Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-01T02:06:13.716Z Has data issue: false hasContentIssue false

11 - Ecological and Evolutionary Responses of Protective Ant-Plant Mutualisms to Environmental Changes

from Part III - Ant-Plant Protection Systems under Variable Habitat Conditions

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 223 - 246
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bale, J. S., Masters, G. J., Hodkinson, I. D. et al. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 116.CrossRefGoogle Scholar
Ballhorn, D. J., Schmitt, I., Fankhauser, J. D., Katagiri, F. and Pfanz, H. (2011). CO2-mediated changes of plant traits and their effects on herbivores are determined by leaf age. Ecological Entomology, 36, 113.CrossRefGoogle Scholar
Barton, B. T. and Ives, A. R. (2014). Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology, 95, 1479–84.Google Scholar
Bascompte, J. and Jordano, P. (2013). Mutualistic networks. Princeton: Princeton University Press.Google Scholar
Blatrix, R., Bouamer, S., Morand, S. and Selosse, M. A. (2009). Ant-plant mutualisms should be viewed as symbiotic communities. Plant Signaling & Behavior, 4, 554–6. doi:10.1111/j.1469-8137.2009.02793.xGoogle Scholar
Blatrix, R., Djiéto-Lordon, C., Mondolot, L. et al. (2012). Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions. Proceedings of the Royal Society B: Biological Sciences, 279, 3940–7. doi:10.1098/rspb.2012.1403.Google ScholarPubMed
Blatrix, R., McKey, D. and Born, C. (2013). Consequences of past climate change for species engaged in obligatory interactions. Comptes Rendus Geoscience, 345, 306–15.Google Scholar
Brodie, J. F., Aslan, C. E., Rogers, H. S. et al. (2014). Secondary extinctions of biodiversity. Trends in Ecology & Evolution, 29, 664–72.Google Scholar
Bruna, E. M., Vasconcelos, H. L. and Heredia, S. (2005). The effect of habitat fragmentation on communities of mutualists: Amazonian ants and their host plants. Biological Conservation, 124, 209–16. doi:10.1016/j.biocon.2005.01.026.Google Scholar
Chomicki, G., Ward, P. S. and Renner, S. S. (2015). Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics. Proceedings of the Royal Society B-Biological Sciences, 282, 20152200. doi:10.1098/rspb.2015.2200.Google Scholar
Coley, P. D. (1998). Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Climatic Change, 39, 455–72.Google Scholar
Cook, S. C. and Davidson, D. W. (2006). Nutritional and functional biology of exudate-feeding ants. Entomologia Experimentalis et Applicata, 118, 110.CrossRefGoogle Scholar
Couture, J. J., Meehan, T. D., Kruger, E. L. and Lindroth, R. L. (2015). Insect herbivory alters impact of atmospheric change on northern temperate forests. Nature Plants, 1, 15016.Google Scholar
Dalecky, A., Debout, G., Estoup, A., McKey, D. B. and Kjellberg, F. (2007). Changes in mating system and social structure of the ant Petalomyrmex phylax are associated with range expansion in Cameroon. Evolution, 61, 579–95. doi:10.1111/j.1558-5646.2007.00044.x.Google Scholar
Dalecky, A., Gaume, L., Schatz, B., McKey, D. and Kjellberg, F. (2005). Facultative polygyny in the plant-ant Petalomyrmex phylax (Hymenoptera: Formicinae): sociogenetic and ecological determinants of queen number. Biological Journal of the Linnean Society, 86, 133–51.CrossRefGoogle Scholar
Dáttilo, W., Izzo, T. J., Vasconcelos, H. L. and Rico-Gray, V. (2013). Strength of the modular pattern in Amazonian symbiotic ant–plant networks. Arthropod-Plant Interactions, 7, 455–61.CrossRefGoogle Scholar
Davidson, D. W. (2005). Ecological stoichiometry of ants in a New World rain forest. Oecologia, 142, 221–31.CrossRefGoogle Scholar
Davidson, D. W., Cook, S. C., Snelling, R. R. and Chua, T. H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300, 969–72. doi:10.1126/science.1082074.Google Scholar
