Book contents
- Frontmatter
- Contents
- List of figures and tables
- List of contributors
- Editors' introduction
- 1 An introduction to differential geometry in econometrics
- 2 Nested models, orthogonal projection and encompassing
- 3 Exact properties of the maximum likelihood estimator in exponential regression models: a differential geometric approach
- 4 Empirical likelihood estimation and inference
- 5 Efficiency and robustness in a geometrical perspective
- 6 Measuring earnings differentials with frontier functions and Rao distances
- 7 First-order optimal predictive densities
- 8 An alternative comparison of classical tests: assessing the effects of curvature
- 9 Testing for unit roots in AR and MA models
- 10 An elementary account of Amari's expected geometry
- Index
1 - An introduction to differential geometry in econometrics
Published online by Cambridge University Press: 09 March 2010
- Frontmatter
- Contents
- List of figures and tables
- List of contributors
- Editors' introduction
- 1 An introduction to differential geometry in econometrics
- 2 Nested models, orthogonal projection and encompassing
- 3 Exact properties of the maximum likelihood estimator in exponential regression models: a differential geometric approach
- 4 Empirical likelihood estimation and inference
- 5 Efficiency and robustness in a geometrical perspective
- 6 Measuring earnings differentials with frontier functions and Rao distances
- 7 First-order optimal predictive densities
- 8 An alternative comparison of classical tests: assessing the effects of curvature
- 9 Testing for unit roots in AR and MA models
- 10 An elementary account of Amari's expected geometry
- Index
Summary
Introduction
In this introductory chapter we seek to cover sufficient differential geometry in order to understand its application to econometrics. It is not intended to be a comprehensive review either of differential geometric theory, or of all the applications that geometry has found in statistics. Rather it is aimed as a rapid tutorial covering the material needed in the rest of this volume and the general literature. The full abstract power of a modern geometric treatment is not always necessary and such a development can often hide in its abstract constructions as much as it illuminates.
In section 2 we show how econometric models can take the form of geometrical objects known as manifolds, in particular concentrating on classes of models that are full or curved exponential families.
This development of the underlying mathematical structure leads into section 3, where the tangent space is introduced. It is very helpful to be able to view the tangent space in a number of different but mathematically equivalent ways, and we exploit this throughout the chapter.
Section 4 introduces the idea of a metric and more general tensors illustrated with statistically based examples. Section 5 considers the most important tool that a differential geometric approach offers: the affine connection. We look at applications of this idea to asymptotic analysis, the relationship between geometry and information theory and the problem of the choice of parameterisation. Section 6 introduces key mathematical theorems involving statistical manifolds, duality, projection and finally the statistical application of the classic geometric theorem of Pythagoras.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2000
- 5
- Cited by