Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T20:07:01.451Z Has data issue: false hasContentIssue false

Part V - Applied Ant Ecology: Agroecosystems, Ecosystem Engineering, and Restoration

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 331 - 390
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Armbrecht, I. and Gallego, M. C. (2007). Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomologia Experimentalis et Applicata, 124, 261267.CrossRefGoogle Scholar
Armbrecht, I., Perfecto, I. and Vandermeer, J. (2004). Enigmatic biodiversity correlations: ant diversity responds to diverse resources. Science, 304, 284286.CrossRefGoogle ScholarPubMed
Armbrecht, I., Rivera, L. and Perfecto, I. (2005). Reduced diversity and complexity in the leaf-litter ant assemblage of colombian coffee plantations. Conservation Biology, 19, 897907.CrossRefGoogle Scholar
Asfiya, W., Lach, L., Majer, J., Heterick, B. and Didham, R. (2015). Intensive agroforestry practices negatively affect ant (Hymenoptera: Formicidae) diversity and composition. Asian Myrmecology, 7, 87104.Google Scholar
Ayenor, G. K., Van Huis, A., Obeng-Ofori, D., Padi, B. and Roeling, N.G. (2007). Facilitating the use of alternative capsid control methods towards sustainable production of organic cocoa in Ghana. International Journal of Tropical Insect Science, 27, 8594.CrossRefGoogle Scholar
Babacauh, K. D. (1982). Role of insect communities and water in the dissemination of Phytophthora palmivora (Butl.) Butl. emend. Bras. & Griff. in cacao plantations in the Ivory Coast. Café Cacao Thé, 26, 3136.Google Scholar
Beattie, A. J., Turnbull, C., Knox, R. B. and Williams, E. G. (1984). Ant inhibition of pollen function – a possible reason why ant pollination is rare. American Journal of Botany, 71, 421426.CrossRefGoogle Scholar
Bishop, T. R., Robertson, M. P., Rensburg, B. J. and Parr, C. L. (2014). Elevation–diversity patterns through space and time: ant communities of the Maloti-Drakensberg Mountains of southern Africa. Journal of Biogeography, 41, 22562268.CrossRefGoogle Scholar
Bisseleua, H. B. D., Fotio, D., Missoup, A. D. and Vidal, S. (2013). Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PloS one, 8, e56115.CrossRefGoogle Scholar
Bos, M. M., Steffan-Dewenter, I. and Tscharntke, T. (2007). The contribution of cacao agroforests to the conservation of lower canopy ant and beetle diversity in Indonesia. Biodiversity and Conservation, 16, 24292444.CrossRefGoogle Scholar
Bos, M. M., Tylianakis, J. M., Steffan-Dewenter, I. and Tscharntke, T. (2008). The invasive Yellow Crazy Ant and the decline of forest ant diversity in Indonesian cacao agroforests. Biological Invasions, 10, 13991409.CrossRefGoogle Scholar
Castaño-Meneses, G., Mariano, C. S., Rocha, P. et al. (2015). HYMENOPTERA: The ant community and their accompanying arthropods in cacao dry pods: an unexplored diverse habitat. Dugesiana, 22, 1.Google Scholar
Choate, B. and Drummond, F. (2011). Ants as biological control agents in agricultural cropping systems. Terrestrial Arthropod Reviews, 4, 157180.Google Scholar
Clough, Y. (2012). A generalized approach to modeling and estimating indirect effects in ecology. Ecology, 93, 18091815.CrossRefGoogle ScholarPubMed
Clough, Y., Faust, H. and Tscharntke, T. (2009). Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Conservation Letters, 2, 197205.CrossRefGoogle Scholar
Conceição, E. S., Delabie, J. H. C., Della Lucia, T. M. C., Costa-Neto, A. D. O. and Majer, J. D. (2015). Structural changes in arboreal ant assemblages (Hymenoptera: Formicidae) in an age sequence of cocoa plantations in the south-east of Bahia, Brazil. Austral Entomology, 54, 315324.CrossRefGoogle Scholar
Davidson, D. W., Cook, S. C., Snelling, R. R. and Chua, T. H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300, 969972.CrossRefGoogle ScholarPubMed
Dejean, A., Djiéto-Lordon, C., Céréghino, R. and Leponce, M. (2008). Ontogenetic succession and the ant mosaic: an empirical approach using pioneer trees. Basic and Applied Ecology, 9, 316323.CrossRefGoogle Scholar
Del Toro, I., Ribbons, R. R. and Pelini, S. L. (2012). The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News, 17, 133146.Google Scholar
Delabie, J. H. C. (1990). The ant problems of cocoa farms in Brazil. In Applied Myrmecology: A World Perspective, ed. van der Meer, R. K., Jaffé, K. and Cedeño, A.. Boulder, CO: Westview Press, pp. 555569.Google Scholar
De la Mora, A., García-Ballinas, J. A. and Philpott, S. M. (2015). Effects of local and landscape factors on predatory impacts of ants in coffee landscapes. Agriculture. Ecosystems, and Environment, 201, 8391.CrossRefGoogle Scholar
De la Mora, A., Murnen, C. J. and Philpott, S. M. (2013) Local and landscape drivers of ant-communities in Neotropical coffee landscapes. Biodiversity and Conservation, 22, 871888.CrossRefGoogle Scholar
Disney, R. H. L. (1986). A new genus and three new species of Phoridae (Diptera) parasitizing ants (Hymenoptera) in Sulawesi. Journal of Natural History, 20, 777787.CrossRefGoogle Scholar
Egonyu, J. P., Baguma, J., Ogari, I. et al. (2015). The formicid ant, Plagiolepis sp., as a predator of the coffee twig borer, Xylosandrus compactus. Biological Control, 91, 4246.CrossRefGoogle Scholar
Ekadinata, A. and Vincent, G. (2011). Rubber agroforests in a changing landscape: analysis of land use/cover trajectories in Bungo district, Indonesia. Forests, Trees and Livelihoods, 20, 314.CrossRefGoogle Scholar
