Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:20:52.867Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  14 November 2024

Vera Traub
Affiliation:
University of Bonn
Jens Vygen
Affiliation:
University of Bonn
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ageev, A.A., and Sviridenko, M.I. [2004]: Pipage rounding: A new method of constructing algorithms with proven performance guarantee. Journal on Combinatorial Optimization 8 (2004), 307328CrossRefGoogle Scholar
Agrawal, A., Klein, P.N., and Ravi, R. [1995]: When trees collide: An approximation algorithm for the generalized Steiner tree problem in networks. SIAM Journal on Computing 24 (1995), 440456CrossRefGoogle Scholar
Alexander, A., Boyd, S., and Elliott-Magwood, P. [2006]: On the integrality gap of the 2-edge connected subgraph problem. Technical Report TR-2006-04, SITE, University of Ottawa 2006Google Scholar
Altinkemer, K., and Gavish, B. [1987]: Heuristics for unequal weight delivery problems with a fixed error guarantee. Operations Research Letters 6 (1987), 149158CrossRefGoogle Scholar
An, H.-C., Kleinberg, R., and Shmoys, D.B. [2015]: Improving Christofides’ algorithm for the s-t path TSP. Journal of the ACM 62 (2015), Article 34CrossRefGoogle Scholar
An, H.-C., Kleinberg, R., and Shmoys, D.B. [2021]: Approximation algorithms for the bottleneck asymmetric traveling salesman problem. ACM Transactions on Algorithms 17 (2021), 112CrossRefGoogle Scholar
Anari, N., Liu, K., Oveis Gharan, S., Vinzant, C., and Vuong, T.-D. [2021]: Log-concave polynomials IV: Approximate exchange, tight mixing times, and near-optimal sampling of forests. Proceedings of the 53rd Annual ACM Symposium on Theory of Computing (STOC 2021), 408420CrossRefGoogle Scholar
Anari, N., and Oveis Gharan, S. [2015]: Effective-resistance-reducing flows, spectrally thin trees, and asymmetric TSP. Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015), 2039CrossRefGoogle Scholar
Applegate, D.L., Bixby, R., Chvátal, V., and Cook, W.J. [2006]: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton 2006Google Scholar
Archer, A., Bateni, M., Hajiaghayi, M., and Karloff, H. [2011]: Improved approximation algorithms for prize-collecting Steiner tree and TSP. SIAM Journal on Computing 30 (2011), 309332CrossRefGoogle Scholar
Arora, S. [1998]: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45 (1998), 753782CrossRefGoogle Scholar
Arora, S., and Karakostas, G. [2006]: A 2 + ε approximation algorithm for the k-MST problem. Mathematical Programming 107 (2006), 491504CrossRefGoogle Scholar
Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. [1998]: Proof verification and hardness of approximation problems. Journal of the ACM 45 (1998), 501555CrossRefGoogle Scholar
Asadpour, A., Goemans, M.X., Mądry, A., Oveis Gharan, S., and Saberi, A. [2017]: An O(log n/log log n)-approximation algorithm for the asymmetric traveling salesman problem. Operations Research 65 (2017), 10431061CrossRefGoogle Scholar
Balas, E. [1989]: The prize collecting traveling salesman problem. Networks 19 (1989), 621636CrossRefGoogle Scholar
Bang-Jensen, J., Gabow, H.N., Jordán, T., and Szigeti, Z. [1999]: Edge-connectivity augmentation with partition constraints. SIAM Journal on Discrete Mathematics 12 (1999), 160207CrossRefGoogle Scholar
Bansal, N., Blum, A., Chawla, S., and Meyerson, A. [2004]: Approximation algorithms for deadline-TSP and vehicle routing with time-windows. Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC 2004), 166174CrossRefGoogle Scholar
Barahona, F., and Conforti, M. [1987]: A construction for binary matroids. Discrete Mathematics 66 (1987), 213218CrossRefGoogle Scholar
Bartal, Y., and Gottlieb, L.-A. [2013]: A linear time approximation scheme for Euclidean TSP. Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013), 698706CrossRefGoogle Scholar
Bartal, Y., Gottlieb, L.-A., and Krauthgamer, R. [2016]: The traveling salesman problem: Low-dimensionality implies a polynomial time approximation scheme. SIAM Journal on Computing 45 (2016), 15631581CrossRefGoogle Scholar
Bateni, M., and Chuzhoy, J. [2013]: Approximation algorithms for the directed k-tour and k-stroll problems. Algorithmica 65 (2013), 545561CrossRefGoogle Scholar
Beideman, C., Chandrasekaran, K., and Wang, W. [2023]: Approximate minimum cuts and their enumeration. Proceedings of the 6th Symposium on Simplicity in Algorithms (SOSA 2023), 3641CrossRefGoogle Scholar
Bellman, R. [1962]: Dynamic programming treatment of the travelling salesman problem. Journal of the ACM 9 (1962), 6163CrossRefGoogle Scholar
Benczúr, A.A. [1995]: A representation of cuts within 6/5 times the edge connectivity with applications. Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1995), 92102CrossRefGoogle Scholar
Benczúr, A.A., and Goemans, M.X. [2008]: Deformable polygon representation and near-mincuts. In: Building Bridges: Between Mathematics and Computer Science (Grötschel, M. and Katona, G.O.H., eds.), Bolyai Society Mathematical Studies 19, Budapest, and Springer, Berlin 2008, pp. 103135CrossRefGoogle Scholar
Bender, M.A., and Chekuri, C. [2000]: Performance guarantees for the TSP with a parameterized triangle inequality. Information Processing Letters 73 (2000), 1721CrossRefGoogle Scholar
Benoit, G., and Boyd, S. [2008]: Finding the exact integrality gap for small traveling salesman problems. Mathematics of Operations Research 33 (2008), 921931CrossRefGoogle Scholar
Bérczi, K., Mnich, M., and Vincze, R. [2022]: A 3/2-approximation for the metric many-visits path TSP. SIAM Journal on Discrete Mathematics 36 (2022), 29953030CrossRefGoogle Scholar
Berman, P., and Karpinski, M. [2006]: 8/7-approximation algorithm for (1,2)-TSP. Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), 641648CrossRefGoogle Scholar
van Bevern, R., and Slugina, V.A. [2020]: A historical note on the 3/2-approximation algorithm for the metric traveling salesman problem. Historia Mathematica 53 (2020), 118127CrossRefGoogle Scholar
Bienstock, D., Goemans, M.X., Simchi-Levi, D., and Williamson, D. [1993]: A note on the prize collecting traveling salesman problem. Mathematical Programming 39 (1993), 413420CrossRefGoogle Scholar
Bläser, M. [2008]: A new approximation algorithm for the asymmetric TSP with triangle inequality. ACM Transactions on Algorithms 4 (2008), Article 47CrossRefGoogle Scholar
Blauth, J., Held, S., Müller, D., Schlomberg, N., Traub, V., Tröbst, T., and Vygen, J. [2022]: Vehicle routing with time-dependent travel times: theory, practice, and benchmarks. arXiv:2205.00889Google Scholar
