Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T11:19:41.730Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 June 2018

Pietro Corvaja
Affiliation:
Università degli Studi di Udine, Italy
Umberto Zannier
Affiliation:
Scuola Normale Superiore, Pisa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, D., Harris, J.. Abelian varieties and curves in W d (C). Compositio Math., 78 (2) (1991), 227238.Google Scholar
Adamczewski, B., Bugeaud, Y.. On the complexity of algebraic numbers. II. Continued fractions. Acta Math. 195 (2005), 120.Google Scholar
Adamczewski, B., Bugeaud, Y.. On the complexity of algebraic numbers. I. Expansions in integer bases. Ann. Math. 165 (2) (2007), 547565.Google Scholar
Adamczewski, B., Bugeaud, Y.. Palindromic continued fractions. Annales Inst. Fourier 57 (2007), 15571574.Google Scholar
Adamczewski, B., Bugeaud, Y., Luca, F.. Sur la complexité des nombres algébriques. C.R. Math. Acad. Sci. Paris 339 (2004), 1114.CrossRefGoogle Scholar
Allouche, J.-P., Shallit, J.. Automatic Sequences. Theory, Applications, Generalizations. Cambridge University Press, 2003.CrossRefGoogle Scholar
Amoroso, F., Zannier, U. (eds.). Diophantine approximation. In Proceedings of the C.I.M.E. Conference, Cetraro (Italy), 2000. Lecture Notes in Mathematics 1819. Springer, 2000.Google Scholar
Autissier, P.. Géométrie, points entiers et courbes entières. Annales Sci. E.N.S. 42 (2009), 221239.Google Scholar
Autissier, P.. Sur la non-densité des points entiers. Duke Math. J., 158 (2011), 1327.CrossRefGoogle Scholar
Baker, A., Transcendental Number Theory. Cambridge University Press, 1976.Google Scholar
Baragar, A.. Rational points on K3 surfaces in P 1 × P 1 × P 1 . Math. Ann. 305(3) (1996), 541558.CrossRefGoogle Scholar
Beauville, A.. Surfaces algébriques complexes. Société Mathématique de France, 1978. English translation: Complex Algebraic Surfaces. London Mathematical Society Student Texts. Cambridge University Press, 1996.Google Scholar
Bennett, M., Bugeaud, Y., Mignotte, M.. Perfect powers with few binary digits and related Diophantine problems. Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) 12(4) (2013), 941953.Google Scholar
Beukers, F.. Diophantine equations and approximation. In [EE] (2004).Google Scholar
Beukers, F.. The zero multiplicity of ternary recurrences. Compositio Math. 77 (1991), 165177.Google Scholar
Beukers, F., Schlickewei, H. P.. The equation x + y = 1 in finitely generated groups. Acta Arith. 78 (1996), 189199.CrossRefGoogle Scholar
Bilu, Yu.. Effective analysis of integral points on algebraic curves. Israel J. Math., 90 (1995), 235252.CrossRefGoogle Scholar
Bilu, Yu.. The many faces of the Subspace Theorem, [after Adamczewski, Bugeaud, Corvaja, Zannier, …]. In Séminaire Bourbaki, 2006/2007. Astérisque No. 317 (2008), Exp. No. 967.Google Scholar
Bilu, Yu.. A note on universal Hilbert sets. J. Reine Angew. Math., 479 (1996), 195203.CrossRefGoogle Scholar
Bilu, Yu., Tichy, R. F.. The Diophantine equation f (x) = g(y). Acta Arith. 95 (2000), 261288.CrossRefGoogle Scholar
Bogomolov, F., Korotiaev, M., Tschinkel, Y.. A Torelli theorem for curves over finite fields. Pure Appl. Math Quarterly 6 (1) (2010), 245294.Google Scholar
Bombieri, E.. Effective Diophantine approximation on G m . Ann. Scuola Norm. Super. Pisa Cl. Sci. (4) 20 (1993), 6169.Google Scholar