Davies, S. J., Lum, S. K. Y., Chan, R. and Wang, L. K. (2001). Evolution of myrmecophytism in western Malesian Macaranga (Euphorbiaceae). Evolution, 55, 1542–59.Google Scholar
Debout, G., Dalecky, A., Ngomi, A. and McKey, D. (2009). Dynamics of species coexistence: maintenance of a plant-ant competitive metacommunity. Oikos, 118, 873–84. doi:10.1111/j.1600-0706.2009.16317.x.Google Scholar
Defossez, E., Djiéto-Lordon, C., McKey, D., Selosse, M. A. and Blatrix, R. (2011). Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen. Proceedings of the Royal Society B: Biological Sciences, 278, 1419–26. doi:10.1098/rspb.2010.1884.Google Scholar
Defossez, E., Selosse, M. A., Dubois, M. P. et al. (2009). Ant-plants and fungi: a new threeway symbiosis. New Phytologist, 182, 942–9. doi:10.1111/j.1469-8137.2009.02793.x.CrossRefGoogle ScholarPubMed
DeLucia, E. H., Nabity, P. D., Zavala, J. A. and Berenbaum, M. R. (2012). Climate change: resetting plant-insect interactions. Plant Physiology, 160, 1677–85.Google Scholar
Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature, 418, 700–7.CrossRefGoogle ScholarPubMed
Diamond, S. E., Sorger, D. M., Hulcr, J. et al. (2012). Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biology, 18, 448–56. doi:10.1111/j.1365-2486.2011.02542.x.Google Scholar
Djiéto-Lordon, C., Dejean, A., Gibernau, M., Hossaert-McKey, M. and McKey, D. (2004). Symbiotic mutualism with a community of opportunistic ants: protection, competition, and ant occupancy of the myrmecophyte Barteria nigritana (Passifloraceae). Acta Oecologica, 26, 109–16.Google Scholar
Douglas, A. E. (2009). The microbial dimension in insect nutritional ecology. Functional Ecology, 23, 3847. doi:10.1111/j.1365-2435.2008.01442.x.Google Scholar
Duarte Rocha, C. F. and Godoy Bergallo, H. (1992). Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant-plant: Azteca muelleri vs. Coelomera ruficornis on Cecropia pachystachya. Oecologia, 91, 249–52.Google Scholar
Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. and Sodhi, N. S. (2009). The sixth mass coextinction: are most endangered species parasites and mutualists? Proceedings of the Royal Society B: Biological Sciences, 276, 3037–45. doi:10.1098/rspb.2009.0413.Google Scholar
Ellers, J., Kiers, T. E., Currie, C. R., McDonald, B. R. and Visser, B. (2012). Ecological interactions drive evolutionary loss of traits. Ecology Letters, 15, 1071–82.CrossRefGoogle ScholarPubMed
Emer, C., Venticinque, E. M. and Fonseca, C. R. (2013). Effects of dam-induced landscape fragmentation on Amazonian ant-plant mutualistic networks. Conservation Biology, 27, 763–73. doi:10.1111/cobi.12045.Google Scholar
Estes, J. A., Terborgh, J., Brashares, J. S. et al. (2011). Trophic downgrading of planet Earth. Science, 333, 301–6.CrossRefGoogle ScholarPubMed
Fan, Y. and Wernegreen, J. J. (2013). Can’t take the heat: high temperature depletes bacterial endosymbionts of ants. Microbial Ecology, 66, 727–33.CrossRefGoogle ScholarPubMed
Fayle, T. M., Edwards, D. P., Foster, W. A., Yusah, K. M. and Turner, E. C. (2015). An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation. Oecologia, 178, 441–50.Google Scholar
Fitzpatrick, G., Davidowitz, G. and Bronstein, J. L. (2013). An herbivore’s thermal tolerance is higher than that of the ant defenders in a desert protection mutualism. Sociobiology, 60, 252–8.CrossRefGoogle Scholar
Fitzpatrick, G., Lanan, M. C. and Bronstein, J. L. (2014). Thermal tolerance affects mutualist attendance in an ant–plant protection mutualism. Oecologia, 176, 129–38.Google Scholar
Fontúrbel, F. E. and Murúa, M. M. (2014). Microevolutionary effects of habitat fragmentation on plant-animal interactions. Advances in Ecology, 2014, 379267.Google Scholar
Frederickson, M. E. (2005). Ant species confer different partner benefits on two neotropical myrmecophytes. Oecologia, 143, 387–95. doi:10.1007/s00442-004-1817-7.Google Scholar