Evans, H. C. (1973). Invertebrate vectors of Phytophthora palmivora, causing black pod disease of cocoa in Ghana. Annals of Applied Biology, 75, 331345.CrossRefGoogle Scholar
Free, J. B. (1993). Insect Pollination of Crops. 2nd Enlarged Edition. London: Academic Press.Google Scholar
Galen, C. and Cuba, J. (2001). Down the tube: Pollinators, predators, and the evolution of flower shape in the alpine skypilot. Polemonium viscosum. Evolution, 55, 19631971.Google ScholarPubMed
Ghazoul, J. (2001). Can floral repellents pre-empt potential ant-plant conflicts? Ecology Letters, 4, 295299.CrossRefGoogle Scholar
Giesberger, G. (1983). Biological control of the Helopeltis pest of cocoa in Java. Archives of Cocoa Research, 2, 19001950.Google Scholar
Gillette, P. N., Ennis, K. K., Domínguez Martínez, G. and Philpott, S. M. (2016). Change in species richness, abundance, and composition of arboreal twig-nesting ants along an elevational gradient in coffee landscapes. Biotropica, 47, 711722.Google Scholar
Gonthier, D. J., Ennis, K. K., Philpott, S. M., Vandermeer, J. and Perfecto, I. (2013). Ants defend coffee from berry borer. Biological Control, 58, 815820.Google Scholar
Gove, A. D. (2007). Ant biodiversity and the predatory function. (A response to Philpott and Armbrecht, 2006). Ecological Entomology, 32, 435.CrossRefGoogle Scholar
Gras, P. (2015). Trophic interactions of ants, birds and bats affecting crop yield along shade gradients in tropical agroforestry. PhD thesis, Georg-August University of Göttingen, Germany.Google Scholar
Gras, P., Tscharntke, T., Maas, B. et al. (2016) How ants, birds and bats affect crop yield along shade gradients in tropical cacao agroforestry. Journal of Applied Ecology. DOI: 10.1111/1365–2664.12625CrossRefGoogle Scholar
Greenslade, P. J. M. (1971). Interspecific competition and frequency changes among ants in Solomon Islands coconut plantations. Journal of Applied Ecology, 8, 323352.CrossRefGoogle Scholar
Hanna, A. D., Judenko, E. and Heatherington, W. (1956). The control of Crematogaster ants as a means of controlling the mealybugs transmitting the swollen-shoot virus disease of cacao in the Gold Coast. Bulletin of Entomological Research, 47, 219226.CrossRefGoogle Scholar
Ho, C. T. and Khoo, K. C. (1997). Partners in biological control of cocoa pests: mutualism between Dolichoderus thoracicus (Hymenoptera: Formicidae) and Cataenococcus hispidus (Hemiptera: Pseudococcidae). Bulletin of Entomological Research, 87, 461470.CrossRefGoogle Scholar
Hosang, M. L. A., Schulze, C. H., Tscharntke, T. and Buchori, D. (2010). The potential of artificial nesting sites for increasing the population density of the black cacao ants. Indonesian Journal of Agriculture, 3, 4550.Google Scholar
Jackson, D., Skillman, J. and Vandermeer, J. (2012). Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control, 61, 8997.CrossRefGoogle Scholar
Jackson, D., Vandermeer, J., Perfecto, I. and Philpott, S. M. (2014) Population responses to environmental change in a tropical ant: the interaction of spatial and temporal dynamics. PLosOne, 9, e97809.CrossRefGoogle Scholar
Jha, S., Bacon, C. M., Philpott, S. M. et al. (2014). Shade coffee: update on a disappearing refuge for biodiversity. BioScience, 64, 416428.CrossRefGoogle Scholar
Jiménez-Soto, E., Cruz-Rodríguez, J. A., Vandermeer, J. and Perfecto, I. (2013). Hypothenemus hampei (Coleoptera: Curculionidae) and its interactions with Azteca instabilis and Pheidole synanthropica (Hymenoptera: Formicidae) in a shade coffee agroecosystem. Environmental Entomology, 42, 915924.CrossRefGoogle Scholar
Keane, P. J. and Putter, C. A. J. (1992). Cocoa pest and disease management in Southeast Asia and Australasia. FAO Plant Production and Protection Paper, 112. Rome: Food & Agriculture OrganisationGoogle Scholar
Khoo, K. C. and Ho, C. T. (1992). The influence of Dolichoderus thoracicus (Hymenoptera: Formicidae) on losses due to Helopeltis theivora (Heteroptera: Miridae), black pod disease, and mammalian pests in cocoa in Malaysia. Bulletin of Entomological Research, 82, 485491.CrossRefGoogle Scholar
Kone, M., Konate, S., Yeo, K., Kouassi, P. K. and Linsenmair, K. E. (2014). Effects of management intensity on ant diversity in cocoa plantation (Oume, centre west Côte d’Ivoire). Journal of Insect Conservation, 18, 701712.CrossRefGoogle Scholar
Larsen, A. and Philpott, S. M. (2010). Twig-nesting ants: the hidden predators of the coffee berry borer in Chiapas, Mexico. Biotropica, 42, 342347.CrossRefGoogle Scholar
Leston, D. (1970). Entomology of the cocoa farm. Annual Review of Entomology, 15, 273294.CrossRefGoogle Scholar
Majer, J. D. (1972). The ant mosaic in Ghana cocoa farms. Bulletin of Entomological Research, 62, 151160.CrossRefGoogle Scholar
Majer, J. D. (1976). The influence of ants and ant manipulation on the cocoa farm fauna. Journal of Applied Ecology, 13, 157175.CrossRefGoogle Scholar
Maňák, V., Nordenhem, H., Björklund, N., Lenoir, L. and Nordlander, G. (2013). Ants protect conifer seedlings from feeding damage by the pine weevil Hylobius abietis. Agricultural and Forest Entomology, 15, 98105.Google Scholar
McGregor, A. J. and Moxon, J. E. (1985). Potential for biological control of tent building species of ants associated with Phytophthora palmivora pod rot of cocoa in Papua New Guinea. Annals of Applied Biology, 107, 271277.CrossRefGoogle Scholar