Bombieri, E.. Subvarieties of linear tori and the unit equation. A survey. In Analytic Number Theory, Motohashi, Y. (ed.). London Mathematical Society Lecture Notes 247. Cambridge University Press, 1997.Google Scholar
Bombieri, E.. On Weil’s “Théorème de décomposition”. Amer. J. Math. 105 (1983), 295308.Google Scholar
Bombieri, E.. The Mordell conjecture revisited. Ann. Scuola Norm. Super. Pisa Cl. Sci. 17 (1990), 615640.Google Scholar
Bombieri, E.. Forty years of effective results in Diophantine theory. In [Wu] (2004).Google Scholar
Bombieri, E., Cohen, P. B.. An elementary approach to effective Diophantine approximation on 𝔾 m . Preprint, 2002.Google Scholar
Bombieri, E., Gubler, W.. Heights in Diophantine Geometry. New Mathematical Monographs 4. Cambridge University Press, 2006.Google Scholar
Bombieri, E., Masser, D., Zannier, U.. Intersecting a curve with algebraic subgroups of multiplicative groups. Int. Math. Research Notices, 20 (1999), 11191140.CrossRefGoogle Scholar
Bombieri, E., Müller, J., Zannier, U.. Equations in one variable over function fields. Acta Arith. 99 (2001), 2739.CrossRefGoogle Scholar
Bombieri, E., Pila, J.. The number of integral points on arcs and ovals. Duke Math. J. 59 (1989), 337357.CrossRefGoogle Scholar
Bombieri, E., Zannier, U.. Algebraic points on subvarieties of . Int. Math. Research Notices, 7 (1995), 333347.Google Scholar
Borevitch, Z. I., Shafarevitch, I. R.. Théorie des nombres. Gauthier-Villars, 1967.Google Scholar
Bourgain, J., Gamburd, A., Sarnak, P.. Markov surfaces and strong approximation I. Preprint, 2016.CrossRefGoogle Scholar
Brownawell, D., Masser, D.. Vanishing sums in function fields. Math. Proc. Camb. Phil. Soc. 100 (1986), 427434.CrossRefGoogle Scholar
Bugeaud, Y.. Automatic continued fractions are transcendental or quadratic. Ann. École Norm. Sup. 46 (6) (2013), 10051022.CrossRefGoogle Scholar
Bugeaud, Y., Corvaja, P., Zannier, U.. An upper bound for the G.C.D. of a n −1 and b n − 1. Math. Z. 243 (2003), 7984.CrossRefGoogle Scholar
Bugeaud, Y., Kim, Dong Han. A new complexity function, repetitions in Sturmian words and irrationality exponents of Sturmian numbers. Preprint, arXiv: 1510.00279v2 math.NT 7 Jan 2017.Google Scholar
Bugeaud, Y., Luca, F.. On the period of the continued fraction expansion of . Indag. Math. 16 (2015), 2135.Google Scholar
Bugeaud, Y., Mignotte, M., Siksek, S.. Classical and modular approaches to exponential Diophantine equations I: Fibonacci and Lucas perfect powers. Ann. Math. 163 (2006), 9691018.CrossRefGoogle Scholar
Cassels, J. W. S.. An Introduction to Diophantine Approximation. Cambridge University Press, 1957.Google Scholar
Cassels, J. W. S.. Rational Quadratic Forms. Academic Press, 1978.Google Scholar
Colliot-Thélène, J.-L., Sansuc, J.-J.. Principal homogeneous spaces under flasque tori: applications. J. Algebra 106 (1987), 148205.CrossRefGoogle Scholar
Corvaja, P.. Rational fixed points for linear group actions. Ann. Scuola Norm. Super. Pisa Cl. Sci. 5 (4) (2007), 561597.Google Scholar
Corvaja, P.. Integral Points on Algebraic Varieties: An Introduction to Diophantine Geometry. Hindustan Book Agency, 2016.CrossRefGoogle Scholar
Corvaja, P., Zannier, U.. Diophantine equations with power sums and universal Hilbert sets. Indag. Mathem., N.S. , 9 (3) (1998), 317332.CrossRefGoogle Scholar