Frederickson, M. E. (2009). Conflict over reproduction in an ant-plant symbiosis: why Allomerus octoarticulatus ants sterilize Cordia nodosa trees. The American Naturalist, 173, 675–81. doi:10.1086/597608Google Scholar
Frederickson, M. E., Ravenscraft, A., Hernandez, L. M. A. et al. (2013). What happens when ants fail at plant defence? Cordia nodosa dynamically adjusts its investment in both direct and indirect resistance traits in response to herbivore damage. Journal of Ecology, 101, 400–9.Google Scholar
Frederickson, M. E., Ravenscraft, A., Miller, G. A. et al. (2012). The direct and ecological costs of an ant-plant symbiosis. The American Naturalist, 179, 768–78. doi:10.1086/665654.Google Scholar
Gaume, L., McKey, D. and Anstett, M. C. (1997). Benefits conferred by “timid” ants: active anti-herbivore protection of the rainforest tree Leonardoxa africana by the minute ant Petalomyrmex phylax. Oecologia, 112, 209–16.Google Scholar
Gaume, L., McKey, D. and Terrin, S. (1998). Ant-plant-homopteran mutualism: how the third partner affects the interaction between a plant-specialist ant and its myrmecophyte host. Proceedings of the Royal Society of London, Series B, 265, 569–75.Google Scholar
Guimarães, P. R., Rico-Gray, V., dos Reis, S. F. and Thompson, J. N. (2006). Asymmetries in specialization in ant-plant mutualistic networks. Proceedings of the Royal Society B: Biological Sciences, 273, 2041–7.Google Scholar
Heil, M., Hilpert, A., Fiala, B. and Linsenmair, K. E. (2001). Nutrient availability and indirect (biotic) defence in a Malaysian ant-plant. Oecologia, 126, 404–8.CrossRefGoogle Scholar
Ings, T. C., Montoya, J. M., Bascompte, J. et al. (2009). Ecological networks – beyond food webs. Journal of Animal Ecology, 78, 253–69.Google Scholar
Janzen, D. H. (1973). Dissolution of mutualism between Cecropia and its Azteca ants. Biotropica, 5, 1528.Google Scholar
Janzen, D. H. (1974). The deflowering of Central America. Natural History, 83, 48.Google Scholar
Johnson, N. C. (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185, 631–47. doi:10.1111/j.1469-8137.2009.03110.x.CrossRefGoogle Scholar
Kautz, S., Lumbsch, H. T., Ward, P. S. and Heil, M. (2009). How to prevent cheating: a digestive specialization ties mutualistic plant-ants to their ant-plant partners. Evolution, 63, 839–53. doi:10.1111/j.1558-5646.2008.00594.x.CrossRefGoogle ScholarPubMed
Kiers, E. T. and Denison, R. F. (2008). Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annual Review of Ecology, Evolution and Systematics, 39, 215–36. doi:10.1146/annurev.ecolsys.39.110707.173423.Google Scholar
Kiers, E. T., Palmer, T. M., Ives, A. R., Bruno, J. F. and Bronstein, J. L. (2010). Mutualisms in a changing world: an evolutionary perspective. Ecology Letters, 13, 1459–74. doi:10.1111/j.1461-0248.2010.01538.x.Google Scholar
Kokolo, B., Atteke, C., Ibrahim, B. and Blatrix, R. (2016). Pattern of specificity in the tripartite symbiosis between Barteria plants, ants and Chaetothyriales fungi. Symbiosis, 69, 169–74. doi:10.1007/s13199-016-0402-2.Google Scholar
Kuussaari, M., Bommarco, R., Heikkinen, R. K. et al. (2009). Extinction debt: a challenge for biodiversity conservation. Trends in Ecology & Evolution, 24, 564–71.Google Scholar
Laurance, W. F., Camargo, J. L. C., Luizao, R. C. C. et al. (2011). The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, 144, 5667. doi:10.1016/j.biocon.2010.09.021.CrossRefGoogle Scholar
Léotard, G., Debout, G., Dalecky, A. et al. (2009). Range expansion drives dispersal evolution in an equatorial three-species symbiosis. Plos One, 4, e5377.Google Scholar
Leroy, C., Sejalon-Delmas, N., Jauneau, A. et al. (2011). Trophic mediation by a fungus in an ant-plant mutualism. Journal of Ecology, 99, 583–90. doi:10.1111/j.1365-2745.2010.01763.x.Google Scholar
Lindroth, R. L. (2010). Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology, 36, 221.Google Scholar