Blauth, J., Klein, N., and Nägele, M. [2023]: A better-than-1.6-approximation for Prize-Collecting TSP. arXiv:2308.06254. To appear in IPCO 2024CrossRefGoogle Scholar
Blauth, J., and Nägele, M. [2023]: An improved approximation guarantee for Prize-Collecting TSP. Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC 2023), 18481861CrossRefGoogle Scholar
Blauth, J., Neuwohner, M., Puhlmann, L., and Vygen, J. [2023]: Improved guarantees for the a priori TSP. Proceedings of the 34th International Symposium on Algorithms and Computation (ISAAC 2023), Article 14Google Scholar
Blauth, J., Traub, V., and Vygen, J. [2023]: Improving the approximation ratio for capacitated vehicle routing. Mathematical Programming 197 (2023), 451497CrossRefGoogle Scholar
Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., and Minkoff, M. [2007]: Approximation algorithms for orienteering and discounted-reward TSP. SIAM Journal on Computing 37 (2007), 653670CrossRefGoogle Scholar
Blum, A., Ravi, R., and Vempala, S. [1999]: A constant-factor approximation for the k-MST problem. Journal of Computer and System Sciences 58 (1999), 101108CrossRefGoogle Scholar
Bock, F.C. [1971]: An algorithm to construct a minimum directed spanning tree in a directed network. In: Developments in Operations Research, Volume I (Avi-Itzhak, B., ed.), Gordon and Breach, New York 1971, pp. 2944Google Scholar
Borcea, J., Brändén, P., and Liggett, T. [2009]: Negative dependence and the geometry of polynomials. Journal of the American Mathematical Society 22 (2009), 521567CrossRefGoogle Scholar
Borradaile, G., Le, H., and Wulff-Nilsen, C. [2017]: Minor-free graphs have light spanners. Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2017), 767778CrossRefGoogle Scholar
Borůvka, O. [1926]: O jistém problému minimálním. Práca Moravské Pr̆írodovĕdecké Spolec̆nosti 3 (1926), 3758 [in Czech]Google Scholar
Bosch-Calvo, M., Grandoni, F., and Jabal Ameli, A. [2023]: A 4/3 approximation for 2-vertex-connectivity. Proceedings of the 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), Article 29Google Scholar
Boyd, S., and Carr, R. [2011]: Finding low cost TSP and 2-matching solutions using certain half-integer subtour vertices. Discrete Optimization 8 (2011), 525539CrossRefGoogle Scholar
Boyd, S., and Elliott-Magwood, P. [2005]: Computing the integrality gap of the asymmetric traveling salesman problem. Electronic Notes in Discrete Mathematics 19 (2005), 241247CrossRefGoogle Scholar
Boyd, S., and Elliott-Magwood, P. [2010]: Structure of the extreme points of the subtour elimination polytope of the STSP. RIMS Kôkyûroku Bessatsu B23 (2010), 3347Google Scholar
Boyd, S., Fu, Y., and Sun, Y. [2016]: A -approximation for subcubic 2EC using circulations and obliged edges. Discrete Applied Mathematics 209 (2016), 4858CrossRefGoogle Scholar
Boyd, S.C., and Pulleyblank, W.R. [1991]: Optimizing over the subtour polytope of the travelling salesman problem. Mathematical Programming 49 (1991), 163187CrossRefGoogle Scholar
Boyd, S., and Sebő, A. [2021]: The salesman’s improved tours for fundamental classes. Mathematical Programming 186 (2021), 289307CrossRefGoogle Scholar
Boyd, S., Sitters, R., van der Ster, S., and Stougie, L. [2014]: The traveling salesman problem on cubic and subcubic graphs. Mathematical Programming 144 (2014), 227245CrossRefGoogle Scholar
van den Brand, J., Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S., and Sidford, A. [2023]: A deterministic almost-linear time algorithm for minimum-cost flow. Proceedings of the 64th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2023), 503514CrossRefGoogle Scholar
Brooks, R.L., Smith, C.A.B., Stone, A.H., and Tutte, W.T. [1940]: The dissection of rectangles into squares. Duke Mathematical Journal 7 (1940), 312340CrossRefGoogle Scholar
Calinescu, G., Chekuri, C., Pál, M., and Vondrák, J. [2011]: Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing 40 (2011), 17401766CrossRefGoogle Scholar
Carathéodory, C. [1911]: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconto del Circolo Matematico di Palermo 32 (1911), 193217 [in German]CrossRefGoogle Scholar
Carr, R., and Ravi, R. [1998]: A new bound for the 2-edge connected subgraph problem. Proceedings of the 6th Conference on Integer Programming and Combinatorial Optimization (IPCO 1998), 112125CrossRefGoogle Scholar
Carr, R., and Vempala, S. [2004]: On the Held–Karp relaxation for the asymmetric and symmetric traveling salesman problems. Mathematical Programming 100 (2004), 569587CrossRefGoogle Scholar
Cen, R., Li, J., and Panigrahi, D. [2022]: Edge connectivity augmentation in near-linear time. Proceedings of the 54th Annual ACM Symposium on Theory of Computing (STOC 2022), 137150CrossRefGoogle Scholar
Chalasani, P., Motwani, R., and Rao, A. [1997]: Algorithms for robot grasp and delivery. Proceedings of the 2nd International Workshop on Algorithmic Foundations of Robotics (WAFR 1997), 347362Google Scholar
Charikar, M., Goemans, M.X., and Karloff, H. [2006]: On the integrality ratio for the asymmetric traveling salesman problem. Mathematics of Operations Research 31 (2006), 245252CrossRefGoogle Scholar
Chaudhuri, K., Godfrey, B., Rao, S., and Talwar, K. [2003]: Paths, trees, and minimum latency tours. Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), 3645CrossRefGoogle Scholar
Chekuri, C., Korula, N., and Pál, M. [2012]: Improved algorithms for orienteering and related problems. ACM Transactions on Algorithms 8 (2012), Article 23CrossRefGoogle Scholar
Chekuri, C., and Pál, M. [2007]: An O (log n) approximation ratio for the asymmetric traveling salesman path problem. Theory of Computing 3 (2007), 197209CrossRefGoogle Scholar
Chekuri, C., and Quanrud, K. [2017]: Approximating the Held–Karp bound for metric TSP in nearly-linear time. Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2017), 789800CrossRefGoogle Scholar
Chekuri, C., and Quanrud, K. [2018]: Faster approximations for Metric-TSP via linear programming. arXiv:1802.01242Google Scholar
Chekuri, C., Quanrud, K., and Torres, M.R. [2021]: Fast approximation algorithms for bounded degree and crossing spanning tree problems. Proceedings of the 24th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2021), Article 24Google Scholar
Chekuri, C., Quanrud, K., and Xu, C. [2020]: LP relaxation and tree packing for minimum k-cut. SIAM Journal on Discrete Mathematics 34 (2020), 13341353CrossRefGoogle Scholar