Corvaja, P., Zannier, U.. On the Diophantine equation f (a m , y) =b n . Acta Arith. 94 (1) (2000), 2540.CrossRefGoogle Scholar
Corvaja, P., Zannier, U.. Finiteness of integral values for the ratio of two linear recurrences. Invent. Math. 149 (2002), 431451.CrossRefGoogle Scholar
Corvaja, P., Zannier, U.. A subspace theorem approach to integral points on curves. C.R. Acad. Sci. Paris Série I 334 (2002), 267271.Google Scholar
Corvaja, P., Zannier, U.. Some new applications of the subspace theorem. Compositio Math. 131 (3) (2002), 319340.CrossRefGoogle Scholar
Corvaja, P., Zannier, U.. On the number of integral points on algebraic curves. J. Reine Angew. Math. 565 (2003), 2742.Google Scholar
Corvaja, P., Zannier, U.. On the greatest prime factor of (ab + 1)(ac + 1). Proc. Amer. Math. Soc., 131 (2003), 17051709.CrossRefGoogle Scholar
Corvaja, P., Zannier, U.. On integral points on surfaces. Ann. Math. 160 (2004), 705726.Google Scholar
Corvaja, P., Zannier, U.. On the rational approximation to the powers of an algebraic numbers: solution of two problems of Mahler and Mendès France. Acta Math. 193 (2004), 175191.CrossRefGoogle Scholar
Corvaja, P., Zannier, U.. On a general Thue’s equation. Amer. J. Math. 126 (2004), 10331055; Addendum ibid. 128 (2006), 1057–1066.CrossRefGoogle Scholar
Corvaja, P., Zannier, U.. A lower bound for the height of a rational function at S-unit points. Monats. Math. 144, 203224 (2004).Google Scholar
Corvaja, P., Zannier, U.. On the length of the continued fraction for values of quotients of power sums. J. Théorie Nombres Bordeaux 17 (2005), 737747.CrossRefGoogle Scholar
Corvaja, P., Zannier, U.. On integral points on certain surfaces. Int. Math. Research Notices (2006), 120.Google Scholar
Corvaja, P., Zannier, U.. Some cases of Vojta’s conjecture for integral points over function fields. J. Alg. Geom. 17 (2008), 295333. Addendum in Asian J. Math. 14 (2010), 581–584.Google Scholar
Corvaja, P., Zannier, U.. On the greatest prime factor of Markov pairs. Rendiconti Sem. Mat. Univ. Padova 116 (2006), 253260.Google Scholar
Corvaja, P., Zannier, U.. Integral points, divisibility between values of polynomials and entire curves on algebraic surfaces. Adv. Math. 225 (2010), 10951118.Google Scholar
Corvaja, P., Zannier, U.. Finiteness of odd perfect powers with four nonzero binary digits. Ann. Inst. Fourier (Grenoble) 63 (2) (2013), 715731.CrossRefGoogle Scholar
Corvaja, P., Zannier, U.. Greatest common divisors of u − 1, v − 1 in positive characteristic and rational points on curves over finite fields. J. Eur. Math. Soc. 15 (2013), 19271942.Google Scholar
Corvaja, P., Zannier, U.. Algebraic hyperbolicity of ramified covers of (and integral points on affine subsets of P2). J. Diff. Geometry 93 (2013), 355377.Google Scholar
Corvaja, P., Zannier, U.. On the Hilbert property and the fundamental group of algebraic varieties. Math. Z. 286 (2017), 579602.Google Scholar
Corvaja, P., Noguchi, J.. A new unicity theorem and Erdős’ problem for polarized semi-abelian varieties. Math. Annalen 353 (2012), 439464.Google Scholar
Corvaja, P., Rudnik, Z., Zannier, U.. A lower bound for periods of matrices. Commun. Math. Phys. 252 (2004), 535541.CrossRefGoogle Scholar
Dèbes, P.. On the irreducibility of the polynomials P(t m ,Y ). J. Number Theory 42 (1992), 141157.Google Scholar