Moguel, P. and Toledo, V. M. (1999). Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology, 13, 1121.CrossRefGoogle Scholar
Morris, J. R., Vandermeer, J. and Perfecto, I. (2015). A keystone ant species provides robust biological control of the coffee berry borer under varying pest densities. PloS one, 10, e0142850.CrossRefGoogle ScholarPubMed
Nagy, C., Cross, J. V. and Markó, V. (2013). Sugar feeding of the common black ant, Lasius niger (L.), as a possible indirect method for reducing aphid populations on apple by disturbing ant-aphid mutualism. Biological Control, 65, 2436.CrossRefGoogle Scholar
Nagy, C., Cross, J. V. and Markó, V.. (2015). Can artificial nectaries outcompete aphids in ant-aphid mutualism? Applying artificial sugar sources for ants to support better biological control of rosy apple aphid. Dysaphis plantaginea Passerini in apple orchards. Crop Protection, 77, 127138.CrossRefGoogle Scholar
Niesenbaum, R. (1999). The effects of pollen load size and donor diversity on pollen performance, selective abortion, and progeny vigor in Mirabilis jalapa. American Journal of Botany, 86, 261268.CrossRefGoogle ScholarPubMed
Offenberg, J. (2015). Ants as tools in sustainable agriculture. Journal of Applied Ecology, 52, 11971205.CrossRefGoogle Scholar
Perfecto, I. and Vandermeer, J. (1996). Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia, 108, 577582.CrossRefGoogle Scholar
Perfecto, I., Vandermeer, J. and Philpott, S. M. (2014) Complex ecological interactions in the coffee Agroecosystem. Annual Review of Ecology and Systematics, 45, 137158.CrossRefGoogle Scholar
Philpott, S. M. (2005). Changes in arboreal ant populations following pruning of coffee shade-trees in Chiapas, Mexico. Agroforestry Systems, 64, 219224.CrossRefGoogle Scholar
Philpott, S. M., Arendt, W., Armbrecht, I. et al. (2008) Biodiversity loss in Latin American coffee landscapes: reviewing evidence on ants, birds, and trees. Conservation Biology, 22, 10931110.CrossRefGoogle ScholarPubMed
Philpott, S. M. and Armbrecht, I. (2006). Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology, 31, 369377.CrossRefGoogle Scholar
Philpott, S. M., Bichier, P., Rice, R. A. and Greenberg, R. (2008). Biodiversity conservation, yield, and alternative products in coffee agroecosystems in Sumatra, Indonesia. Biodiversity and Conservation, 17, 18051820.CrossRefGoogle Scholar
Philpott, S. M. and Foster, P. F. (2005). Nest-site limitation in coffee agroecosystems: artificial nests maintain diversity of arboreal ants. Ecological Applications, 15, 14781485.CrossRefGoogle Scholar
Philpott, S. M., Greenberg, R., Bichier, P. and Perfecto, I. (2004) Impacts of major predators on tropical agroforest arthropods: comparisons within and across taxa. Oecologia, 140, 140149.CrossRefGoogle Scholar
Philpott, S. M., Pardee, G. L. and Gonthier, D. (2012). Cryptic biodiversity effects: Importance of functional redundancy revealed through addition of food web complexity. Ecology, 93, 9921001.CrossRefGoogle ScholarPubMed
Philpott, S. M., Perfecto, I. and Vandermeer, J. (2008a). Behavioral diversity of predatory arboreal ants in coffee agroecosystems. Environmental Entomology, 37, 181191.CrossRefGoogle ScholarPubMed
Philpott, S. M., Perfecto, I. and Vandermeer, J. (2008b) Effects of predatory ants on lower trophic levels across a gradient of coffee management complexity. Journal of Animal Ecology, 77, 505511.CrossRefGoogle ScholarPubMed
Philpott, S. M., Uno, S. and Maldonado, J. (2006). The importance of ants and high-shade management to coffee pollination and yield in Chiapas, Mexico. Biodiversity and Conservation, 15, 487501.CrossRefGoogle Scholar
Ploetz, R. (2016). The impact of diseases on cacao production: a global overview. In Cacao Diseases, ed. Bailey, B. A. and Meinhardt, L. W.. Switzerland: Springer International Publishing, pp. 3359.CrossRefGoogle Scholar
Rizali, A., Clough, Y., Buchori, D. et al. (2013a). Long-term change of ant community structure in cacao agroforestry landscapes in Indonesia. Insect Conservation and Diversity, 6, 328338.CrossRefGoogle Scholar
Rizali, A., Clough, Y., Buchori, D. and Tscharntke, T. (2013b). Dissimilarity of ant communities increases with precipitation, but not reduced land-use intensity, in Indonesian cacao agroforestry. Diversity, 5, 2638.CrossRefGoogle Scholar
Room, P. M. (1971). The relative distributions of ant species in Ghana’s cocoa farms. Journal of Animal Ecology, 40, 735751.CrossRefGoogle Scholar
Room, P.M. (1972a). The constitution and natural history of the fauna of the mistletoe Tapinanthus bangwensis (Engl. & K. Krause) growing on cocoa in Ghana. Journal of Animal Ecology, 41, 519535.CrossRefGoogle Scholar
Room, P. M. (1972b). The fauna of the mistletoe Tapinanthus bangwensis (Engl. & K. Krause) growing on cocoa in Ghana: relationships between fauna and mistletoe. Journal of Animal Ecology, 41, 611621.CrossRefGoogle Scholar
Room, P. M. and Smith, E. S. C. (1975). Relative abundance and distribution of insect pests, ants and other components of the cocoa ecosystem in Papua New Guinea. Journal of Applied Ecology, 12, 3146.CrossRefGoogle Scholar
Rubiana, R., Rizali, A., Denmead, L. H. et al. (2015). Agricultural land use alters species composition but not species richness of ant communities. Asian Myrmecology, 7, 7385.Google Scholar
Ruf, F. O. (2011). The myth of complex cocoa agroforests: the case of Ghana. Human Ecology, 39, 373388.CrossRefGoogle ScholarPubMed
