. Incremental structures of enamel and their applications to archaeology. Doctoral thesis, University of Lancaster.Google Scholar
Caropreso, S., Bondioli, L. Capannolo, D., Cerroni, L., Macchiarelli, R., and Condò, S. G. 2000. Thin sections for hard tissue histology: A new procedure. Journal of Microscopy 199:244247.Google Scholar
Dean, M. C. 1995. The nature and periodicity of incremental lines in primate dentine and their relationship to periradicular bands in OH 16 (Homo habilis). In: `Moggi-Cecchi, J. (ed.) Aspects of Dental Biology: Paleontology, Anthropology and Evolution, pp. 239265. Florence: International Institute for the Study of Man.Google Scholar
Dean, M. C. 2004. 2D or not 2D, and other interesting questions about enamel: Reply to Macho et al. (2003). Journal of Human Evolution 46:633640.Google Scholar
Dean, M. C. 2006. Tooth microstructure tracks the pace of human life-history evolution. Proceedings of the Royal Society B-Biological Sciences 273:27992808.Google Scholar
Dean, M. C. and Beynon, A. D. 1991. Histological reconstruction of crown formation times and initial root formation times in a modern human child. American Journal of Physical Anthropology 86:215228.Google Scholar
Dean, M. C., Beynon, A. D., and Reid, D. J. 1992. Microanatomical estimates of rates of root extension in a modern human child from Spitalfields, London. In: `Smith, P. and `Tchernov, E. (eds.) Structure, Function and Evolution of Teeth, pp. 311333. London: Freund.Google Scholar
Dean, M. C., Beynon, A. D., Reid, D. J., and Whittaker, D. K. 1993. A longitudinal study of tooth growth in a single individual based on long- and short-period incremental markings in dentine and enamel. International Journal of Osteoarchaeology 3:249264.Google Scholar
Dirks, W., Reid, D. J., Jolly, C. J., Phillips-Conroy, J. E., and Brett, F. L. 2002. Out of the mouths of baboons: Stress, life history, and dental development in the Awash National Park hybrid zone, Ethiopia. American Journal of Physical Anthropology 118:239252.Google Scholar
Dubois, E. 1892. Palaeontologische onderzoekingen op Java. Extra bijvoegsel der Javasche Courant, Verslag van het Mijnwezen over het 3e kwartaal 1891:12–14.Google Scholar
FitzGerald, C. M. 1995. Tooth crown formation and the variation of enamel microstructural growth markers in modern humans. Doctoral thesis, University of Cambridge.Google Scholar
FitzGerald, C. M. 1998. Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. Journal of Human Evolution 35:371386.Google Scholar
FitzGerald, C. M. and Hillson, S. 2009. Deciduous tooth growth in an ancient Greek infant cemetery. In: `Koppe, T., `Meyer, G. and `Alt, A. W. (eds.) Comparative Dental Morphology, pp. 178183. Basel: Karger.Google Scholar
FitzGerald, C. M. and Saunders, S. R. 2005. Test of histological methods of determining chronology of accentuated striae in deciduous teeth. American Journal of Physical Anthropology 127:277290.Google Scholar
FitzGerald, C. M., Saunders, S. R., Bondioli, L., and Macchiarelli, R. 2006. Health of infants in an imperial Roman skeletal sample: Perspective from dental microstructure. American Journal of Physical Anthropology 130:179189.Google Scholar
FitzGerald, C. M., Saunders, S. R., Macchiarelli, R., and Bondioli, L. 1999. Large scale assessment of deciduous crown formation. In: `Mayhall, J. T. and `Heikkinen, T. (eds.) Dental Morphology ’98: Proceedings of the 11th International Symposium on Dental Morphology, pp. 92101. Oulu: Oulu University Press.Google Scholar
Füsun, A., Füsun, Ö., Sema, B., and Solen, K. 2005. Acetate peel technique: A rapid way of preparing sequential surface replicas of dental hard tissues for microscopic examination. Archives of Oral Biology 50:837842.Google Scholar
Goodman, A. H., Armelagos, G. F., and Rose, J. C. 1980. Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois (AD 950–1300). Human Biology 52:515528.Google Scholar
Goodman, A. H. and Rose, J. C. 1990. Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Yearbook of Physical Anthropology 33:59110.Google Scholar