Dèbes, P., Zannier, U.. Universal Hilbert subsets. Math. Proc. Camb. Phil. Soc. 124 (1998), 127134.Google Scholar
Demeio, J.. Non-rational varieties with the Hilbert property, preprint (2017).Google Scholar
Derksen, H.. A Skolem–Mahler–Lech theorem in positive characteristic and finite automata. Inv. Math. 168 (2007), 67108.CrossRefGoogle Scholar
Derksen, H., Masser, D.. Linear equations over multiplicative groups, recurrences and mixing, II. Indag. Math. 26 (2015), 113136.Google Scholar
Dwork, B., Gerotto, G., Sullivan, F.. An Introduction to G-functions. Princeton University Press, 1994.Google Scholar
Dubois, E., Rhin, G.. Sur la majoration de formes linéaires à coefficients algébriques réels et p-adiques. C.R. Acad. Sci. Paris, 282 (1976), 12111214.Google Scholar
Dvornicich, R., Tung, S. P., Zannier, U.. On polynomials taking small values at integral arguments, II. Acta Arith. 106 (2) (2003), 115121.Google Scholar
Edixhoven, B., Evertse, J.-H. (eds.). Diophantine Approximation and Abelian Varieties. Lecture Notes in Mathematics 1566. Springer, 1993.CrossRefGoogle Scholar
Evertse, J.-H.. The subspace theorem of W. M. Schmidt. In [EE] (2004).Google Scholar
Evertse, J.-H.. An improvement of the quantitative subspace theorem. Compositio Math. 101 (1996), 225311.Google Scholar
Evertse, J.-H.. On sums of S-units and linear recurrences. Compositio Math. 53 (1984), 225244.Google Scholar
Evertse, J.-H.. Points on subvarieties of tori. In [Wu] (2004).Google Scholar
Evertse, J. H., Ferretti, R.. Diophantine inequalities on projective varieties. Int. Math. Research Notices, 25 (2002), 12951330.CrossRefGoogle Scholar
Evertse, J.-H., Ferretti, R. G.. A generalization of the subspace theorem with polynomials of higher degree. In Diophantine Approximation. Developments in Mathematics 16. Springer, 2008.Google Scholar
Evertse, J.-H., Győry, K.. Unit Equations in Diophantine Number Theory. Cambridge University Press, 2015.Google Scholar
Evertse, J. H., Schlickewei, H. P.. A quantitative version of the absolute subspace theorem. J. Reine Angew. Math., 548 (2002), 21127.Google Scholar
Evertse, J. H., Schlickewei, H. P., Schmidt, W. M.. Linear equations in variables which lie in a multiplicative group. Ann. Math., 155 (2002), 807836.CrossRefGoogle Scholar
Faltings, G.. Diophantine approximation on abelian varieties. Ann. Math., 133 (1991), 549576.CrossRefGoogle Scholar
Faltings, G., Wüstholz, G.. Diophantine approximations on projective spaces. Invent. Math., 116 (1994), 109138.Google Scholar
Ferenczy, S., Maudit, C., Transcendence of numbers with a low complexity expansion, J. Number Theory, 67 (1997), 146161.Google Scholar
Ferretti, A., Zannier, U.. Equations in the Hadamard ring of rational functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 6 (2007), 457475.Google Scholar
Forster, O.. Lectures on Riemann Surfaces, Graduate Text in Mathematics 81. Springer, 1981.CrossRefGoogle Scholar
Fuchs, C., Zannier, U.. On Some Applications of Diophantine Approximations (a translation of Carl Ludwig Siegel’s Über einige Anwendungen diophantischer Approximationen). Edizioni della Normale, 2014.Google Scholar
Gamburd, A., Magee, M., Ronan, R.. An asymptotic for integer points on Markoff–Hurwitz surfaces. arXiv:1603.06267 [math.NT] (2017).Google Scholar
Gasbarri, C.. Dyson’s theorem for curves. J. Number Theory 129 (1) (2009), 3658.CrossRefGoogle Scholar