Sam, K., Koane, B. and Novotny, V. (2014) Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography, 37, 18.Google Scholar
Samson, D. A., Rickart, E. A. and Gonzales, P. C. (1997). Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica, 29, 349363.CrossRefGoogle Scholar
Schroth, G., Läderach, P., Cuero, D. S. B., Neilson, J. and Bunn, C. (2015). Winner or loser of climate change? A modeling study of current and future climatic suitability of Arabica coffee in Indonesia. Regional Environmental Change, 15, 14731482.CrossRefGoogle Scholar
Schroth, G., Läderach, P., Martinez-Valle, A. I., Bunn, C. and Jassogne, L. (2016). Vulnerability to climate change of cocoa in West Africa: patterns, opportunities and limits to adaptation. Science of The Total Environment, 556, 231241.CrossRefGoogle Scholar
See, Y. A. and Khoo, K. C. (1996). Influence of Dolichoderus thoracicus (Hymenoptera: Formicidae) on cocoa pod damage by Conopomorpha cramerella (Lepidoptera: Gracillariidae) in Malaysia. Bulletin of Entomological Research, 86, 467474.CrossRefGoogle Scholar
Strickland, A. H. (1951). The entomology of swollen shoot of cacao. Bulletin of Entomological Research, 41, 725748.CrossRefGoogle Scholar
Styrsky, J. D. and Eubanks, M. D. (2007). Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings of the Royal Society of London B: Biological Sciences, 274, 151164.Google ScholarPubMed
Tadu, Z., Djiéto-Lordon, C., Youbi, E. M. et al. (2014). Ant mosaics in cocoa agroforestry systems of Southern Cameroon: influence of shade on the occurrence and spatial distribution of dominant ants. Agroforestry Systems, 88, 10671079.CrossRefGoogle Scholar
Trible, W. and Carroll, R. (2014). Manipulating tropical fire ants to reduce the coffee berry borer. Ecological Entomology, 39, 603609.CrossRefGoogle Scholar
Tscharntke, T., Clough, Y., Bhagwat, S. A. et al. (2011). Multifunctional shade-tree management in tropical agroforestry landscapes – a review. Journal of Applied Ecology, 48, 619629.CrossRefGoogle Scholar
Vandermeer, J., Perfecto, I. and Liere, H. (2009). Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathology, 58, 636641.CrossRefGoogle Scholar
Vannette, R. L., Bichier, P. and Philpott, S. M. (2017). The presence of aggressive ants is associated with fewer insect visits to and altered microbe communities in coffee flowers. Basic and Applied Ecology (in press). http://doi.org/10.1016/j.baae.2017.02.002.CrossRefGoogle Scholar
Wagner, D. (2000). Pollen viability reduction as a potential cost of ant association for Acacia constricta (Fabaceae). American Journal of Botany, 87, 711715.CrossRefGoogle Scholar
Wanger, T. C., Wielgoss, A. C., Motzke, I. et al. (2011). Endemic predators, invasive prey and native diversity. Proceedings of the Royal Society of London B: Biological Sciences, 278, 690694.Google ScholarPubMed
Way, M. J. and Khoo, K. C. (1989). Relationships between Helopeltis theobromae damage and ants with special reference to Malaysian cocoa smallholdings. Journal of Plant Protection in the Tropics, 6, 111.Google Scholar
Way, M. J. and Khoo, K. C. (1991). Colony dispersion and nesting habits of the ants, Dolichoderus thoracicus and Oecophylla smaragdina (Hymenoptera: Formicidae), in relation to their success as biological control agents on cocoa. Bulletin of Entomological Research, 81, 341350.CrossRefGoogle Scholar
Way, M. J. and Khoo, K. C. (1992). Role of ants in pest management. Annual Review of Entomology, 37, 479503.CrossRefGoogle Scholar
Wielgoss, A. C. (2007). The impacts of ants on pests and diseases of cocoa in Indonesian agroforestry systems. Diploma Thesis, University of Würzburg.Google Scholar
Wielgoss, A. C. (2013). Services and disservices driven by ant communities in tropical agroforests. PhD Thesis, University of Göttingen.Google Scholar
Wielgoss, A., Clough, Y., Fiala, B., Rumede, A. and Tscharntke, T. (2012). A minor pest reduces yield losses by a major pest: plant-mediated herbivore interactions in Indonesian cacao. Journal of Applied Ecology, 49, 465473.CrossRefGoogle Scholar
Wielgoss, A., Tscharntke, T., Buchori, D., Fiala, B. and Clough, Y. (2010). Temperature and a dominant dolichoderine ant species affect ant diversity in Indonesian cacao plantations. Agriculture, Ecosystems & Environment, 135, 253259.CrossRefGoogle Scholar
Wielgoss, A., Tscharntke, T., Rumede, A. et al. (2014). Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132144.Google ScholarPubMed

Literature cited

Aguirre, A., Coates, R., Cumplido-Barragán, G., Campos-Villanueva, A. and Díaz-Castelazo, C. (2013). Morphological caracterization of extrafloral nectaries and associated ants in tropical vegetation of Los Tuxtlas, Mexico. Flora, 208, 147156.CrossRefGoogle Scholar
Aldana, J., Calvache, H. and Aria, D. (2000). Programa comercial de manejo de Leptopharsa gibbicarina Froeschner (Hemiptera: Tingidae) con la hormiga Crematogaster spp. en una plantación de palma de aceite. Palmas, 21, 167173.Google Scholar
Altieri, M. A. and Nicholls, C. I. (2013). Agroecología y resiliencia al cambio climático: principios y consideraciones metodológicas. Agroecología, 8, 720.Google Scholar
Armbrecht, I. and Gallego, M. C. (2007). Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomologia Experimentalis et Applicata, 124, 261267.CrossRefGoogle Scholar
Armbrecht, I., Rivera, L. and Perfecto, I. (2005). Reduced diversity and complexity in the leaf litter ant assemblage of Colombian coffee plantations. Conservation Biology, 19, 897907.CrossRefGoogle Scholar