Goodman, A. H. and Song, R.-J. 1999. Sources of variation in estimated ages at formation of linear enamel hypoplasias. In: `Hoppa, R. D. and `FitzGerald, C. M. (eds.) Human Growth in the Past: Studies from Bones and Teeth, pp. 210240. Cambridge: Cambridge University Press.Google Scholar
Gray, J. A. and Opdyke, D. L. 1962. A device for thin sectioning of hard tissues. Journal of Dental Research 41:172181.Google Scholar
Guatelli-Steinberg, D. 2001. What can developmental defects of enamel reveal about physiological stress in nonhuman primates? Evolutionary Anthropology 10:138151.Google Scholar
Guatelli-Steinberg, D. 2004. Analysis and significance of linear enamel hypoplasia in Plio-Pleistocene hominins. American Journal of Physical Anthropology 123:199215.Google Scholar
Guatelli-Steinberg, D. and Benderlioglu, Z. 2006. Brief communication: Linear enamel hypoplasia and the shift from irregular to regular provisioning in Cayo Santiago rhesus monkeys (Macaca mulatta). American Journal of Physical Anthropology 131:416419.Google Scholar
Guatelli-Steinberg, D. and Mitchell, J. 2003. Repliset: High resolution impressions of the teeth of human ancestors. Structure: Struers Journal of Materialography 40:912.Google Scholar
Guatelli-Steinberg, D. and Reid, D. J. 2008. What molars contribute to an emerging understanding of lateral enamel formation in Neandertals vs. modern humans. Journal of Human Evolution 54:236250.Google Scholar
Gustafson, A.-G. 1955. The similarity between contralateral pairs of teeth. Odontologisk Tidskrift 63:245248.Google Scholar
Gustafson, A.-G. 1959. A morphologic investigation of certain variations in the structure and mineralization of human dental enamel. Odontologisk Tidskrift 67: 366472.Google Scholar
Gysi, A. 1931. Metabolism in adult enamel. Dental Digest 37:661668.Google Scholar
Hanihara, T. 2008. Morphological variation of major human populations based on nonmetric dental traits. American Journal of Physical Anthropology 136:169182.Google Scholar
Hanihara, T. and Ishida, H. 2005. Metric dental variation of major human populations. American Journal of Physical Anthropology 128:287298.Google Scholar
Hayakawa, T., Mishima, H., Yokota, I., Sakae, T., Kozawa, Y., and Nemoto, K. 2000. Application of high resolution microfocus X-ray CT for the observation of human tooth. Dental Materials Journal 19:8795.Google Scholar
Hillson, S. W. 1992a. Impression and replica methods for studying hypoplasia and perikymata on human tooth crown surfaces from archeological sites. International Journal of Osteoarchaeology 2:6578.Google Scholar
Hillson, S. W. 1992b. Dental enamel growth, perikymata and hypoplasia in ancient tooth crowns. Journal of the Royal Society of Medicine 85:460466.Google Scholar
Hillson, S. W. 1996. Dental Anthropology. Cambridge: Cambridge University Press.Google Scholar
Hillson, S. W. 2014. Tooth Development in Human Evolution and Bioarchaeology. Cambridge: Cambridge University Press.Google Scholar
Hillson, S. W., Antoine, D. M., and Dean, M. C. 1999. A detailed developmental study of the defects of dental enamel in a group of post-medieval children from London. In: `Mayhall, J. T. and `Heikkinen, T. (eds.) Dental Morphology ‘98: Proceedings of the 11th International Symposium on Dental Morphology, pp. 102111. Oulu: Oulu University Press.Google Scholar
Hillson, S. W. and Bond, S. 1997. Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion. American Journal of Physical Anthropology 104:89103.Google Scholar
Hillson, S. W. and Jones, B. K. 1989. Instruments for measuring surface profiles: An application in the study of ancient human tooth crown surfaces. Journal of Archaeological Science 16:95105.Google Scholar
Hooijer, D. A. 1948. Prehistoric teeth of man and of the orang-utan from central Sumatra, with notes on the fossil orang-utan from Java and southern China. Zoologische Mededeelingen 29:175301.Google Scholar