Gelfond, A. O.. Transcendental and Algebraic Numbers. Dover, 1970.Google Scholar
Gelfond, A. O., Linnik, Y.. Méthodes élémentaires dans la théorie analytique des nombres. Gauthier-Villars, 1965.Google Scholar
Ghosh, A., Sarnak, P.. Integral points on Markoff type cubic surfaces, preprint (2017).Google Scholar
Goldfeld, D.. Modular forms, elliptic curves and the ABC-conjecture. In [Wu] (2004).Google Scholar
Grytzuk, A., Schinzel, A.. On Runge’s theorem,. Coll. Math. Soc. J. Bolyai, 60 (1992), 329356.Google Scholar
Györy, K.. Solving Diophantine equations by Baker’s theory. In [Wu] (2004).Google Scholar
Hartshorne, R.. Algebraic Geometry. Graduate Texts in Mathematics 52. Springer, 1977.Google Scholar
Hassett, B., Tschinkel, Yu.. Density of integral points on algebraic varieties. In Rational Points on Algebraic Varieties. Progress in Mathematics 199. Birkhäuser, 2001, pp. 169197.Google Scholar
Heath-Brown, D. R.. The density of rational points on curves and surfaces. Ann. Math., 155 (2002), 553595.Google Scholar
Hilbert, D.. Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten. J. Reine Ang. Math. 110 (1892), 104129.Google Scholar
Hindry, M., Silverman, J. H.. Diophantine Geometry. Springer, 2000.Google Scholar
Kulkarni, A., Mavraki, N. M., Nguyen, K. D.. Algebraic approximations to linear combinations of powers: an extension of results by Mahler and Corvaja– Zannier. Preprint, 2017.Google Scholar
Lang, S.. Algebraic Number Theory. Addison Wesley, 1970.Google Scholar
Lang, S.. Fundamentals of Diophantine Geometry. Springer, 1983.Google Scholar
Lang, S.. Number Theory III. Encyclopedia of Mathematical Sciences, 60. Springer, 1991.Google Scholar
Lang, S.. Introduction to Algebraic and Abelian Functions. Graduate Texts in Mathematics 89. Springer, 1982.Google Scholar
Laurent, M.. Équations exponentielles polynômes et suites récurrentes linéaires. Astérisque 147 –148 (1987), 121139; II, J. Number Theory 31 (1989), 24–53.Google Scholar
Leitner, D.. Two exponential Diophantine equations. J. Théorie Nombres Bordeaux 23 (2) (2011), 479487.Google Scholar
Levin, A.. Generalizations of Siegel’s and Picard’s theorems. Ann. Math. 170 (2) (2009), 609655.CrossRefGoogle Scholar
Levin, A.. One-parameter families of unit equations. Math. Res. Lett. 13 (5–6) (2006), 935945.CrossRefGoogle Scholar
Levin, A.. On the Schmidt subspace theorem for algebraic points. Duke Math. J. 163 (15) (2014), 28412885.CrossRefGoogle Scholar
Levin, A.. Integral points of bounded degree on affine curves. Compos. Math. 152 (4) (2016), 754768.CrossRefGoogle Scholar
Levin, A.. Greatest common divisors and Vojta’s conjecture for blowups of algebraic tori (2017), to appear Inventiones Math.Google Scholar
Losert, V.. The set of solutions of some equation for linear recurrence sequences. In [SST] (2004).Google Scholar
Luca, F., Shparlinski, I.. On the exponent of the group of points on elliptic curves in extension fields. Int. Math. Research Notices 2005, 1391–1409.CrossRefGoogle Scholar
Magagna, C.. A lower bound for the r-order of a matrix modulo N . Monats. Math. 153 (2008), 5981.Google Scholar
Mahler, K.. On the fractional parts of the powers of rational numbers II. Mathematika 4 (1957), 122124.CrossRefGoogle Scholar
Mason, R. C.. Diophantine Equations over Function Fields. LMS Lecture Notes, 96. Cambridge University Press, 1985.Google Scholar
