Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 Introduction
- 2 Basic principles of multilevel analysis
- 3 What do we gain by applying multilevel analysis?
- 4 Multilevel analysis with different outcome variables
- 5 Multilevel modelling
- 6 Multilevel analysis in longitudinal studies
- 7 Multivariate multilevel analysis
- 8 Sample-size calculations in multilevel studies
- 9 Software for multilevel analysis
- References
- Index
3 - What do we gain by applying multilevel analysis?
Published online by Cambridge University Press: 26 March 2010
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 Introduction
- 2 Basic principles of multilevel analysis
- 3 What do we gain by applying multilevel analysis?
- 4 Multilevel analysis with different outcome variables
- 5 Multilevel modelling
- 6 Multilevel analysis in longitudinal studies
- 7 Multivariate multilevel analysis
- 8 Sample-size calculations in multilevel studies
- 9 Software for multilevel analysis
- References
- Index
Summary
Introduction
Before multilevel analysis was developed, the problem of correlated observations within, for instance, medical doctors was tackled in two ways: either ignoring the fact that the observations are correlated or combining the correlated observations into one value. In fact, both methods are still frequently used. Ignoring the fact that the observations are correlated assumes that all observations are independent. In Chapter 2, this method was called ‘naive’ analysis, the advantage of which is that ‘standard’ regression analysis can be used. This way of analysing clustered data is also referred to as the ‘disaggregation’ method. The other possibility is not to ignore the dependency of the observations, but to analyse the group observations (i.e. made by each medical doctor) instead of the individual observations. Therefore, some sort of average value of the observations for each group must first be calculated and then these averages can be used as outcome in a ‘standard’ regression analysis. This method is referred to as the ‘aggregation’ method. To answer the question: ‘What do we gain by using multilevel analysis?’, it is interesting to compare the results obtained from these three types of analysis: the ‘naive/disaggregation’ method, the ‘aggregation’ method, and the (more sophisticated) multilevel analysis.
Example with a balanced dataset
In this example we use a dataset from a randomised controlled trial. The outcome variable in this experimental study is a certain continuous health outcome. The total study population consists of 200 patients, randomly divided into an intervention group and a control group.
- Type
- Chapter
- Information
- Applied Multilevel AnalysisA Practical Guide for Medical Researchers, pp. 30 - 37Publisher: Cambridge University PressPrint publication year: 2006
- 2
- Cited by