Huda, T. F. J. and Bowman, J. E. 1995. Age determination from dental microstructure in juveniles. American Journal of Physical Anthropology 97:135150.Google Scholar
Humphrey, L. T., Dean, M. C., and Jeffries, T. E., 2007. An evaluation of changes in strontium/calcium ratios across the neonatal line in human deciduous teeth. In: `Bailey, S. E. and `Hublin, J.-J. (eds.) Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology, pp. 303319. Dordrecht: Springer.Google Scholar
Humphrey, L. T., Dean, M. C., Jeffries, T. E., and Penn, M. 2008a. Unlocking evidence of early diet from tooth enamel. Proceedings of the National Academy of Sciences 105:68346839.Google Scholar
Humphrey, L. T., Dirks, W., Dean, M. C., and Jeffries, T. E. 2008b. Tracking dietary transitions in weanling Baboons (Papio hamadryas anubis) using Strontium/Calcium ratios in enamel. Folia Primatologica 79:197212.Google Scholar
Irish, J. and Guatelli-Steinberg, D. 2003. Ancient teeth and modern human origins: An expanded comparison of African Plio-Pleistocene and recent world dental samples. Journal of Human Evolution 45:113144.Google Scholar
Katzenberg, M. A., Herring, D. A., and Saunders, S. R. 1996. Weaning and infant mortality: Evaluating the skeletal evidence. Yearbook of Physical Anthropology 39:177199.Google Scholar
Katzenberg, M. A., Oetelaar, G., Oetelaar, J., Fitzgerald, C., Yang, D., and Saunders, S. R. 2005. Identification of historical human skeletal remains: A case study using skeletal and dental age, history and DNA. International Journal of Osteoarchaeology 15:6172.Google Scholar
Kay, R. F., Rasmussen, D. T., and Beard, K. C. 1984. Cementum annulus counts provide a means for age determination in Macaca mulatta (Primates, Anthropoidea). Folia Primatologica 42:8595.Google Scholar
Keith, A. 1913. Problems relating to the teeth of the earlier forms of prehistoric man. Proceedings of the Royal Society of Medicine 6:103113.Google Scholar
Kelley, J. 2008. Identification of a single birth cohort in Kenyapithecus kizili and the nature of sympatry between K. kizili and Gripopithecus alpani at Pasalar. Journal of Human Evolution 54:530537.Google Scholar
King, T., Hillson, S., and Humphrey, L. T. 2002. A detailed study of enamel hypoplasia in a post-medieval adolescent of known age and sex. Archives of Oral Biology 47:2939.Google Scholar
Lacruz, R. S., Dean, M. C., Ramirez-Rozzi, F., and Bromage, T. G. 2008. Megadontia, striae periodicity and patterns of enamel secretion in Plio-Pleistocene fossil hominins. Journal of Anatomy 213:148158.Google Scholar
Rozzi, F. R., and Bromage, T. 2006. Variation in enamel development of South African fossil hominids. Journal of Human Evolution 51(6):580590.Google Scholar
Le Cabec, A., Tang, N., and Tafforeau, P. 2015. Accessing developmental information of fossil hominin teeth using new synchrotron microtomography-based visualization techniques of dental surfaces and interfaces. PLoS One 10(4):e0123019.Google Scholar
Le Gros Clark, W. 1950. Hominid characters of the Australopithecine dentition. Journal of the Royal Anthropological Institute 80:3754.Google Scholar
Leeuwenhoeck, A. 1677–1678. Microscopical observations of the structure of teeth and other bones: Made and communicated, in a letter by Mr. Anthony Leeuwenhoeck. Philosophical Transactions 12:10021003.Google Scholar
Lieberman, D. E. 1994. The biological basis for seasonal increments in dental cementum and their application to archaeological research. Journal of Archaeological Science 21:525539.Google Scholar
Liversidge, H. M. 2003. Variations in modern human dental development. In: `Thompson, J. L, `Krovitz, G. E., and `Nelson, A. J. (eds.) Patterns of Growth and Development in the Genus Homo, pp. 73113. Cambridge: Cambridge University Press.Google Scholar
Macchiarelli, R., Bondioli, L., Debénath, A., Mazurier, A., Tournepiche, J.-F., Birch, W., and Dean, C., 2006. How Neanderthal molar teeth grew. Nature 444:748751.Google Scholar