Masser, D. W.. Heights, transcendence and linear independence on commutative group varieties. In [AZ] (2004).Google Scholar
Mendès France, M.. Sur les fractions continues limitées. Acta Arith. 23 (1973), 207215.Google Scholar
Miles, R.. Synchronization points and associated dynamical invariants. Trans. Amer. Math. Soc. 365 (2013), 55035524.CrossRefGoogle Scholar
Miles, R.. A natural boundary for the dynamical zeta function for commuting group automorphisms. Proc. Amer. Math. Soc. 143 (2015), 29272933.Google Scholar
Mordell, J. L.. Diophantine Equations. Academic Press, 1969.Google Scholar
Mumford, D.. A remark on Mordell’s conjecture. Amer. J. Math. 87 (1965), 10071016.CrossRefGoogle Scholar
Nishioka, K.. Mahler Functions and Transcendence. Lecture Notes in Mathematics 1631. Springer 1996.Google Scholar
Noguchi, J., Winkelmann, J.. Holomorphic curves and integral points off divisors. Math. Z. 239 (2002), 593610.Google Scholar
Noguchi, J., Winkelmann, J.. Nevanlinna Theory in Several Complex Variables and Diophantine Approximation. Springer 2014.Google Scholar
Noguchi, J., Winkelmann, J., Yamanoi, K.. Degeneracy of holomorphic curves into algebraic varieties. J. Math. Pures Appl. 88 (2007), 293306.Google Scholar
Olds, C. D.. Continued Fractions. Random House, 1963.Google Scholar
Pólya, G., Szego, G.. Problems and Theorems in Analysis II. Springer, pp. 1976.CrossRefGoogle Scholar
van der Poorten, A. J.. Some facts that should be better known, especially about rational functions. In Number Theory and Applications. Kluwer Academic, 1989, pp. 497528.Google Scholar
van der Poorten, A. J.. Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles. C.R. Acad. Sci. Paris Série I 306 (1988), 97102.Google Scholar
Pourchet, Y.. Solution du problème arithmétique du quotient de Hadamard de deux fractions rationnelles. C.R. Acad. Sci. Paris Série A 288 (1979), 10551057.Google Scholar
Robinson, A., Roquette, P.. On the finiteness theorems of Siegel and Mahler concerning Diophantine equations. J. Number Theory 7 (1975), 121176.Google Scholar
Roth, K. F.. Rational approximations to algebraic numbers. Mathematika, 2 (1955), 120.Google Scholar
Ridout, D.. The p-adic generalization of the Thue–Siegel–Roth theorem. Mathematika, 5 (1958), 4048.Google Scholar
Min Ru., A defect relation for holomorphic curves intersecting hypersurfaces. Amer. J. Math. 126 (1) (2004), 215226.Google Scholar
Min Ru., Holomorphic curves into algebraic varieties. Ann. Math. (2) 169 (1) (2009), 255267.Google Scholar
Min Ru, P. Vojta. Schmidt’s subspace theorem with moving targets. Invent. Math. 127 (1) (1997), 5165.Google Scholar
Min Ru, J. T. Y. Wong. Diophantine approximation with algebraic points of bounded degree. J. Number Theory 81 (1) (2000), 110119.Google Scholar
Rumely, R.. Note on van der Poorten’s proof of the Hadamard quotient theorem I, II. In Séminaire de Théorie des nombres de Paris 1986–87. Progress in Mathematics 75, Birkhäuser, 1988. pp. 349409.Google Scholar
Schinzel, A.. Polynomials with Special Regard to Reducibility. Encyclopedia of Mathematics and Its Applications 77. Cambridge University Press, 2000.Google Scholar
Schinzel, A.. An improvement of Runge’s theorem on Diophantine equations. Comm. Pontif. Acad. Soc. 20 (1968), 9.Google Scholar
Schinzel, A., Tijdeman, R.. On the equation y m = P(x). Acta Arith. 31 (2) (1976), 199204.CrossRefGoogle Scholar
