Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Fundamental ideas and general formalisms
- 1 Unfinished revolution
- 2 The fundamental nature of space and time
- 3 Does locality fail at intermediate length scales?
- 4 Prolegomena to any future Quantum Gravity
- 5 Spacetime symmetries in histories canonical gravity
- 6 Categorical geometry and the mathematical foundations of Quantum Gravity
- 7 Emergent relativity
- 8 Asymptotic safety
- 9 New directions in background independent Quantum Gravity
- Questions and answers
- Part II String/M-theory
- Part III Loop quantum gravity and spin foam models
- Part IV Discrete Quantum Gravity
- Part V Effective models and Quantum Gravity phenomenology
- Index
8 - Asymptotic safety
from Part I - Fundamental ideas and general formalisms
Published online by Cambridge University Press: 26 October 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Fundamental ideas and general formalisms
- 1 Unfinished revolution
- 2 The fundamental nature of space and time
- 3 Does locality fail at intermediate length scales?
- 4 Prolegomena to any future Quantum Gravity
- 5 Spacetime symmetries in histories canonical gravity
- 6 Categorical geometry and the mathematical foundations of Quantum Gravity
- 7 Emergent relativity
- 8 Asymptotic safety
- 9 New directions in background independent Quantum Gravity
- Questions and answers
- Part II String/M-theory
- Part III Loop quantum gravity and spin foam models
- Part IV Discrete Quantum Gravity
- Part V Effective models and Quantum Gravity phenomenology
- Index
Summary
Introduction
The problems of perturbative Quantum Field Theory (QFT) in relation to the UV behaviour of gravity have led to widespread pessimism about the possibility of constructing a fundamental QFT of gravity. Instead, we have become accustomed to thinking of General Relativity (GR) as an effective field theory, which only gives an accurate description of gravitational physics at low energies. The formalism of effective field theories provides a coherent framework in which quantum calculations can be performed even if the theory is not renormalizable. For example, quantum corrections to the gravitational potential have been discussed by several authors; see and references therein. This continuum QFT description is widely expected to break down at very short distances and to be replaced by something dramatically different beyond the Planck scale. There is, however, no proof that continuum QFT will fail, and the current situation may just be the result of the lack of suitable technical tools. Weinberg described a generalized, nonperturbative notion of renormalizability called “asymptotic safety” and suggested that GR may satisfy this condition, making it a consistent QFT at all energies. The essential ingredient of this approach is the existence of a Fixed Point (FP) in the Renormalization Group (RG) flow of gravitational couplings. Several calculations were performed using the ∈-expansion around d = 2 dimensions, supporting the view that gravity is asymptotically safe.
- Type
- Chapter
- Information
- Approaches to Quantum GravityToward a New Understanding of Space, Time and Matter, pp. 111 - 128Publisher: Cambridge University PressPrint publication year: 2009
- 33
- Cited by