Marks, M., Rose, J., and Davenport, W. 1996. Technical Note: Thin section procedure for enamel histology. American Journal of Physical Anthropology 99:493498.Google Scholar
Martin, S. A., Guatelli-Steinberg, D., Sciulli, P. W., and Walker, P. L. 2008. Brief communication: Comparison of methods for estimating chronology age at linear enamel formation on anterior dentition. American Journal of Physical Anthropology 135:362365.Google Scholar
Moorrees, C. F. A., Fanning, E. A., and Hunt, E. E. 1963. Age variation of formation stages for ten permanent teeth. Journal of Dental Research 42:14901502.Google Scholar
Murphy, A. P. and McNeil, G. 1964. Precision Ultramicrotome of simplified design. The Review of Scientific Instruments 35:132134.Google Scholar
Neal, R. J. and Murphy, A. P. 1969. Technique for sectioning human enamel. Archives of Oral Biology 14:135139.Google Scholar
Nielsen-Marsh, C. M., Stegemann, C., Hoffmann, R., Smith, T., Feeney, R., Toussaint, M., Harvati, K., Panagopoulou, E., Hublin, J.-J., and Richards, M. P. 2009. Extraction and sequencing of human and Neanderthal mature enamel proteins using MALDI-TOF/TOF MS. Journal of Archaeological Science 36:17581763.Google Scholar
Nikiforuk, G. and Fraser, D. 1979. Etiology of enamel hypoplasia and interglobular dentin: The roles of hypocalcemia and hypophosphatemia. Metabolic Bone Disease and Related Research 2:1723.Google Scholar
Olejniczak, A. J., Grine, F. E., and Martin, L. B. 2007. Micro-computed tomography of the post-canine dentition: Methodological aspects of three-dimensional data collection. In: `Bailey, S. E. and `Hublin, J.-J. (eds.) Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology, pp. 103116. Springer: DordrechtGoogle Scholar
Peyrégne, S., Slon, V., Mafessoni, F., de Filippo, C., Hajdinjak, M., Nagel, S., Nickel, B., Essel, E., Le Cabec, A., Wehrberger, K., Conard, N. J., Kind, C. J., Posth, C., Krause, J., Abrams, G., Bonjean, D., Di Modica, K., Toussaint, M., Kelso, J., Meyer, M., Pääbo, S., and Prüfer, K. 2019. Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe. Science Advances 5:eaaw5873.Google Scholar
Reid, D. J., Beynon, A. D., and Ramirez Rozzi, F. V. 1998b. Histological reconstruction of dental development in four individuals from a medieval site in Picardie, France. Journal of Human Evolution 35:463477.Google Scholar
Reid, D. J. and Dean, M. C. 2000. The timing of linear hypoplasias on human anterior teeth. American Journal of Physical Anthropology 113:135139.Google Scholar
Reid, D. J. and Dean, M. C. 2006. Variation in modern human enamel formation Times. Journal of Human Evolution 50: 329346.Google Scholar
Reid, D. J. and Ferrell, R., 2006. The relationship between number of striae of Retzius and their periodicity in imbricational enamel formation. Journal of Human Evolution 50:195202.Google Scholar
Reid, D. J., Guatelli-Steinberg, D., and Walton, P. 2008. Variation in modern human premolar enamel formation times: Implications for Neandertals. Journal of Human Evolution 54:225235.Google Scholar
Renz, H. and Radlanski, R. J. 2006. Incremental lines in root cementum of human teeth – a reliable age marker? Homo 57:2950.Google Scholar
Reid, D. J., Schwartz, G. T., Dean, C., and Chandrasekera, M. S. 1998a. A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes. Journal of Human Evolution 35:427448.Google Scholar
Reynard, L. M. and Tuross, N. 2015. The known, the unknown and the unknowable: Weaning times from archaeological bones using nitrogen isotope ratios. Journal of Archaeological Science 53:618625.Google Scholar
Richards, M., Harvati, K., Grimes, V., Smith, C., Smith, T., Hublin, J. -J., Karkanas, P., and Panagopoulou, E. 2008. Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS. Journal of Archaeological Science 35:12511256.Google Scholar
Ritzman, T. B., Baker, B. J., and Schwartz, G. T. 2008. A fine line: A comparison of methods of estimating ages of linear enamel hypoplasia formation. American Journal of Physical Anthropology 135:348361.Google Scholar