Barnett, A. A., Almeida, T., Andrade, R. et al. (2015). Ants and their plants: Pseudomyrmex ants reduce primate, parrot and squirrel predation on Macrolobium acaciifolium (Fabaceae) seeds in Amazonian Brazil. Biological Journal of the Linnean Society, 114, 260273.CrossRefGoogle Scholar
Bixenmann, R. J., Coley, P. D. and Kursar, T. A. (2013). Developmental changes in direct and indirect defenses in the young leaves of the Neotropical tree genus Inga (Fabaceae). Biotropica, 45, 175184.CrossRefGoogle Scholar
Blüthgen, N. and Feldhaar, H. (2010). Food and shelter: how resources influence ant ecology. In Ant ecology. ed. Lach, L., Parr, C. L. and Abbott, K. L.. New York: Oxford University Press, pp. 115136.Google Scholar
Bol, M. and Vroomen, D. (2008). The succession of pasture land towards original cloud forest in the pre-mountain area of Costa Rica. Bachelor thesis research for Tropical Forest. Van Hall Larenstein Institute.Google Scholar
Buckley, R. C. (1982). Ant-plant interactions: a world review. In Ant-plant interactions in Australia. ed. Buckley, R. C.. The Hague, Australia: Dr W. Junk Publishers, pp. 111141.CrossRefGoogle Scholar
Carabalí-Banguero, D. J., Wyckhuys, K. A. G., Montoya-Lerma, J., Kondo, T. and Lundgren, J. G. (2013). Do additional sugar sources affect the degree of attendance of Dysmicoccus brevipes by the fire ant Solenopsis geminata? Entomologia Experimentalis et Applicata, 148, 6573.CrossRefGoogle Scholar
Christianini, A. V., Oliveira, P. S., Bruna, E. M. and Vasconcelos, H. L. (2014). Fauna in decline: meek shall inherit. Science, 345, 1129.CrossRefGoogle ScholarPubMed
Dáttilo, W. and Dyer, L. (2014). Canopy openness enhances diversity of ant-plant interactions in the Brazilian Amazon rain forest. Biotropica, 46, 712719.CrossRefGoogle Scholar
Davidson, D. W. (2008). Ant-plant interactions. In Encyclopedia of entomology, ed. Capinera, J. L.. Florida: Springer, pp. 166185.Google Scholar
Davidson, D. W., Cook, S. C., Snelling, R. and Chua, T. H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300, 969972.CrossRefGoogle ScholarPubMed
De la Mora, A., García-Ballinas, J. A. and Philpott, S. M. (2015). Local, landscape and diversity drivers of predation services provided by ants in a coffee landscape in Chiapas, Mexico. Agriculture, Ecosystems and Environment, 201, 8391.CrossRefGoogle Scholar
De la Mora, A., Livingston, G. and Philpott, S. M. (2008). Arboreal ant abundance and leaf miner damage in coffee agroecosystems in Mexico. Biotropica, 40, 742746.CrossRefGoogle Scholar
Dejean, A., Corbara, B., Fernández, F. and Delabie, J. H. C. (2003). Mosaicos de hormigas arbóreas en bosques y plantaciones tropicales. In Introducción a las hormigas de la región Neotropical, ed. Fernández, F.. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, pp 149158.Google Scholar
Del-Claro, K., Rico-Gray, V., Torezan-Silingardi, H. M. et al. (2016). Loss and gains in ant-plant interactions mediated by extrafloral nectar: fidelity, cheats and lies. Insectes Sociaux, published online, 15 February 2016. DOI 10.1007/s00040-016-0466-2.CrossRefGoogle Scholar
Dirzo, R., Young, H. S., Galetti, M. et al. (2014). Defaunation in the anthropocene. Science, 345, 401406.CrossRefGoogle ScholarPubMed
Domínguez-Haydar, Y. and Armbrecht, I. (2011). Response of ants and their seed removal in rehabilitation areas and forests at El Cerrejón coal mine in Colombia. Restoration Ecology, 19, 178184.CrossRefGoogle Scholar
Escobar, S., Armbrecht, I. and Calle, Z. (2007). Transporte de semillas por hormigas in bosques y agroecosistemas ganaderos de los Andes colombianos. Agroecología, 2, 6584.Google Scholar
Escobar-Ramírez, S., Duque, J. S., Henao, N., Hurtado-Giraldo, A. and Armbrecht, I. (2012). Removal of nomyrmecochorous seeds by ants: role of ants in cattle grasslands. Psyche, 2012, Article ID 951029, doi:10.1155/2012/951029, pp. 18.CrossRefGoogle Scholar
Falcão, J. C. F., Dáttilo, W. and Izzo, T. J. (2015). Efficiency of different planted forests in recovering biodiversity and ecological interactions in Brazilian Amazon. Forest Ecology and Management, 339, 105111.CrossRefGoogle Scholar
FAO. (2006). Livestock´s long shadow: environmental bases and options. http://go.nature.com/BFrtHv (retrieved 1 January 2016).Google Scholar
Gallego-Ropero, M. C. and Armbrecht, I. (2005). Depredación por hormigas sobre la broca del café en cafetales cultivados bajo dos niveles de sombra en Colombia. Revista Manejo Integrado de Plagas y Agroecología (Costa Rica), 76, 19.Google Scholar
Gallegos, S. C., Hensen, I. and Schieuning, M. (2014). Secondary dispersal by ants promotes forest regeneration after deforestation. Journal of Ecology, 102, 659666.CrossRefGoogle Scholar
Girón, K., Lastra, L. A., Gómez, L. A. and Mesa, N. C. (2005). Observaciones acerca de la biología y los enemigos naturales de Saccaricoccus sacchari y Pulvinaria pos elongata, dos homópteros asociados con la hormiga loca en caña de azúcar. Revista Colombiana de Entomología, 31, 2935.CrossRefGoogle Scholar
Gonthier, D. J., Ennis, K. K., Farinas, S. et al. (2014). Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B, 281 20141358. http://dx.doi.org/10.1098/rspb.2014.1358.CrossRefGoogle ScholarPubMed
Gonthier, D. J., Ennis, K. K., Philpott, S. M., Vandermeer, J. and Perfecto, I. (2013). Ants defend coffee from berry borer colonization. BioControl, 58, 815820.CrossRefGoogle Scholar