Lortie, C. J. (2007). An ecological tardis: the implications of facilitation through evolutionary time. Trends in Ecology & Evolution, 22, 627–30.Google Scholar
Marquis, M., Del Toro, I. and Pelini, S. L. (2014). Insect mutualisms buffer warming effects on multiple trophic levels. Ecology, 95, 913.CrossRefGoogle ScholarPubMed
Maschwitz, U., Fiala, B., Dumpert, K., bin Hashim, R. and Sudhaus, W. (2016). Nematode associates and bacteria in ant-tree symbioses. Symbiosis, 69, 17. doi:10.1007/s13199-015-0367-6.Google Scholar
Mayer, V. E., Frederickson, M. E., McKey, D. and Blatrix, R. (2014). Current issues in the evolutionary ecology of ant-plant symbioses. New Phytologist, 202, 749–64. doi:10.1111/nph.12690.CrossRefGoogle ScholarPubMed
McKey, D. (1974). Ant-plants: selective eating of an unoccupied Barteria by a Colobus monkey. Biotropica, 6, 269–70.Google Scholar
McKey, D., Gaume, L., Brouat, et al. (2005). The trophic structure of tropical ant-plant-herbivore interactions: community consequences and coevolutionary dynamics. In Biotic interactions in the tropics: Their role in the maintenance of species diversity, Burselm, D., Pinard, M., Hartley, S., eds. Cambridge: Cambridge University Press, pp. 386413.CrossRefGoogle Scholar
Merilä, J. and Hendry, A. P. (2014). Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications, 7, 114.Google Scholar
Michelangeli, F. A. (2005). Tococa (Melastomataceae). New York: New York Botanical Garden Press.Google Scholar
Moraes, S. C. and Vasconcelos, H. L. (2009). Long-term persistence of a neotropical ant-plant population in the absence of obligate plant-ants. Ecology, 90, 2375–83.Google Scholar
Moran, N. A. and Baumann, P. (2000). Bacterial endosymbionts in animals. Current Opinion in Microbiology, 3, 270–5.CrossRefGoogle ScholarPubMed
Niziolek, O. K., Berenbaum, M. R. and DeLucia, E. H. (2013). Impact of elevated CO2 and increased temperature on Japanese beetle herbivory. Insect Science, 20, 513–23.Google Scholar
Orivel, J., Lambs, L., Malé, P. J. G., Leroy, C., Grangier, J., Otto, T., Quilichini, A. and Dejean, A. (2011). Dynamics of the association between a long-lived understory myrmecophyte and its specific associated ants. Oecologia, 165, 369–76.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P. et al. (2008). Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science, 319, 192–5.Google Scholar
Passmore, H. A., Bruna, E. M., Heredia, S. M. and Vasconcelos, H. L. (2012). Resilient networks of ant-plant mutualists in Amazonian forest fragments. Plos One, 7, e40803. doi:10.1371/journal.pone.0040803.Google Scholar
Peccoud, J., Piatscheck, F., Yockteng, R. et al. (2013). Multi-locus phylogenies of the genus Barteria (Passifloraceae) portray complex patterns in the evolution of myrmecophytism. Molecular Phylogenetics and Evolution, 66, 824–32.Google Scholar
Pellissier, L., Litsios, G., Fiedler, K. et al. (2012). Loss of interactions with ants under cold climate in a regional myrmecophilous butterfly fauna. Journal of Biogeography, 39, 1782–90.Google Scholar
Phillips, B. L., Brown, G. P., Webb, J. K. and Shine, R. (2006). Invasion and the evolution of speed in toads. Nature, 439, 803. doi:10.1038/439803a.CrossRefGoogle ScholarPubMed
Pringle, E. G. (2016). Integrating plant carbon dynamics with mutualism ecology. New Phytologist, 210, 71–5.Google Scholar
Pringle, E. G., Akçay, E., Raab, T. K., Dirzo, R. and Gordon, D. M. (2013). Water stress strengthens mutualism among ants, trees and scale insects. PLoS Biology, 11, e1001705.Google Scholar
Putz, F. E. and Holbrook, N. M. (1988). Further observations on the dissolution of mutualism between Cecropia and its ants: the Malaysian case. Oikos, 53, 121–5. doi:10.2307/3565671.Google Scholar
Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. and Rejmanek, M. (2000). Plant invasions – the role of mutualisms. Biological Reviews, 75, 6593.Google ScholarPubMed