Chekuri, C., Vondrák, J., and Zenklusen, R. [2010]: Dependent randomized rounding via exchange properties of combinatorial structures. Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), 575584CrossRefGoogle Scholar
Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., and Sachdeva, S. [2022]: Maximum flow and minimum-cost flow in almost-linear time. Proceedings of the 63rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2022), 612623CrossRefGoogle Scholar
Cheriyan, J., Friggstad, Z., and Gao, Z. [2015]: Approximating minimum-cost connected T-joins. Algorithmica 72 (2015), 126147CrossRefGoogle Scholar
Cheriyan, J., Karloff, H., Khandekar, R., and Könemann, J. [2008]: On the integrality ratio for tree augmentation. Operations Research Letters 36 (2008), 399401CrossRefGoogle Scholar
Cheriyan, J., Sebő, A., and Szigeti, Z. [2001]: Improving on the 1.5-approximation of a smallest 2-edge connected spanning subgraph. SIAM Journal on Discrete Mathematics 14 (2001), 170180CrossRefGoogle Scholar
Chernoff, H. [1952]: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Annals of Mathematical Statistics 23 (1952), 493507CrossRefGoogle Scholar
Chiplunkar, A., and Vishwanathan, S. [2015]: Approximating the regular graphic TSP in near linear time. Proceedings of the 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015), 125135Google Scholar
Christofides, N. [1976]: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh 1976 [reprinted in Operations Research Forum 3 (2022), Article 20]CrossRefGoogle Scholar
Cook, W.J. [2012]: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton 2012Google Scholar
Cornuéjols, G., Fonlupt, J., and Naddef, D. [1985]: The traveling salesman problem on a graph and some related integer polyhedra. Mathematical Programming 33 (1985), 127CrossRefGoogle Scholar
Correa, J., Larré, O., and Soto, J.A. [2015]: TSP tours in cubic graphs: Beyond 4/3. SIAM Journal on Discrete Mathematics 29 (2015), 915939CrossRefGoogle Scholar
Cunningham, W.H. [1984]: Testing membership in matroid polyhedra. Journal of Combinatorial Theory B 36 (1984), 161188CrossRefGoogle Scholar
Czeller, I., and Pap, G. [2014]: A note on bounded weighted graphic metric TSP. Technical Report No. 2014-03, EGRES, Budapest 2014Google Scholar
Dadush, D., Végh, L.A., and Zambelli, G. [2021]: Geometric rescaling algorithms for submodular function minimization. Mathematics of Operations Research 46 (2021), 10811108CrossRefGoogle Scholar
Dantzig, G.B., and Fulkerson, D.R. [1956]: On the max-flow min-cut theorem of networks. In: Linear Inequalities and Related Systems (Kuhn, H.W. and Tucker, A.W., eds.), Princeton University Press, Princeton 1956, pp. 215221Google Scholar
Dantzig, G.B., Fulkerson, D.R., and Johnson, S.M. [1954]: Solution of a large scale traveling salesman problem. Operations Research 2 (1954), 393410Google Scholar
Demaine, E.D., Hajiaghayi, M., and Kawarabayashi, K. [2011]: Contraction decomposition in H-minor free graphs and algorithmic applications. Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC 2011), 441450CrossRefGoogle Scholar
Demaine, E.D., Hajiaghayi, M., and Mohar, B. [2010]: Approximation algorithms via contraction decomposition. Combinatorica 30 (2010), 533552CrossRefGoogle Scholar
Dijkstra, E.W. [1959]: A note on two problems in connexion with graphs. Numerische Mathematik 1 (1959), 269271CrossRefGoogle Scholar
Dinits, E., Karzanov, A.V., and Lomonosov, M.V. [1976]: On the structure of a family of minimal weighed cuts in a graph. In: Studies in Discrete Optimization (Fridman, A.A., ed.), Nauka, Moscow 1976, pp. 290306 [in Russian]Google Scholar
Disser, Y., Feldmann, A.E., Klimm, M., and Könemann, J. [2021]: Travelling on graphs with small highway dimension. Algorithmica 83 (2021), 13521370CrossRefGoogle Scholar
Drees, M. [2022]: Simplifying the Karlin–Klein–Oveis Gharan analysis for -approximating TSP. Master’s thesis, University of Bonn, 2022Google Scholar
Duník, B., and Lukot’ka, R. [2018]: Cubic TSP: A 1.3-approximation. SIAM Journal on Discrete Mathematics 32 (2018), 20942114CrossRefGoogle Scholar
Dvor̆ák, Z., Král’, D., and Mohar, B. [2017]: Graphic TSP in cubic graphs. Proceedings of the 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017), Article 27Google Scholar
Edmonds, J. [1965a]: Paths, trees, and flowers. Canadian Journal of Mathematics 17 (1965), 449467CrossRefGoogle Scholar
Edmonds, J. [1965b]: Maximum matching and a polyhedron with (0,1) vertices. Journal of Research of the National Bureau of Standards B 69 (1965), 125130CrossRefGoogle Scholar
Edmonds, J. [1967a]: Optimum branchings. Journal of Research of the National Bureau of Standards B 71 (1967), 233240CrossRefGoogle Scholar
Edmonds, J. [1967b]: Systems of distinct representatives and linear algebra. Journal of Research of the National Bureau of Standards B 71 (1967), 241245CrossRefGoogle Scholar
Edmonds, J. [1970]: Submodular functions, matroids and certain polyhedra. In: Combinatorial Structures and Their Applications; Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications 1969 (R. Guy, H. Hanani, N. Sauer, and Schönheim, J., eds.), Gordon and Breach, New York 1970, pp. 6987Google Scholar
Edmonds, J. [1973]: Edge-disjoint branchings. In: Combinatorial Algorithms (Rustin, R., ed.), Algorithmic Press, New York 1973, pp. 9196Google Scholar
Edmonds, J. [1975]: Some well-solved problems in combinatorial optimization. In: Combinatorial Programming: Methods and Applications (Roy, B., ed.), Reidel, Dordrecht 1975, pp. 285301CrossRefGoogle Scholar
Edmonds, J., and Johnson, E.L. [1973]: Matching, Euler tours and the Chinese postman. Mathematical Programming 5 (1973), 88124CrossRefGoogle Scholar
Edmonds, J., and Karp, R.M. [1972]: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM 19 (1972), 248264CrossRefGoogle Scholar
van Ee, M., and Sitters, R. [2018]: The a priori traveling repairman problem. Algorithmica 80 (2018), 28182833CrossRefGoogle Scholar
Euler, L. [1736]: Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Petropolitanae 8 (1736), 128140 [in Latin]Google Scholar
Feder, T., and Mihail, M. [1992]: Balanced matroids. Proceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC 1992), 2638CrossRefGoogle Scholar
Feige, U., Ravi, R., and Singh, M. [2014]: Short tours through large linear forests. Proceedings of the 17th Conference on Integer Programming and Combinatorial Optimization (IPCO 2014), 273284CrossRefGoogle Scholar
Feige, U., and Singh, M. [2007]: Improved approximation algorithms for traveling salesperson tours and paths in directed graphs. Proceedings of the 10th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2007), 104118CrossRefGoogle Scholar