Rose, J. C., Armelagos, G. J., and Lallo, J. W. 1978. Histological enamel indicator of childhood stress in prehistoric skeletal samples. American Journal of Physical Anthropology 49:511516.Google Scholar
Rose, J. J. 1983. A replication technique for scanning electron microscopy: Applications for anthropologists. American Journal of Physical Anthropology 62:255261.CrossRefGoogle Scholar
Rushton, M. A. 1933. On the fine contour lines of the enamel of milk teeth. Dental Record 53:170171.Google Scholar
Schmidt, W. J. and Keil, A. 1971. Polarizing Microscopy of Dental Tissues. Oxford: Pergamon Press.Google Scholar
Schoeninger, M. J., Hallin, K., Reeser, H., Valley, J. W., and Fournelle, J. 2003. Isotopic alteration of mammalian tooth enamel. International Journal of Osteoarchaeology 13:1119.Google Scholar
Schour, I. 1936. The neonatal line in the enamel and dentin of human deciduous teeth and first permanent molar. Journal of the American Dental Association 23:19461955.Google Scholar
Schwartz, G. T. and Dean, C. 2001. Ontogeny of canine dimorphism in extant hominoids. American Journal of Physical Anthropology 115:269283.Google Scholar
Schwartz, J. H., Houghton, F., Macchiarelli, R., and Bondioli, L. 2010. Skeletal remains from Punic Carthage do not support systematic sacrifice of infants’, PLoS One 5(2):e9177.Google Scholar
Schwartz, G. T., Reid, D. J., Dean, M. C., and Zihlman, A. L. 2006. A faithful record of stressful life events preserved in the dental developmental record of a juvenile gorilla. International Journal of Primatology 22:837860.Google Scholar
Simpson, S. W. 1999. Reconstructing patterns of growth disruption from enamel microstructure. In: `Hoppa, R. D. and `Fitzgerald, C. M. (eds.) Human Growth in the Past: Studies from Bones and Teeth, pp. 241263. Cambridge: Cambridge University Press.Google Scholar
Skinner, M. F. 1986. Enamel hypoplasia in sympatric chimpanzee and gorilla. Human Evolution 1:289312.Google Scholar
Skinner, M. F. 1996. Developmental stress in immature hominines from late Pleistocene Eurasia: Evidence from enamel hypoplasia. Journal of Archaeological Science 23:833852.Google Scholar
Skinner, M. F. and Anderson, G. S. 1991. Individualization and enamel histology: A case report in forensic anthropology. Journal of Forensic Sciences 36:939948.Google Scholar
Skinner, M. F. and Hopwood, D. 2004. Hypothesis for the causes and periodicity of repetitive linear enamel hypoplasia in large, wild African (Pan troglodytes and Gorilla gorilla) and Asian (Pongo pygmaeus) apes. American Journal of Physical Anthropology 123:216235.Google Scholar
Smith, B. H. 1991. Standards of human tooth formation and dental age assessment. In: `Kelley, M. A. and `Spencer Larsen, C. (eds.) Advances in Dental Anthropology, pp. 143168. New York: Wiley-Liss.Google Scholar
Smith, T. M. 2006. Experimental determination of the periodicity of incremental features in enamel. Journal of Anatomy 208:99114.Google Scholar
Smith, T. M. 2008. Incremental dental development: Methods and applications in hominoid evolutionary studies. Journal of Human Evolution 54:205224.CrossRefGoogle Scholar
Smith, T. M. 2013. Teeth and human life-history evolution. Annual Review of Anthropology 42:191208.Google Scholar
Smith, T. M. and Boesch, C. 2015. Developmental defects in the teeth of three wild chimpanzees from the Taï forest. American Journal of Physical Anthropology 157:556570.Google Scholar
Smith, T. M. and Reid, D. J. 2009. Temporal nature of periradicular bands (“striae periradicales”) on mammalian tooth roots. In: `Koppe, T., `Meyer, G., `Alt, K. W., `Brook, A., `Dean, M. C., `Kjaer, I., `Lukacs, J. R., `Smith, B. H., and `Teaford, M. F. (eds.) Comparative Dental Morphology, pp. 8692. Basle: Karger Medical and Scientific Publishers.Google Scholar
Smith, T. M. and Tafforeau, P. 2008. New visions of dental tissue research: Tooth development, chemistry, and structure. Evolutionary Anthropology 17:213226.CrossRefGoogle Scholar