Schlickewei, H.-P., Schmidt, K., Tichy, R. F. (eds.). Diophantine Approximation. Developments in Mathematics 16. Springer, 2008.Google Scholar
Schmidt, W. M.. Approximation to algebraic numbers. L’Ens. Math. 17 (1971), 187253.Google Scholar
Schmidt, W. M.. Diophantine Approximation. Lecture Notes in Mathematics 785. Springer, 1980.Google Scholar
Schmidt, W. M.. Diophantine Approximations and Diophantine Equations. Lecture Notes in Mathematics 1467. Springer, 1991.Google Scholar
Schmidt, W. M.. Linear recurrence sequences and polynomial–exponential equations. In [AZ] (2004).Google Scholar
Schmidt, W. M.. The zero multiplicity of linear recurrence sequences. Acta Math. 182 (1999), 243282.Google Scholar
Schmidt, W. M.. Integer points on hypersurfaces. Monats. Math. 102 (1986), 2758.Google Scholar
Schneider, Th.. Über die Approximation algebraischer Zahlen, J. Reine Ang. Math. 175 (1936), 182192.Google Scholar
Scremin, A.. On the period of the continued fraction for values of the square root of a power sum. Acta Arith. 123 (2006), 297312.Google Scholar
Serre, J-P.. Lectures on the Mordell–Weil Theorem. Vieweg, 1990.Google Scholar
Serre, J-P.. Algebraic Groups and Class Fields. Graduate Texts in Mathematics 117. Springer, 1988.Google Scholar
Serre, J-P.. Topics in Galois Theory. Jones and Bartlett, 1992.Google Scholar
Shorey, T. N., Stewart, C. L.. Pure powers in recurrence sequences and some related Diophantine equations. J. Number Theory, 27 (1987), 324352.Google Scholar
Shorey, T. N., Tijdeman, R.. Exponential Diophantine Equations. Cambridge University Press, 1986.Google Scholar
Siegel, C. L.. Über einige Anwendungen diophantischer Approximationen. Abh. Preuß. Akad. Wissen. Phys.-math. Klasse, (1929). Reprinted in Ges. Abh. Bd. I, 209–266. Springer, 1966. English translation in [FZ] (2004).Google Scholar
Silverman, J.. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106. Springer, 1986.Google Scholar
Silverman, J.. Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups. Monats. Math., 145 (2005), 333350.Google Scholar
Silverman, J.. Rational points on K3 surfaces: a new canonical height. Inventiones Math. 105 (1991), 347373.Google Scholar
Silverman, J., Tate, J.. Rational Points on Elliptic Curves. Springer, 1992.Google Scholar
Stewart, C. L., Tijdeman, R.. On the greatest prime factor of (ab + 1)(ac + 1)(bc + 1). Acta Arith. 79 (1997), 93101.Google Scholar
Stothers, W. W.. Polynomial identities and Hauptmodulen. Quart. J. Math. Oxford 32 (1981), 349370.CrossRefGoogle Scholar
Swinnerton-Dyer, H. P. F.. A 4 + B 4 = C 4 + D 4 revisited. J. London Math. Soc. 43 (1968), 149151.Google Scholar
Tijdeman, R.. Diophantine approximation and its applications. In [EE] (2004).Google Scholar
Tijdeman, R.. Roth’s theorem. In [EE] (2004).Google Scholar
Troi, G., Zannier, U.. Note on the density constant in the distribution of self numbers II. Boll. U.M.I., 8 (2B) (1999), 397399.Google Scholar
Veneziano, F.. Quadratic integral solutions to double Pell equations. Rend. Sem. Mat. Univ. Padova, 126 (2011), 4761.Google Scholar
Vojta, P.. Diophantine Approximations and Value Distribution Theory. Lecture Notes in Mathematics 1239. Springer, 1987.CrossRefGoogle Scholar
Vojta, P.. Siegel’s theorem in the compact case. Ann. Math. 133 (1991), 509548.CrossRefGoogle Scholar