Fernandes, C.G. [1998]: A better approximation ratio for the minimum size k-edge-connected spanning subgraph problem. Journal of Algorithms 28 (1998), 105124CrossRefGoogle Scholar
Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., and de Wolf, R. [2015]: Exponential lower bounds for polytopes in combinatorial optimization. Journal of the ACM 62 (2015), Article 17Google Scholar
Fleiner, T., and Frank, A. [2009]: A quick proof for the cactus representation of mincuts. EGRES Quick Proof No. 2009-03, Budapest 2009Google Scholar
Ford, L.R. Jr., and Fulkerson, D.R. [1956]: Maximal flow through a network. Canadian Journal of Mathematics 8 (1956) 399404CrossRefGoogle Scholar
Frank, A. [1989]: On connectivity properties of Eulerian digraphs. Annals of Discrete Mathematics 41 (1989), 179194CrossRefGoogle Scholar
Frank, A. [1993]: Conservative weightings and ear-decompositions of graphs. Combinatorica 13 (1993), 6581CrossRefGoogle Scholar
Frank, A. [1994]: On the edge-connectivity algorithm of Nagamochi and Ibaraki. Laboratoire Artemis, IMAG, Université J. Fourier, Grenoble 1994Google Scholar
Frank, A. [2011]: Connections in Combinatorial Optimization. Oxford University Press 2011Google Scholar
Frank, A., and Tardos, É. [1987]: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7 (1987), 4965CrossRefGoogle Scholar
Frank, A., Triesch, E., Korte, B., and Vygen, J. [1998]: On the bipartite travelling salesman problem. Report No. 98866, Research Institute for Discrete Mathematics, University of Bonn, 1998Google Scholar
Frederickson, G.N. [1979]: Approximation algorithms for some postman problems. Journal of the ACM 26 (1979), 538554CrossRefGoogle Scholar
Frederickson, G.N., and Ja’ja’, J. [1982]: On the relationship between the biconnectivity augmentation and travelling salesman problems. Theoretical Computer Science 19 (1982), 189201CrossRefGoogle Scholar
Frieze, A.M., Galbiati, G., and Maffioli, F. [1982]: On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks 12 (1982), 2339CrossRefGoogle Scholar
Friggstad, Z., Gupta, A., and Singh, M. [2016]: An improved integrality gap for asymmetric TSP paths. Mathematics of Operations Research 41 (2016), 745757CrossRefGoogle Scholar
Friggstad, Z., Mousavi, R., Rahgoshay, M., and Salavatipour, M.R. [2022]: Improved approximations for capacitated vehicle routing with unsplittable client demands. Proceedings of the 23rd Conference on Integer Programming and Combinatorial Optimization (IPCO 2022), 251261CrossRefGoogle Scholar
Friggstad, Z., Salavatipour, M.R., and Svitkina, Z. [2013]: Asymmetric traveling salesman path and directed latency problems. SIAM Journal on Computing 42 (2013), 15961619CrossRefGoogle Scholar
Friggstad, Z., and Swamy, C. [2022]: A constant-factor approximation for directed latency in quasi-polynomial time. Journal of Computer and System Sciences 126 (2022), 4458CrossRefGoogle Scholar
Fulkerson, D.R. [1974]: Packing rooted directed cuts in a weighted directed graph. Mathematical Programming 6 (1974), 113CrossRefGoogle Scholar
Gabow, H.N. [1973]: Implementations of algorithms for maximum matching on nonbipartite graphs. Ph.D. thesis, Stanford University, 1973Google Scholar
Gale, D., Kuhn, H.W., and Tucker, A.W. [1951]: Linear programming and the theory of games. In: Activity Analysis of Production and Allocation (Koopmans, T.C., ed.), Wiley, New York 1951, pp. 317329Google Scholar
Gallai, T. [1964]: Maximale Systeme unabhängiger Kanten. Magyar Tudományos Akadémia; Matematikai Kutató Intézetének Közleményei 9 (1964), 401413Google Scholar
Gamarnik, D., Lewenstein, M., and Sviridenko, M. [2005]: An improved upper bound for the TSP in cubic 3-edge-connected graphs. Operations Research Letters 33 (2005), 467474CrossRefGoogle Scholar
Ganesh, A., Maggs, B.M., and Panigrahi, D. [2023]: Robust algorithms for TSP and Steiner tree. ACM Transactions on Algorithms 19 (2023), Article 12CrossRefGoogle Scholar
Gao, Z. [2013]: An LP-based -approximation algorithm for the s-t path graph traveling salesman problem. Operations Research Letters 41 (2013), 615617CrossRefGoogle Scholar
Gao, Z. [2015]: On the metric s-t path traveling salesman problem. SIAM Journal on Discrete Mathematics 29 (2015), 11331149CrossRefGoogle Scholar
Garg, M., Grandoni, F., and Jabal Ameli, A. [2023]: Improved approximation for two-edge-connectivity. Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), 23682410CrossRefGoogle Scholar
Garg, N. [2005]: Saving an epsilon: A 2-approximation for the k-MST problem in graphs. Proceedings of the 37th Annual ACM Symposium on the Theory of Computing (STOC 2005), 396402CrossRefGoogle Scholar
Gendreau, M., Laporte, G., and Hertz, A. [1997]: An approximation algorithm for the traveling salesman problem with backhauls. Operations Research 45 (1997), 639641CrossRefGoogle Scholar
Genova, K., and Williamson, D.P. [2017]: An experimental evaluation of the Best-of-Many Christofides’ algorithm for the traveling salesman problem. Algorithmica 78 (2017), 11091130CrossRefGoogle Scholar
Goddyn, L.A. [undated]: Some open problems I like. https://www.sfu.ca/~goddyn/Problems/problems.html (last checked on November 6, 2023)Google Scholar
Goemans, M.X. [1995]: Worst-case comparison of valid inequalities for the TSP. Mathematical Programming 69 (1995), 335349CrossRefGoogle Scholar
Goemans, M.X. [2006]: Minimum bounded-degree spanning trees. Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 273282CrossRefGoogle Scholar
Goemans, M.X. [2009]: Combining approximation algorithms for the prize-collecting TSP. arXiv:0910.0553Google Scholar
Goemans, M.X. [2012]: Thinness spurs progress. OPTIMA 90 (2012), 1214Google Scholar
Goemans, M.X., and Bertsimas, D.J. [1993]: Survivable networks, linear programming relaxations and the parsimonious property. Mathematical Programming 60 (1993), 145166CrossRefGoogle Scholar
Goemans, M.X., Harvey, N.J.A., Jain, K., and Singh, M. [2009]: A randomized rounding algorithm for the asymmetric traveling salesman problem. arXiv:0909.0941Google Scholar
Goemans, M.X., and Ramakrishnan, V.S. [1995]: Minimizing submodular functions over families of sets. Combinatorica 15 (1995), 499513CrossRefGoogle Scholar
Goemans, M.X., and Williamson, D.P. [1995]: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24 (1995), 296317CrossRefGoogle Scholar
Gottschalk, C. [2013]: Approximation algorithms for the traveling salesman problem in graphs and digraphs. Master’s thesis, University of Bonn, 2013Google Scholar