Smith, T.M., Austin, C., Green, D.R. Joannes-Boyau, R. Bailey, S., Dumitriu, D., Fallon, S., Grün, R., James, H.F., Moncel, M-H., Williams, I.S., Wood, R., and Arora, M. 2018. Wintertime stress, nursing, and lead exposure in Neanderthal children. Science Advances 4: eaau9483.Google Scholar
Smith, T. M., Harvati, K., Olejniczak, A. J., Reid, D. J., Hublin, J.-J., and Panagopoulou, E. 2009. Brief communication: Dental development and enamel thickness in the Lakonis Neanderthal molar. American Journal of Physical Anthropology 138:112118.Google Scholar
Smith, T. M., Martin, L. B., Reid, D. J., de Bouis, L., and Koufos, G. D. 2004. Anexamination of dental development in Graecopithecus freybergi (= Ouranopithecus macedoniensis). Journal of Human Evolution 46:551577.Google Scholar
Smith, T. M., Reid, D. J., Olejniczak, A. J., Tafforeau, P., Hublin, J.-J., and Toussaint, M. 2014. Dental development in and age at death of the Scladina 1-4A juvenile Neanderthal. In: `Toussaint, M. and `Bonjean, D. (eds.) The Scladina I-4A Juvenile Neandertal (Andenne, Belgium) Palaeoanthropology and Context, pp. 155166. Liège: Études et Recherches Archéologiques de l’ Université de Liège.Google Scholar
Smith, T. M.*, Tafforeau, P.*, Le Cabec, A., Bonnin, A., Houssaye, A., Pouech, J., Moggi-Cecchi, J., Manthi, F., Ward, C., Makaremi, M., and Menter, C. G. 2015. Dental ontogeny in Pliocene and early Pleistocene hominins. PLoS One 10(2): e0118118. *These authors contributed equally to this work.Google Scholar
Smith, T. M., Tafforeau, P. T., Reid, D. J., Grün, R., Eggins, S., Boutakiout, M., and Hublin, J.-J. 2007c. Earliest evidence of modern human life history in North African early Homo sapiens. Proceedings of the National Academy of Science of the United States of America 104:61286133.Google Scholar
Smith, T. M., Tafforeau, P., Reid, D. J., Pouech, J., Lazzari, V., Zermeno, J. P., Guatelli-Steinberg, D., Olejniczak, A. J., Hoffman, A., Radovčić, J., Masrour, M., Toussaint, M., Stringer, C., and Hublin, J.-J. 2010. Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proceedings of the National Academy of Science of the United States of America 107:2092320928.Google Scholar
Smith, T. M., Toussaint, M., Reid, D. J., Olejniczak, A. J., and Hublin, J.-J. 2007a. Rapid dental development in a Middle Paleolithic Belgian Neanderthal. Proceedings of the National Academy of Science of the United States of America 104:2022020225.Google Scholar
Sponheimer, M., Passey, B. H., de Ruiter, D. J., Guatelli-Steinberg, D., Cerling, T. E., and Lee-Thorp, J. A. 2006. Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science 314:980982.Google Scholar
Stringer, C. B., Dean, M. C., and Martin, R. D. 1990. A comparative study of cranial and dental development within a recent British sample and among Neandertals. In: `De Rousseau, C. J. (ed.) Primate Life History and Evolution, pp. 115152. New York: Wiley-Liss.Google Scholar
Tafforeau, P. 2004. Phylogenetic and functional aspects of tooth enamel microstructure and three-dimensional structure of modern and fossil primate molars: Contributions of X-ray synchrotron microtomography. Doctoral thesis, Universitè de Montpellier II.Google Scholar
Tafforeau, P., Boistel, R., Boller, E, Bravin, A., Brunet, M., Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., Jaeger, J.-J., Kay, R.F., Lazzari, V., Marivaux, L., Nel, A., Nemoz, C., Thibault, X., Vignaud, P., and Zabler, S. 2006. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics A-Materials Science and Processing 83:195202.Google Scholar
Tafforeau, P. T. and Smith, T. M. 2008. Nondestructive imaging of hominoid dental microstructure using phase contrast X-ray synchrotron microtomography. Journal of Human Evolution 54:272278.Google Scholar
Thomas, R. F. 2003. Enamel defects, well-being and mortality in a medieval Danish village. Doctoral thesis, Pennslvania State University.Google Scholar
Toussaint, M. and Pirson, S. 2006. Neanderthal studies in Belgium: 2000–2005. Periodicum Biologorum 108:373387.Google Scholar