Rico-Gray, V. and Oliveira, P. S. (2007). The ecology and evolution of ant-plant interactions. Chicago and London: University of Chicago Press.CrossRefGoogle Scholar
Robinson, E. A., Ryan, G. D. and Newman, J. A. (2012). A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194, 321–36.Google Scholar
Russell, J. A., Moreau, C. S., Goldman-Huertas, B. et al. (2009). Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proceedings of the National Academy of Sciences of the United States of America, 106, 21236–41. doi:10.1073/pnas.0907926106.Google Scholar
Ryalls, J. M., Moore, B. D., Riegler, M. et al. (2016). Climate and atmospheric change impacts on sap-feeding herbivores: a mechanistic explanation based on functional groups of primary metabolites. Functional Ecology, 41, 161–171. doi:10.1111/1365–2435.12715.Google Scholar
Stiling, P. and Cornelissen, T. (2007). How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13, 1823–42.Google Scholar
Stuble, K. L., Pelini, S. L., Diamond, S. E. et al. (2013). Foraging by forest ants under experimental climatic warming: a test at two sites. Ecology and Evolution, 3, 482–91.Google Scholar
Sun, Y. C., Jing, B. B. and Ge, F. (2009). Response of amino acid changes in Aphis gossypii (Glover) to elevated CO2 levels. Journal of Applied Entomology, 133, 189–97.Google Scholar
Sunday, J. M., Bates, A. E. and Dulvy, N. K. (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B: Biological Sciences, 278, 1823–30.Google ScholarPubMed
Thomas, C. D., Bodsworth, E. J., Wilson, R. J. et al. (2001). Ecological and evolutionary processes at expanding range margins. Nature, 411, 577–81.Google Scholar
Thompson, J. A. (2005). The geographic mosaic of coevolution. Chicago: University of Chicago Press.Google Scholar
Tylianakis, J. M., Didham, R. K., Bascompte, J. and Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351–63. doi:10.1111/j.1461-0248.2008.01250.x.Google Scholar
Valiente-Banuet, A., Rumebe, A. V., Verdú, M. and Callaway, R. M. (2006). Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proceedings of the National Academy of Sciences of the United States of America, 103, 16812–7.Google Scholar
Vitousek, P. M., Aber, J. D., Howarth, R. W. et al. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–50. doi:10.2307/2269431.Google Scholar
Vitousek, P. M. and Walker, L. R. (1989). Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecological Monographs, 59, 247–65.Google Scholar
Vittecoq, M., Djiéto-Lordon, C., McKey, D. and Blatrix, R. (2012). Range expansion induces variation in a behavioural trait in an ant-plant mutualism. Acta Oecologica, 38, 84–8.Google Scholar
Warbrick-Smith, J., Behmer, S. T., Lee, K. P., Raubenheimer, D. and Simpson, S. J. (2006). Evolving resistance to obesity in an insect. Proceedings of the National Academy of Sciences of the United States of America, 103, 14045–9.Google Scholar
Wernegreen, J. J. (2012). Mutualism meltdown in insects: bacteria constrain thermal adaptation. Current Opinion in Microbiology, 15, 255–62.Google Scholar
Wilf, P. and Labandeira, C. C. (1999). Response of plant-insect associations to Paleocene-Eocene warming. Science, 284, 2153–6.Google Scholar
Yu, D. W. and Pierce, N. E. (1998). A castration parasite of an ant-plant mutualism. Proceedings of the Royal Society of London, Series B, 265, 375–82.Google Scholar
Yu, D. W., Wilson, H. B., Frederickson, M. E. et al. (2004). Experimental demonstration of species coexistence enabled by dispersal limitation. Journal of Animal Ecology, 73, 1102–14.Google Scholar
Zhang, S., Zhang, Y. and Ma, K. (2012). The ecological effects of the ant–hemipteran mutualism: a meta-analysis. Basic and Applied Ecology, 13, 116–24.Google Scholar
Zvereva, E. L. and Kozlov, M. V. (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Global Change Biology, 12, 2741.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×