Gove, A., Majer, J. D. and Rico-Gray, V. 2009. Ant assemblages in isolated trees are more sensitive to species placement than their woodland counterparts. Basic and Applied Ecology, 10, 187195.CrossRefGoogle Scholar
Griffith, D. M. (2004). Succession of tropical rain forest along a gradient of agricultural intensification: pattens,mechanisms and implications for conservation. PhD thesis, Ann Arbor, MI: University of Michigan, Department of Ecology and Evolutionary Biology.Google Scholar
Gutiérrez-Vélez, V. H., DeFries, R., Pinedo-Vásquez, M. et al. (2011). High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environmental Research Letters, 6, 044029. doi:10.1088/1748–9326/6/4/044029.CrossRefGoogle Scholar
Guzmán, L., Calvache Guerrero, H., Aldana la Torre, J. and Méndez, A. (1997). Manejo de Leptopharsa gibbicarina Froeschner (Hemiptera: Tingidae) con la hormiga Crematogaster sp. en una plantación de palma de aceite. Palmas, 18, 1926.Google Scholar
Henao, H. (2008). Análisis de la actividad depredadora por hormigas en cafetales con y sin sombra de árboles de Cauca y Valle. MScTesis. Cali, Colombia: Universidad del Valle, Facultad de Ciencias, Departamento de Biología.Google Scholar
Henao-Gallego, N., Escobar-Ramírez, S., Calle, Z., Montoya-Lerma, J. and Armbrecht, I. (2012). An artificial aril designed to induce seed hauling by ants for ecological rehabilitation purposes. Restoration Ecology, 20, 555560.CrossRefGoogle Scholar
Hernández, C. P., Martínez, Y. P., Insuasty, O. et al. (2002). Efecto del control de malezas y la fertilización nitrogenada sobre la población de hormiga loca Paratrechina fulva (Hymenoptera: Formicidae). Revista Colombiana de Entomología, 28, 8390.CrossRefGoogle Scholar
Horvitz, C. C. and Beattie, A. J. (1980). Ant dispersal of Calathea (Marantaceae) seeds by carnivorous ponerines (Formicidae) in a tropical rain forest. American Journal of Botany, 67, 321326.CrossRefGoogle Scholar
Hsieh, H. Y., Liere, H., Soto, E. J. and Perfecto, I. (2012). Cascading trait-mediated interactions induced by ant pheromones. Ecology and Evolution, 2, 21812191.CrossRefGoogle ScholarPubMed
Huang, H. T. and Yang, P. (1987). The ancient cultured citrus ant. BioScience, 37, 665671.CrossRefGoogle Scholar
Hurtado, A., Escobar, S., Torres, A. M. and Armbrecht, I. (2012). Explorando el papel de la hormiga generalista Solenopsis geminata (Formicidae: Myrmicinae) en la germinación de semillas de Senna spectabilis (Fabaceae: Caesalpinioideae). Caldasia, 34, 127137.Google Scholar
Jiménez-Soto, E., Cruz-Rodríguez, J. A., Vandermeer, J. and Perfecto, I. (2013). Hypothenemus hampei (Coleoptera: Curculionidae) and its interactions with Azteca instabilis and Pheidole synanthropica (Hymenoptera: Formicidae) in a shade coffee agroecosystem. Environmental Entomology, 42, 915924.CrossRefGoogle Scholar
Lange, D. and Del-Claro, K. (2014). Ant-plant interaction in a tropical savanna: may the network structure vary over time and influence on the outcomes of associations? Plos One, 9, e105574.CrossRefGoogle Scholar
Larsen, A. and Philpott, S. M. (2010). Twig-nesting ants: the hidden predators of the coffee berry borer in Chiapas, Mexico. Biotropica, 42, 342347.CrossRefGoogle Scholar
Laurance, W. F., Sayer, J. and Cassman, K. G. (2014). Agricultural expasion and its impact on tropical nature. Trends in Ecology and Evolution, 29, 107116.CrossRefGoogle Scholar
Leston, D. (1978). A Neotropical ant mosaic. Annals of the Entomological Society of America, 71, 649653.CrossRefGoogle Scholar
Liere, H. and Perfecto, I. (2008). Cheating on a mutualism: indirect benefits of ant attendance to a coccidophagous coccinellid. Environmental Entomology, 37, 143149.CrossRefGoogle ScholarPubMed
Livingston, G. F., White, A. M. and Kratz, C. J. (2008). Indirect interactions between ant-tended hemipterans, a dominant ant Azteca instabilis (Hymenoptera: Formicidae), and shade trees in a tropical agroecosystem. Environmental Entomology, 37, 734740.CrossRefGoogle Scholar
Majer, J. D. (1976). The influence of ants and ant manipulation on the cocoa farm fauna. Journal of Applied Ecology, 13, 157175.CrossRefGoogle Scholar
Majer, J. D. 1993. Comparison of the arboreal ant mosaic in Ghana, Brazil, Papua New Guinea, and Australia: Its structure and influence on arthropod diversity. In Hymenoptera and Biodiversity, ed. J. LaSalle and I. D. Gauld. Wallingford, UK: CAB International, pp. 115141.Google Scholar
Majer, J. D. and Delabie, J. H. C. (1999). Impact of tree isolation on arboreal and ground ant communities in cleared pasture in the Atlantic rain forest region of Bahia, Brazil. Insectes Sociaux, 46, 281290.CrossRefGoogle Scholar
Marin, L., Jackson, D. and Perfecto, I. (2015). A positive association between ants and spiders and potential mechanisms driving them. Oikos, 124, 10781088.CrossRefGoogle Scholar
Mathis, K. A., Philpott, S. M. and Moreira, R. F. (2011). Parasite lost: chemical and visual cues used by Pseudacteon in search of Azteca instabilis. Journal of Insect Behavior, 24, 186199.CrossRefGoogle ScholarPubMed
Mera-Velasco, Y. A., Gallego-Ropero, M. C. and Armbrecht, I. (2010). Asociaciones entre hormigas y otros insectos en follaje de cafetales de sol y sombra, Cauca Colombia. Revista Colombiana de Entomología, 36, 116126.CrossRefGoogle Scholar
Morris, J. R., Vandermeer, J. and Perfecto, I. (2015). A keystone ant species provides robust biological control of the coffee berry borer under varying pest densities. PloS one 10, e0142850.CrossRefGoogle Scholar