Weidenreich, F. 1937. The dentition of Sinathropus pekinensis: A comparative odontography of the hominids. Geological survey of China, new series D 1: 1180.Google Scholar
Wittwer-Backofen, U., Buckberry, J., Czarnetzki, A., Doppler, S., Grupe, G., Hotz, G., Kemkes, A., Larsen, C. S., Prince, D., Wahl, J., Fabig, A., and Weise, S. 2008. Basics in paleodemography: A comparison of age indicators applied to the early medieval skeletal sample of Lauchheim. American Journal of Physical Anthropology 137:384396.Google Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J. W. 2004. Tooth cementum annulation for age estimation: Results from a large known-age validation study. American Journal of Physical Anthropology 123:119124.Google Scholar
Witzel, C., Kierdorf, U., Schultz, M., and Kierdorf, H. 2008. Insights from the inside: Histological analysis of abnormal enamel microstructure associated with hypoplastic enamel defects in human teeth. American Journal of Physical Anthropology 139:193203.Google Scholar
Wolpoff, M. H. 1971. Metric Trends in Hominid Dental Evolution. Cleveland: Case Western Reserve University Press.Google Scholar
Wood, B. A., Li, Y., and Willoughby, C. 1991. Intraspecific variation and sexual dimorphism in cranial and dental variables among higher primates and their bearing on the hominid fossil record. Journal of Anatomy 174:185205.Google Scholar

References

Bookstein, F. L. 1989. Principal warps: Thin-plate splines and the decomposition of deformations, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6):567585.Google Scholar
Bookstein, F. L. 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge: Cambridge University Press.Google Scholar
Bookstein, F. L. 1997. Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis 1(3):225243.Google Scholar
Bulygina, E., Mitteroecker, P., and Aiello, L. 2006. Ontogeny of facial dimorphism and patterns of individual development within one human population. American Journal of Physical Anthropology 131(3):432443.Google Scholar
Cardillo, M. 2010. Some applications of geometric morphometrics to archaeology. In: `Elews, A. M. T. (ed.) Morphometrics for Nonmorphometricians, pp. 325341. Berlin: Springer.Google Scholar
Frost, S. R., Marcus, L. F., Bookstein, F. L., Reddy, D. P., and Delson, E. 2003. Cranial allometry, phylogeography, and systematics of large-bodied papionins (primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 275(2):10481072.Google Scholar
Good, P. I. 2005. Permutation, Parametric and Bootstrap Tests of Hypotheses. New York: Springer.Google Scholar
Gunz, P., Bookstein, F. L., Mitteroecker, P., Stadlmayr, A., Seidler, H., and Weber, G. W. 2009a. Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proceedings of the National Academy of Sciences of the United States of America 106(15):60946098.Google Scholar
Gunz, P., Mitteroecker, P., and Bookstein, F. L. 2005. Semilandmarks in three dimensions. In: `Slice, D. E. (ed.) Modern Morphometrics in Physical Anthropology, pp. 7398. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Gunz, P., Mitteroecker, P., Bookstein, F. L., and Weber, G. W. 2004 Computer aided reconstruction of incomplete human crania using statistical and geometrical estimation methods. In: Enter the Past: Computer Applications and Quantitative Methods in Archaeology, pp. 9294. BAR International Series 1227. Oxford: Archaeopress.Google Scholar
Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G.W., and Bookstein, F. L. 2009b. Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution 57(1):4862.Google Scholar
Gunz, P., Neubauer, S., Maureille, B., and Hublin, J.-J. 2010. Brain development after birth differs between Neanderthals and modern humans. Current Biology 20(21):R921R922.Google Scholar
Harvati, K. and Weaver, T. D. 2006. Human cranial anatomy and the differential preservation of population history and climate signatures. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 288(12):12251233.Google Scholar