Gottschalk, C., and Vygen, J. [2018]: Better s-t-tours by Gao trees. Mathematical Programming 172 (2018), 191207CrossRefGoogle Scholar
Grötschel, M., Lovász, L., and Schrijver, A. [1981]: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 (1981), 169197CrossRefGoogle Scholar
Grötschel, M., Lovász, L., and Schrijver, A. [1988]: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin 1988CrossRefGoogle Scholar
Guan, M. [1962]: Graphic programming using odd or even points. Chinese Mathematics 1 (1962), 273277Google Scholar
Gupta, A., Lee, E., Li, J., Mucha, M., Newman, H., and Sarkar, S. [2022]: Matroid-based TSP rounding for half-integral solutions. Proceedings of the 23rd Conference on Integer Programming and Combinatorial Optimization (IPCO 2022), 305318CrossRefGoogle Scholar
Gurvits, L., Klein, N., and Leake, J. [2023]: From trees to polynomials and back again: New capacity bounds with applications to TSP. arXiv:2311.09072Google Scholar
Gutin, G., and Punnen, A.P., eds. [2002]: The Traveling Salesman Problem and Its Variations. Kluwer, Dordrecht 2002Google Scholar
Guttmann-Beck, N., Knaan, E., and Stern, M. [2018]: Approximation algorithms for not necessarily disjoint clustered TSP. Journal on Graph Algorithms and Applications 22 (2018), 555575CrossRefGoogle Scholar
Haddadan, A., and Newman, A. [2023]: Towards improving Christofides algorithm on fundamental classes by gluing convex combinations of tours. Mathematical Programming 198 (2023), 595620CrossRefGoogle Scholar
Haddadan, A., Newman, A., and Ravi, R. [2021]: Shorter tours and longer detours: Uniform covers and a bit beyond. Mathematical Programming 185 (2021), 245273CrossRefGoogle Scholar
Haimovich, M., and Rinnooy Kan, A.H.G. [1985]: Bounds and heuristics for capacitated routing problems. Mathematics of Operations Research 10 (1985), 527542CrossRefGoogle Scholar
Hall, P. [1935]: On representatives of subsets. Journal of the London Mathematical Society 10 (1935), 2630CrossRefGoogle Scholar
Heeger, K., and Vygen, J. [2017]: Two-connected spanning subgraphs with at most OPT edges. SIAM Journal on Discrete Mathematics 31 (2017), 18201835CrossRefGoogle Scholar
Held, M., and Karp, R.M. [1962]: A dynamic programming approach to sequencing problems. Journal of the Society of Industrial and Applied Mathematics 10 (1962), 196210CrossRefGoogle Scholar
Held, M., and Karp, R.M. [1970]: The traveling-salesman problem and minimum spanning trees. Operations Research 18 (1970), 11381162CrossRefGoogle Scholar
Henke, D. [2018]: A linear programming relaxation with cycles for the asymmetric traveling salesman problem. Master’s thesis, University of Bonn, 2018Google Scholar
Henzinger, M., and Williamson, D.P. [1996]: On the number of small cuts in a graph. Information Processing Letters 59 (1996), 4144CrossRefGoogle Scholar
Hierholzer, C. [1873]: Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 6 (1873), 3032 [in German]CrossRefGoogle Scholar
Hirai, H. [2016]: On uncrossing games for skew-supermodular functions. Journal of the Operations Research Society of Japan 59 (2016), 218223CrossRefGoogle Scholar
Hoeffding, W. [1956]: On the distribution of the number of successes in independent trials. The Annals of Mathematical Statistics 27 (1956), 713721CrossRefGoogle Scholar
Hoffman, A.J. [1960]: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Combinatorial Analysis (Bellman, R.E. and Hall, M., eds.), AMS, Providence 1960, pp. 113128CrossRefGoogle Scholar
Hoffman, A.J., and Kruskal, J.B. [1956]: Integral boundary points of convex polyhedra. In: Linear Inequalities and Related Systems; Annals of Mathematical Study 38 (Kuhn, H.W. and Tucker, A.W., eds.), Princeton University Press, Princeton 1956, pp. 223246Google Scholar
Hoogeveen, J.A. [1991]: Analysis of Christofides’ heuristic: some paths are more difficult than cycles. Operations Research Letters 10 (1991), 291295CrossRefGoogle Scholar
Hougardy, S. [2014]: On the integrality ratio of the subtour LP for Euclidean TSP. Operations Research Letters 42 (2014), 495499CrossRefGoogle Scholar
Hougardy, S., and Vygen, J. [2016]: Algorithmic Mathematics. Springer, Cham 2016CrossRefGoogle Scholar
Hunkenschröder, C., Vempala, S., and Vetta, A. [2019]: A 4/3-approximation algorithm for the minimum 2-edge connected subgraph problem. ACM Transactions on Algorithms 15 (2019), Article 55CrossRefGoogle Scholar
Hurkens, C.A.J., Lovász, L., Schrijver, A., and Tardos, É. [1988]: How to tidy up your set-system? In: Combinatorics (A. Hajnal, L. Lovász, and Sós, V.T., eds.), North-Holland, Amsterdam 1988, pp. 309314Google Scholar
Iwata, S., Fleischer, L., and Fujishige, S. [2001]: A combinatorial strongly polynomial algorithm for minimizing submodular functions. Journal of the ACM 48 (2001), 761777CrossRefGoogle Scholar
Iwata, S., and Ravi, R. [2013]: Approximating max–min weighted T-joins. Operations Research Letters 41 (2013) 321324CrossRefGoogle Scholar
Jackson, B. [1988]: Some remarks on arc-connectivity, vertex splitting, and orientation in digraphs. Journal of Graph Theory 12 (1988), 429436CrossRefGoogle Scholar
Jain, K. [2001]: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21 (2001), 3960CrossRefGoogle Scholar
Jarník, V. [1930]: O jistém problému minimálním. Práca Moravské Pr̆írodovĕdecké Spolec̆nosti 6 (1930), 5763 [in Czech]Google Scholar
Jin, B., Klein, N., and Williamson, D. [2023a]: A 4/3-approximation algorithm for half-integral cycle cut instances of the TSP. Proceedings of the 24th Conference on Integer Programming and Combinatorial Optimization (IPCO 2023), 217230CrossRefGoogle Scholar
Jin, B., Klein, N., and Williamson, D. [2023b]: A lower bound for the max entropy algorithm for TSP. arXiv:2311.01950. To appear in IPCO 2024CrossRefGoogle Scholar
Kaplan, H., Lewenstein, M., Shafrir, N., and Sviridenko, M. [2005]: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. Journal of the ACM 52 (2005), 602626CrossRefGoogle Scholar
Karger, D.R. [2000]: Minimum cuts in near-linear time. Journal of the ACM 47 (2000), 4676CrossRefGoogle Scholar
Karger, D.R., and Stein, C. [1996]: A new approach to the minimum cut problem. Journal of the ACM 43 (1996), 601640CrossRefGoogle Scholar
Karlin, A.R., Klein, N., and Oveis Gharan, S. [2020]: An improved approximation algorithm for TSP in the half integral case. Proceedings of the 52nd Annual ACM Symposium on the Theory of Computing (STOC 2020), 2839CrossRefGoogle Scholar
Karlin, A.R., Klein, N., and Oveis Gharan, S. [2021]: A (slightly) improved approximation algorithm for metric TSP. Proceedings of the 53rd Annual ACM Symposium on the Theory of Computing (STOC 2021), 3245. Operations Research, to appearCrossRefGoogle Scholar