Vojta, P.. A generalization of theorems of Faltings and Thue–Siegel–Roth– Wirsing. J. Amer. Math. Soc. 5 (1992), 763804.Google Scholar
Vojta, P.. Integral points on subvarieties of semiabelian varieties, I. Inventiones Math. 126 (1996), 133181.CrossRefGoogle Scholar
Vojta, P.. Diophantine approximation and Nevanlinna theory. In Arithmetic Geometry, Corvaja, P., Gasbarri, C. (eds.). Lecture Notes in Mathematics 2009, Springer, 2011, pp. 111224.Google Scholar
Waldschmidt, M.. Un demi-siècle de transcendence. In Development of Mathematics 1950–2000. Birkhauser, 2000, pp. 11211186.CrossRefGoogle Scholar
Waldschmidt, M.. Words and transcendence. In Analytic Number Theory, Cambridge University Press, 2009, pp. 449470.Google Scholar
Tzu-Yueh Wang, J.. An effective Roth’s theorem for function fields. Rocky Mountain J. Math. 26 (1996), 12251234.Google Scholar
Weil, A.. Number Theory, An Approach through History from Hammurapi to Legendre. Birkäuser, 1983.Google Scholar
Wirsing, E. A.. On approximations of algebraic numbers by algebraic numbers of bounded degree. In 1969 Number Theory Institute, Stony Brook. Proceedings of Symposia in Pure Mathematics XX. American Mathematical Society, 1971, pp. 213247.CrossRefGoogle Scholar
Wüstholz, G. (ed.). A Panorama of Number Theory; or The View from Baker’s Garden. Cambridge University Press, 2002.CrossRefGoogle Scholar
Zannier, U.. Some remarks on the S-unit equation in function fields. Acta Arith. LXIV (1993), 8798.CrossRefGoogle Scholar
Zannier, U.. Fields containing values of algebraic functions and related questions. In Number Theory 1993–94, David, S. (ed.). Cambridge University Press, 1996, pp. 199213.Google Scholar
Zannier, U.. A local–global principle for norms from cyclic extensions of Q(t) (a direct, constructive and quantitative approach). L’Enseignement Math., 45 (1999), 357377.Google Scholar
Zannier, U.. A proof of Pisot dth root conjecture. Ann. Math. 151 (2000), 375383.Google Scholar
Zannier, U.. Some Applications of Diophantine Approximation to Diophantine Equations (with Special Emphasis on the Schmidt Subspace Theorem). Forum Editrice, 2003.Google Scholar
Zannier, U.. Lecture Notes on Diophantine Analysis (with an Appendix by F. Amoroso). Edizioni della Normale, 2008.Google Scholar
Zannier, U.. Hilbert irreducibility above algebraic groups. Duke Math. J. 153 (2010), 397425.Google Scholar
Zannier, U.. On the integer solutions of exponential equations in function fields. Ann. Inst. Fourier (Grenoble), 54 (4) (2004), 849874.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Pietro Corvaja, Università degli Studi di Udine, Italy, Umberto Zannier, Scuola Normale Superiore, Pisa
  • Book: Applications of Diophantine Approximation to Integral Points and Transcendence
  • Online publication: 08 June 2018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Pietro Corvaja, Università degli Studi di Udine, Italy, Umberto Zannier, Scuola Normale Superiore, Pisa
  • Book: Applications of Diophantine Approximation to Integral Points and Transcendence
  • Online publication: 08 June 2018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Pietro Corvaja, Università degli Studi di Udine, Italy, Umberto Zannier, Scuola Normale Superiore, Pisa
  • Book: Applications of Diophantine Approximation to Integral Points and Transcendence
  • Online publication: 08 June 2018
Available formats
×