Hublin, J.-J., Weston, D., Gunz, P., Richards, M., Roebroeks, W., Glimmerveen, J., and Anthonis, L. 2009. Out of the North Sea: The Zeeland Ridges Neandertal. Journal of Human Evolution 57(6):777785.Google Scholar
Lycett, S. J., von Cramon-Taubadel, N., and Foley, R. A. 2006. A crossbeam co-ordinate caliper for the morphometric analysis of lithic nuclei: A description, test and empirical examples of application. Journal of Archaeological Science 33(6):847861.Google Scholar
Maureille, B. 2002a. La redécouverte du nouveau-né néandertalien Le Moustier 2, Paléo (14):221238.Google Scholar
Maureille, B. 2002b. A lost Neanderthal neonate found. Nature 419(6902):3334.Google Scholar
Mitteroecker, P. and Gunz, P. 2009. Advances in geometric morphometrics. Evolutionary Biology 36(2):235247.CrossRefGoogle Scholar
Mitteroecker, P., Gunz, P., Weber, G. W., and Bookstein, F. L. 2004. Regional dissociated heterochrony in multivariate analysis. Annals of Anatomy = Anatomischer Anzeiger: Official Organ of the Anatomische Gesellschaft 186(5–6):463470.Google Scholar
Paschetta, C., de Azevedo, S., Castillo, L., Martínez-Abadías, N., Hernández, M., Lieberman, D. E., and González-José, R. 2010. The influence of masticatory loading on craniofacial morphology: A test case across technological transitions in the Ohio valley. American Journal of Physical Anthropology 141(2):297314.Google Scholar
Richtsmeier, J. T., DeLeon, V. B., and Lele, S. R. 2002. The promise of geometric morphometrics. American Journal of Physical Anthropology, Suppl 35:6391.Google Scholar
Rohlf, F. J. and Slice, D. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks, Systematic Zoology 39:4059.CrossRefGoogle Scholar
Roseman, C. C. and Weaver, T. D. 2004. Multivariate apportionment of global human craniometric diversity. American Journal of Physical Anthropology 125(3):257263.Google Scholar
Roseman, C. C. and Weaver, T. D. 2007. Molecules versus morphology? Not for the human cranium. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 29(12):11851188.Google Scholar
Schaefer, K., Lauc, T., Mitteroecker, P., Gunz, P., and Bookstein, F. L. 2006. Dental arch asymmetry in an isolated Adriatic community. American Journal of Physical Anthropology 129(1):132142.Google Scholar
Skinner, M. M., Gunz, P., Wood, B. A., Boesch, C., and Hublin, J.-J. 2009a. Discrimination of extant Pan species and subspecies using the enamel-dentine junction morphology of lower molars. American Journal of Physical Anthropology 140(2):234243.Google Scholar
Skinner, M. M., Gunz, P., Wood, B. A., and Hublin, J.-J. 2008. Enamel-dentine junction (EDJ) morphology distinguishes the lower molars of Australopithecus africanus and Paranthropus robustus. Journal of Human Evolution 55(6):979988.Google Scholar
Skinner, M. M., Gunz, P., Wood, B. A., and Hublin, J.-J. 2009b. How many landmarks? Assessing the classification accuracy of Pan lower molars using a geometric morphometric analysis of the occlusal basin as seen at the enamel-dentine junction. Frontiers of Oral Biology 13:2329.Google Scholar
Stansfield Nee Bulygina, E. and Gunz, P. 2010. Skhodnya, Khvalynsk, Satanay, and Podkumok calvaria: Possible Upper Paleolithic hominins from European Russia. Journal of Human Evolution 60:129144.CrossRefGoogle Scholar
Stynder, D. D., Ackermann, R. R., and Sealy, J. C. 2007. Craniofacial variation and population continuity during the South African Holocene. American Journal of Physical Anthropology 134(4):489500.Google Scholar
von Cramon-Taubadel, N. 2009. Congruence of individual cranial bone morphology and neutral molecular affinity patterns in modern humans. American Journal of Physical Anthropology 140(2):205215.Google Scholar
Weaver, T. D., Roseman, C. C., and Stringer, C. B. 2007. Were neandertal and modern human cranial differences produced by natural selection or genetic drift? Journal of Human Evolution 53(2):135145.Google Scholar
Ziliak, S. T. and McCloskey, D. N. 2008. The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and Lives. Ann Arbor: University of Michigan Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×