Karlin, A.R., Klein, N., and Oveis Gharan, S. [2022]: A (slightly) improved bound on the integrality gap of the subtour LP for TSP. Proceedings of the 63rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2022), 832843CrossRefGoogle Scholar
Karlin, A.R., Klein, N., and Oveis Gharan, S. [2023]: A deterministic better-than-3/2 approximation algorithm for metric TSP. Proceedings of the 24th Conference on Integer Programming and Combinatorial Optimization (IPCO 2023), 261274CrossRefGoogle Scholar
Karp, R.M. [1972]: Reducibility among combinatorial problems. In: Complexity of Computer Computations (Miller, R.E. and Thatcher, J.W., eds.), Plenum Press, New York 1972, pp. 85103CrossRefGoogle Scholar
Karp, R.M. [1978]: A characterization of the minimum cycle mean in a digraph. Discrete Mathematics 23 (1978), 309311CrossRefGoogle Scholar
Karpinski, M., and Schmied, R. [2015]: Approximation hardness of graphic TSP on cubic graphs. RAIRO Operations Research 49 (2015), 651668CrossRefGoogle Scholar
Karpinski, M., Lampis, M., and Schmied, R. [2015]: New inapproximability bounds for TSP. Journal of Computer and System Sciences 81 (2015), 16651677CrossRefGoogle Scholar
Karzanov, A.V. [1974]: Determining a maximal flow in a network by the method of preflows. Soviet Mathematics Doklady 15 (1974), 434437Google Scholar
Karzanov, A.V. [1996]: How to tidy up a symmetric set-system by use of uncrossing operations. Theoretical Computer Science 157 (1996), 215225CrossRefGoogle Scholar
Khachiyan, L.G. [1979]: A polynomial algorithm in linear programming. Doklady Akademii Nauk SSSR 244 (1979) 10931096 [in Russian]Google Scholar
Khuller, S., and Vishkin, U. [1994]: Biconnectivity approximations and graph carvings. Journal of the ACM 41 (1994), 214235CrossRefGoogle Scholar
Kirchhoff, G. [1847]: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Annalen der Physik und Chemie 72 (1847), 497508 [in German]CrossRefGoogle Scholar
Kisfaludi-Bak, S., Nederlof, J., and Węgrzycki, K. [2021]: A Gap-ETH-tight approximation scheme for Euclidean TSP. Proceedings of the 62nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2021), 351362CrossRefGoogle Scholar
Klein, P.N. [2008]: A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. SIAM Journal on Computing 37 (2008), 19261952CrossRefGoogle Scholar
Klein, N., and Olver, N. [2023]: Thin trees for laminar families. Proceedings of the 64th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2023), 5059CrossRefGoogle Scholar
Kobayashi, Y., and Noguchi, T. [2023]: An approximation algorithm for two-edge-connected subgraph problem via triangle-free two-edge-cover. arXiv:2304.13228Google Scholar
Köhne, A., Traub, V., and Vygen, J. [2020]: The asymmetric traveling salesman path LP has constant integrality ratio. Mathematical Programming 183 (2020), 379395CrossRefGoogle Scholar
Korte, B., and Vygen, J. [2018]: Combinatorial Optimization: Theory and Algorithms. Springer, Berlin, Sixth Edition 2018CrossRefGoogle Scholar
Kruskal, J.B. [1956]: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the AMS 7 (1956), 4850CrossRefGoogle Scholar
Laekhanukit, B., Oveis Gharan, S., and Singh, M. [2012]: A rounding by sampling approach to the minimum size k-arc connected subgraph problem. Proceedings of the 39th International Colloquium on Automata, Languages, and Programming (ICALP 2012), 606612CrossRefGoogle Scholar
Lam, F., and Newman, A. [2008]: Traveling salesman path problems. Mathematical Programming 113 (2008), 3959CrossRefGoogle Scholar
Lampis, M. [2014]: Improved inapproximability for TSP. Theory of Computing 10 (2014), 217236CrossRefGoogle Scholar
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B. [1985]: The Traveling Salesman Problem. Wiley, Chichester 1985Google Scholar
Lee, Y.T., Sidford, A., and Wong, S.C. [2015]: A faster cutting plane method and its implications for combinatorial and convex optimization. Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015), 10491065CrossRefGoogle Scholar
Lempel, A., Even, S., and Cederbaum, I. [1967]: An algorithm for planarity testing of graphs. In: Théorie des Graphes. Theory of Graphs (Rosenstiehl, P., ed.), Dunod, Paris 1967Google Scholar
Lin, S., and Kernighan, B.W. [1973]: An effective heuristic algorithm for the traveling-salesman problem. Operations Research 21 (1973), 498516CrossRefGoogle Scholar
Lovász, L. [1972]: A note on factor-critical graphs. Studia Scientiarum Mathematicarum Hungarica 7 (1972), 279280Google Scholar
Lovász, L. [1976]: On some connectivity properties of Eulerian graphs. Acta Mathematica Academiae Scientiarum Hungaricae 28 (1976), 129138CrossRefGoogle Scholar
Lovász, L., and Plummer, M.D. [1986]: Matching Theory. Akadémiai Kiadó, Budapest, and North-Holland, Amsterdam 1986Google Scholar
Mader, W. [1982]: Konstruktion aller n-fach kantenzusammenhängenden Digraphen. European Journal of Combinatorics 3 (1982), 6367 [in German]CrossRefGoogle Scholar
Matula, D.W., and Shahrokhi, F. [1990]: Sparsest cuts and bottlenecks in graphs. Discrete Applied Mathematics 27 (1990), 113123CrossRefGoogle Scholar
Menger, K. [1927]: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10 (1927), 96115 [in German]CrossRefGoogle Scholar
Middendorf, M., and Pfeiffer, F. [1993]: On the complexity of the disjoint paths problem. Combinatorica 13 (1993), 97107CrossRefGoogle Scholar
Minkowski, H. [1896]: Geometrie der Zahlen. Teubner, Leipzig 1896 [in German]Google Scholar
Mitchell, J. [1999]: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM Journal on Computing 28 (1999), 12981309CrossRefGoogle Scholar
Mnich, M., and Mömke, T. [2018]: Improved integrality gap upper bounds for TSP with distances one and two. European Journal of Operational Research 266 (2018), 436457CrossRefGoogle Scholar
Mömke, T. [2015]: An improved approximation algorithm for the traveling salesman problem with relaxed triangle inequality. Information Processing Letters 115 (2015), 866871CrossRefGoogle Scholar
Mömke, T., and Svensson, O. [2016]: Removing and adding edges for the traveling salesman problem. Journal of the ACM 63 (2016), Article 2CrossRefGoogle Scholar
Monma, C.L., Munson, B.S., and Pulleyblank, W.R. [1990]: Minimum-weight two-connected spanning networks. Mathematical Programming 46 (1990), 153171CrossRefGoogle Scholar
Mucha, M. [2014]: -approximation for graphic TSP. Theory of Computing Systems 55 (2014), 640657CrossRefGoogle Scholar