Nestel, D. and Dickschen, F. (1990). Foraging kinetics of ground ant communities in different mexican coffee agroecosystems. Oecologia, 84, 5863.CrossRefGoogle ScholarPubMed
Perfecto, I. and Armbrecht, I. (2003). The coffee agroecosystem in the Neotropics: combining ecological and economic goals. In Tropical agroecosystems, ed. Vandermeer, J.. Boca Raton, FLA: CRC Press, pp. 159194Google Scholar
Perfecto, I., Rice, R. A., Greenberg, R. and Van der Voort, M. E. (1996). Shade coffee: a disappearing refuge for biodiversity. Bioscience, 46, 598608.CrossRefGoogle Scholar
Perfecto, I. and Snelling, R. (1995). Biodiversity and the transformation of a tropical agroecosystem: ants in coffee plantations. Ecological Applications, 5, 10841097.CrossRefGoogle Scholar
Perfecto, I. and Vandermeer, J. (2006). The effect of an ant-hemipteran mutualism on the coffee berry borer (Hypothenemus hampei) in southern Mexico. Agriculture, Ecosystems and Environment, 117, 218221.CrossRefGoogle Scholar
Perfecto, I. and Vandermeer, J. (2015). Coffee agroecology, New York: Earthscan.CrossRefGoogle Scholar
Perfecto, I., Vandermeer, J. and Philpott, S. M. (2014). Complex ecological interactions in the coffee agroecosystem. Annual Review of Ecology, Evolution, and Systematics, 45, 137158.CrossRefGoogle Scholar
Philpott, S. M. (2006). Ant patchiness: a spatially quantitative test in coffee agroecosystems. Naturwissenschaften, 93, 386392.CrossRefGoogle ScholarPubMed
Philpott, S. M. and Armbrecht, I. (2006). Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology, 31, 369377.CrossRefGoogle Scholar
Philpott, S. M., Pardee, G. L. and Gonthier, D. J. (2012). Cryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity. Ecology, 93, 9921001.CrossRefGoogle ScholarPubMed
Philpott, S. M., Perfecto, I. and Vandermeer, J. (2008). Behavioral diversity of predatory arboreal ants in coffee agroecosystems. Environmental Entomology, 37, 181191.CrossRefGoogle ScholarPubMed
Posada-Flórez, F. J., Vélez-Hoyos, M. and Zenner de Polanía, I. (2009). Hormigas: enemigos naturales de la broca del café,. Chinchiná, Colombia: Universidad de Ciencias Aplicadas y Ambientales.Google Scholar
Pringle, E. G., Dirzo, R. and Gordon, D. H. (2011). Indirect benefits of symbiotic coccoids for an ant-defended myrmecophytic tree. Ecology, 92, 3746.CrossRefGoogle ScholarPubMed
Ramírez, M., Chará, J., Pardo-Lorcano, L. C. et al. (2012). Biodiversidad de hormigas hipogeas (Hymenoptera: Formicidae) en agroecosistemas del Cerrito, Valle del Cauca. Livestock Research for Rural Development, 241, 118.Google Scholar
Ramírez, M., Herrera, J. and Armbrecht, I. (2010). Hormigas que depredan en potreros y cafetales colombianos: ¿bajan de los árboles? Revista Colombiana de Entomología, 36, 106115.CrossRefGoogle Scholar
Rico-Gray, V. and Oliveira, P. S. (2007). The ecology and evolution of ant-plant interactions, Chicago: University of chicago Press.CrossRefGoogle Scholar
Risch, S. J. and Carroll, R. (1982). Effect of a keystone predaceous ant, Solenopsis geminata on arthropods in a tropical agroecosystem. Ecology, 63, 19791983.CrossRefGoogle Scholar
Rivera, L. F., Armbrecht, I. and Calle, Z. (2013). Silvopastoral systems and ant diversity conservation in a cattle-dominated landscape of the Colombian Andes. Agriculture, Ecosystems and Environment, 181, 188194.CrossRefGoogle Scholar
Santamaría, C., Armbrecht, I. and Lachaud, J. P. (2009). Nest distribution and food preferences of Ectatomma ruidum (Hymenoptera: Formicidae) in shaded and open cattle pastures of Colombia. Sociobiology, 53, 517541.Google Scholar
Silva, E. N. and Perfecto, I. (2013). Coexistence of aphid predators in cacao plants: does ant-aphid mutualism play a role? Sociobiology, 60, 259265.CrossRefGoogle Scholar
Sinisterra, M. R., Gallego-Ropero, M. C. and Armbrecht, I. (2016). Hormigas asociadas a nectarios extraflorales de árboles de dos especies de Inga en cafetales de Cauca, Colombia. Acta Agronomica, 65, 915.Google Scholar
Trible, W. and Carroll, R. (2014). Manipulating tropical fire ants to reduce the coffee berry borer. Ecological Entomology, 39, 603609.CrossRefGoogle Scholar
Urrutia-Escobar, X. and Armbrecht, I. (2013). Effect of two agroecological management strategies on ant (Hymenoptera: Formicidae) diversity on coffee plantations in Southwestern Colombia. Environmental Entomology, 42, 194203.CrossRefGoogle ScholarPubMed
Utsumi, S., Kishida, O. and Ohgushi, T. (2010). Trait-mediated indirect interactions in ecological communities. Population ecology, 52, 457459.CrossRefGoogle Scholar
Vásquez Moreno, L. L., Matienzo Brito, Y., Alfonso Simonetti, J., Moreno Rodríguez, D. and Alvarez Nuñez, A. (2009). Diversidad de especies de hormigas (Hymenoptera: Formicidae) en cafetales afectados por Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae), Fitosanidad, 13, 163168.Google Scholar
Ward, P. S. (2007). Phylogeny, classification and species-level taxonomy of ants (Hymenoptera: Formicidae). Zootaxa, 1668, 549563.CrossRefGoogle Scholar
Way, M. J. and Khoo, K. C. (1992). Role of ants in pest management. Annual Review of Entomology, 37, 479503.CrossRefGoogle Scholar
Werner, E. E. and Peacor, S. D. (2003). A review of trait-mediated indirect interactions in ecological communities. Ecology, 84, 10831100.CrossRefGoogle Scholar

References