Nagamochi, H., and Ibaraki, T. [1992]: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM Journal on Discrete Mathematics 5 (1992), 5466CrossRefGoogle Scholar
Nagamochi, H., Nishimura, K., and Ibaraki, T. [1997]: Computing all small cuts in an undirected network. SIAM Journal on Discrete Mathematics 10 (1997), 469481CrossRefGoogle Scholar
Nagarajan, V., and Ravi, R. [2008]: The directed minimum latency problem. Proceedings of the 11th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2008), 193206CrossRefGoogle Scholar
Nagarajan, V., and Ravi, R. [2011]: The directed orienteering problem. Algorithmica 60 (2011), 10171030CrossRefGoogle Scholar
Nash-Williams, C.S.J.A. [1961]: Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society 36 (1961), 445450CrossRefGoogle Scholar
von Neumann, J. [1947]: Discussion of a maximum problem. Working paper, Princeton 1947 [published in: John von Neumann, Collected Works; Vol. VI (Taub, A.H., ed.), Pergamon Press, Oxford 1963, pp. 2728]Google Scholar
Newman, A. [2020]: An improved analysis of the Mömke–Svensson algorithm for graph-TSP on subquartic graphs. SIAM Journal on Discrete Mathematics 34 (2020), 865884CrossRefGoogle Scholar
Orlin, J.B. [1993]: A faster strongly polynomial minimum cost flow algorithm. Operations Research 41 (1993), 338350CrossRefGoogle Scholar
Oveis Gharan, S., and Saberi, A. [2011]: The asymmetric traveling salesman problem on graphs with bounded genus. Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), 967975CrossRefGoogle Scholar
Oveis Gharan, S., Saberi, A., and Singh, M. [2011]: A randomized rounding approach to the traveling salesman problem. Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2011), 550559CrossRefGoogle Scholar
Padberg, M.W., and Rao, M.R. [1982]: Odd minimum cut-sets and b-matchings. Mathematics of Operations Research 7 (1982), 6780CrossRefGoogle Scholar
Panconesi, A., and Srinivasan, A. [1997]: Randomized distributed edge coloring via an extension of the Chernoff–Hoeffding bounds. SIAM Journal on Computing 26 (1997), 350368CrossRefGoogle Scholar
Papadimitriou, C.H., and Vempala, S. [2006]: On the approximability of the traveling salesman problem. Combinatorica 26 (2006), 101120CrossRefGoogle Scholar
Papadimitriou, C.H., and Yannakakis, M. [1993]: The traveling salesman problem with distances one and two. Mathematics of Operations Research 18 (1993), 112CrossRefGoogle Scholar
Pillai, A., and Singh, M. [2023]: Linear programming based reductions for Multiple Visit TSP and vehicle routing problems. arXiv:2308.11742Google Scholar
Prim, R.C. [1957]: Shortest connection networks and some generalizations. Bell System Technical Journal 36 (1957), 13891401CrossRefGoogle Scholar
Pritchard, D. [2010]: k-edge-connectivity: approximation and LP relaxation. Proceedings of the 8th International Workshop on Approximation and Online Algorithms (WAOA 2010). 225236CrossRefGoogle Scholar
Qian, J., Schalekamp, F., Williamson, D.P., and van Zuylen, A. [2015]: On the integrality gap of the subtour LP for the 1,2-TSP. Mathematical Programming 150 (2015), 131151CrossRefGoogle Scholar
Rado, R. [1942]: A theorem on independence relations. Quarterly Journal of Mathematics 13 (1942), 8389CrossRefGoogle Scholar
Rao, S.B., and Smith, W.D. [1998]: Approximating geometric graphs via “spanners” and “banyans.” Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC 1998), 540550CrossRefGoogle Scholar
Rayleigh, J.W.S. [1871]: On the theory of resonance. Philosophical Transactions 161 (1871), 77118Google Scholar
Robertson, N., and Seymour, P.D. [1995]: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory B 63 (1995), 65110CrossRefGoogle Scholar
Rosenkrantz, D.J., Stearns, R.E., and Lewis, P.M. II [1977]: An analysis of several heuristics for the traveling salesman problem. SIAM Journal on Computing 6 (1977), 563581CrossRefGoogle Scholar
Sahni, S., and Gonzalez, T. [1976]: P-complete approximation problems. Journal of the ACM 23 (1976), 555565CrossRefGoogle Scholar
Saller, S., Koehler, J., and Karrenbauer, A. [2023]: A systematic review of approximability results for traveling salesman problems leveraging the TSP-T3CO definition scheme. arXiv:2311.00604Google Scholar
Schalekamp, F., Sebő, A., Traub, V., and van Zuylen, A. [2018]: Layers and matroids for the traveling salesman’s paths. Operations Research Letters 46 (2018), 6063CrossRefGoogle Scholar
Schalekamp, F., Williamson, D.P., and van Zuylen, A. [2014]: 2-matchings, the traveling salesman problem, and the subtour LP: A proof of the Boyd–Carr conjecture. Mathematics of Operations Research 39 (2014), 403417CrossRefGoogle Scholar
Schrijver, A. [2000]: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory B 80 (2000), 346355CrossRefGoogle Scholar
Schrijver, A. [2003]: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin 2003Google Scholar
Sebő, A. [1987]: A quick proof of Seymour’s theorem on T-joins. Discrete Mathematics 64 (1987), 101103CrossRefGoogle Scholar
Sebő, A. [1997]: Potentials in undirected graphs and planar multiflows. SIAM Journal on Computing 26 (1997), 582603CrossRefGoogle Scholar
Sebő, A. [2013]: Eight-fifth approximation for TSP paths. Proceedings of the 16th Conference on Integer Programming and Combinatorial Optimization (IPCO 2013), 362374CrossRefGoogle Scholar
Sebő, A., and Vygen, J. [2014]: Shorter tours by nicer ears: 7/5-approximation for graphic TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica 34 (2014), 597629CrossRefGoogle Scholar
Sebő, A., and van Zuylen, A. [2019]: The salesman’s improved paths through forests. Journal of the ACM 66 (2019), Article 28CrossRefGoogle Scholar
Serdyukov, A.I. [1978]: Some extremal bypasses in graphs. Upravlyaemye Sistemy 17 (1978), 7679 [in Russian]Google Scholar
Shmoys, D., and Talwar, K. [2008] A constant approximation algorithm for the a priori traveling salesman problem. Proceedings of the 13th Conference on Integer Programming and Combinatorial Optimization (IPCO 2008), 331343CrossRefGoogle Scholar
Shmoys, D., and Williamson, D. P. [1990]: Analyzing the Held–Karp TSP bound: A monotonicity property with application. Information Processing Letters 35 (1990), 281285CrossRefGoogle Scholar
Singh, M., and Vishnoi, N.K. [2014]: Entropy, optimization and counting. Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014), 5059CrossRefGoogle Scholar
Spielman, D.A., and Teng, S.-H. [2014]: Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix Analysis and Applications 35 (2014), 835885CrossRefGoogle Scholar
Steinitz, E. [1916]: Bedingt konvergente Reihen und konvexe Systeme. Journal für die reine und angewandte Mathematik 146 (1916), 152 [in German]CrossRefGoogle Scholar
Stoer, M., and Wagner, F. [1997]: A simple min cut algorithm. Journal of the ACM 44 (1997), 585591CrossRefGoogle Scholar
Straszak, D., and Vishnoi, N.K. [2019]: Maximum entropy distributions: Bit complexity and stability. Proceedings of the 32nd Conference on Learning Theory (COLT 2019), 28612891Google Scholar
Svensson, O. [2013]: Overview of new approaches for approximating TSP. Proceedings of the 39th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2013), 511CrossRefGoogle Scholar
Svensson, O. [2015]: Approximating ATSP by relaxing connectivity. Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015), 119CrossRefGoogle Scholar
Svensson, O., Tarnawski, J., and Végh, L. [2018]: Constant factor approximation for ATSP with two edge weights. Mathematical Programming 172 (2018), 371397CrossRefGoogle Scholar
Svensson, O., Tarnawski, J., and Végh, L. [2020]: A constant-factor approximation algorithm for the asymmetric traveling salesman problem. Journal of the ACM 67 (2020), Article 37CrossRefGoogle Scholar
Tardos, É. [1985]: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5 (1985), 247255CrossRefGoogle Scholar
Tardos, É. [1986]: A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research 34 (1986), 250256CrossRefGoogle Scholar
Toth, P., and Vigo, D., eds. [2014]: Vehicle Routing: Problems, Methods, and Applications. MOS-SIAM Series on Optimization, Philadelphia, Second Edition 2014Google Scholar
Traub, V. [2017]: Approximating the s-t-path TSP. Master’s thesis, University of Bonn, 2017Google Scholar
Traub, V. [2020a]: Approximation algorithms for traveling salesman problems. PhD thesis, University of Bonn, 2020Google Scholar
Traub, V. [2020b]: Improving on Best-of-Many-Christofides for T-tours. Operations Research Letters 48 (2020), 798804CrossRefGoogle Scholar
Traub, V., and Vygen, J. [2019a]: Approaching for the s-t-path TSP. Journal of the ACM 66 (2019), Article 14CrossRefGoogle Scholar
Traub, V., and Vygen, J. [2019b]: An improved upper bound on the integrality ratio for the s-t-path TSP. Operations Research Letters 47 (2019), 225228CrossRefGoogle Scholar
Traub, V., and Vygen, J. [2022]: An improved approximation algorithm for the asymmetric traveling salesman problem. SIAM Journal on Computing 51 (2022), 139173CrossRefGoogle Scholar
Traub, V., and Vygen, J. [2023]: Beating the integrality ratio for s-t-tours in graphs. SIAM Journal on Computing 52 (2023), FOCS18-37–FOCS18-84CrossRefGoogle Scholar
Traub, V., Vygen, J., and Zenklusen, R. [2022]: Reducing Path TSP to TSP. SIAM Journal on Computing 51 (2022), STOC20-24–STOC-20-53CrossRefGoogle Scholar
Traub, V., and Zenklusen, R. [2021]: A better-than-2 approximation for weighted tree augmentation. Proceedings of the 62nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2021), 112CrossRefGoogle Scholar
Traub, V., and Zenklusen, R. [2022]: Local search for weighted tree augmentation and Steiner tree. Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), 32533271CrossRefGoogle Scholar
Tutte, W.T. [1961]: On the problem of decomposing a graph into n connected factors. Journal of the London Mathematical Society 36 (1961), 221230CrossRefGoogle Scholar
Vazirani, V.V., and Yannakakis, M. [1992]: Suboptimal cuts: Their enumeration, weight and number. Proceedings of the 19th International Colloquium on Automata, Languages, and Programming (ICALP 1992), 366377CrossRefGoogle Scholar
Vishnoi, N.K. [2012]: A permanent approach to the traveling salesman problem. Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), 7680CrossRefGoogle Scholar
Vygen, J. [2012]: New approximation algorithms for the TSP. OPTIMA 90 (2012), 112Google Scholar
Vygen, J. [2016]: Reassembling trees for the traveling salesman. SIAM Journal on Discrete Mathematics 30 (2016), 875894CrossRefGoogle Scholar
Weyl, H. [1935]: Elementare Theorie der konvexen Polyeder. Commentarii Mathematici Helvetici 7 (1935), 290306 [in German]CrossRefGoogle Scholar
Whitney, H. [1932a]: Non-separable and planar graphs. Transactions of the American Mathematical Society 34 (1932), 339362CrossRefGoogle Scholar
Whitney, H. [1932b]: Congruent graphs and the connectivity of graphs. American Journal of Mathematics 54 (1932), 150168CrossRefGoogle Scholar
Wigal, M.C., Yoo, Y., and Yu, X. [2023]: Approximating TSP walks in subcubic graphs. Journal of Combinatorial Theory B 158 (2023), 70104CrossRefGoogle Scholar
Williamson, D.P. [1990]: Analysis of the Held–Karp heuristic for the traveling salesman problem. Master’s thesis, Massachusetts Institute of Technology, 1990Google Scholar
Williamson, D.P. [2019]: Network Flow Algorithms. Cambridge University Press, Cambridge 2019CrossRefGoogle Scholar
Williamson, D.P., and Shmoys, D.B. [2011]: The Design of Approximation Algorithms. Cambridge University Press, Cambridge 2011CrossRefGoogle Scholar
Wolsey, L.A. [1980]: Heuristic analysis, linear programming and branch and bound. Mathematical Programming Study 13 (1980), 121134CrossRefGoogle Scholar
Xu, Z., and Rodrigues, B. [2015]: A 3/2-approximation algorithm for the multiple TSP with a fixed number of depots. INFORMS Journal on Computing 27 (2015), 636645CrossRefGoogle Scholar
Zenklusen, R. [2019]: A 1.5-approximation for path TSP. Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), 15391549CrossRefGoogle Scholar
Zhong, X. [2020]: Slightly improved upper bound on the integrality ratio for the s-t path TSP. Operations Research Letters 48 (2020), 627629CrossRefGoogle Scholar
van Zuylen, A. [2011]: Deterministic sampling algorithms for network design. Algorithmica 60 (2011), 110151CrossRefGoogle Scholar
van Zuylen, A. [2018]: Improved approximations for cubic bipartite and cubic TSP. Mathematical Programming 172 (2018), 399413CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Vera Traub, University of Bonn, Jens Vygen, University of Bonn
  • Book: Approximation Algorithms for Traveling Salesman Problems
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009445436.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Vera Traub, University of Bonn, Jens Vygen, University of Bonn
  • Book: Approximation Algorithms for Traveling Salesman Problems
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009445436.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Vera Traub, University of Bonn, Jens Vygen, University of Bonn
  • Book: Approximation Algorithms for Traveling Salesman Problems
  • Online publication: 14 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009445436.020
Available formats
×