Abril, A., & Bucher, E. H. (2001). Overgrazing and soil carbon dynamics in the western Chaco of Argentina. Applied Soil Ecology, 16, 243249.CrossRefGoogle Scholar
Ares, J., Beeskow, A., Bertiller, M., Rostagno, C., Irisarri, M., Anchorena, J., Defossé, G., & Meroni, C. (1990). Structural and dynamics characteristics of overgrazed lands of Northern Patagonia, Argentina. In Bremeyer, A. (ed.). Managed grasslands: regional studies. Amsterdam: Elsevier Science Publishers, pp. 149175.Google Scholar
Bennett, A. F. (1991). Roads, roadsides and wildlife conservation: a review. In Saunders, D. A. & Hobbs, R. J. (eds.). Nature conservation 2: the role of corridors. Chipping Norton, Australia: Surrey Beatty, pp. 99117.Google Scholar
Bertiller, M. B., & Ares, J. O. (2011). Does sheep selectivity along grazing paths negatively affect biological crusts and soil seed banks in arid shrublands? A case study in the Patagonian Monte, Argentina. Journal of Environmental Management, 92, 20912096.CrossRefGoogle ScholarPubMed
Bertiller, M. B., & Bisigato, A. (1998). Vegetation dynamics under grazing disturbance. The state-and-transition model for the Patagonian steppes. Ecología Austral, 8, 191199.Google Scholar
Bestelmeyer, B., & Wiens, J. (2001) Ant biodiversity in semiarid landscape mosaics: the consequence of grazing vs. natural heterogeneity. Ecological Applications, 11, 11231140.CrossRefGoogle Scholar
Bieber, A. G., Silva, P. S. D., Sendoya, S. F., & Oliveira, P. S. (2014). Assessing the impact of deforestation of the Atlantic Rainforest on ant-fruit interactions: a field experiment using synthetic fruits. PlosOne, 9, e90369.CrossRefGoogle ScholarPubMed
Bisigato, A., & Bertiller, M. (1997). Grazing effects on patchy dryland vegetation in northern Patagonia. Journal of Arid Environments., 36, 639653.Google Scholar
Bucher, E. H., Marchesini, V., & Abril, A. (2004). Herbivory by leaf-cutting ants: nutrient balance between harvested and refuse material. Biotropica, 36, 327332.Google Scholar
Cerdá, N., Tadey, M., Farji-Brener, A. G., & Navarro, M. (2012). Effects of leaf-cutting ant refuse on native plant performance under two levels of grazing intensity in the Monte Desert of Argentina. Applied Vegetation Science, 15, 479487.CrossRefGoogle Scholar
Correa, M. N. (1969). Flora patagónica. Buenos Aires, Argentina: INTA-Buenos Aires.Google Scholar
Corrêa, M. M., Silva, P. S. D., Wirth, R., Tabarelli, M., & Leal, I. R. (2010). How leaf-cutting ants impact forests: drastic nest effects on light environment and plant assemblages. Oecologia, 162, 103115.CrossRefGoogle ScholarPubMed
Del Toro, I., Ribbons, R. R., & Pelini, S. L. (2012). The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News, 17, 133146.Google Scholar
Fahrig, L., & Rytwinski, T. (2009). Effects of roads on animal abundance: an empirical review and synthesis. Ecology and Society, 14, 21.CrossRefGoogle Scholar
Farji-Brener, A. G. (1996). Posibles vías de expansión de la hormiga cortadora de hojas Acromyrmex lobicornis hacia la Patagonia. Ecología Austral, 6, 144150.Google Scholar
Farji-Brener, A. G. (2000). Leaf-cutting ant nests in temperate environments: mounds, mound damages and mortality rates in Acromyrmex lobicornis. Studies of Neotropical Fauna and Environment, 35, 131138.CrossRefGoogle Scholar
Farji-Brener, A. G. (2001). Why are leaf-cutting ants more common in early secondary forests than in old-growth tropical forests? An evaluation of the palatable forage hypothesis. Oikos, 92, 169177.CrossRefGoogle Scholar
Farji-Brener, A. G. (2010). Leaf-cutting ant nests and soil biota abundance in a semi-arid steppe of northwestern Patagonia. Sociobiology, 56, 549557.Google Scholar
Farji-Brener, A. G., & Ghermandi, L. (2000). The influence of nests of leaf-cutting ants on plant species diversity in road verges of northern Patagonia. Journal of Vegetation Science, 11, 453460.CrossRefGoogle Scholar
Farji-Brener, A. G., & Ghermandi, L. (2004). Seedling recruitment in the semi-arid Patagonian steppe: facilitative effects of refuse dumps of leaf-cutting ants. Journal of Vegetation Science, 15, 823830.Google Scholar
Farji-Brener, A. G., & Ghermandi, L. (2008). Leaf-cutting ant nests near roads increase fitness of exotic plant species in natural protected areas. Proceedings of the Royal Society – Series B, 275, 14311440.Google ScholarPubMed
Farji-Brener, A. G., Gianoli, E., & Molina-Montenegro, M. (2009). Small-scale disturbances spread along trophic chains: leaf-cutting ant nests, plants, aphids and tending ants. Ecological Research, 24, 139145.CrossRefGoogle Scholar
Farji-Brener, A. G., & Illes, A. E. (2000) Do leaf-cutting ant nests make “bottom-up” gaps in neotropical rain forests?: a critical review of the evidence. Ecology Letters, 3, 219227.CrossRefGoogle Scholar
Farji-Brener, A. G., Lescano, N., & Ghermandi, L. (2010). Ecological engineering by a native leaf-cutting ant increases the performance of exotic plant species. Oecologia, 163, 163169.CrossRefGoogle ScholarPubMed
Farji-Brener, A. G., & Ruggiero, A. (1994). Leaf-cutting ants (Atta and Acromyrmex) inhabiting Argentina: patterns in species richness and geographical range sizes. Journal of Biogeography, 21, 391399.CrossRefGoogle Scholar
Farji-Brener, A. G., & Werenkraut, V. (2015). A meta-analysis of leaf-cutting ant nest effects on soil fertility and plant performance. Ecological Entomology, 40, 150158.CrossRefGoogle Scholar
Fernández, A., Farji-Brener, A. G., & Satti, P. (2014a). Factores que influyen sobre la actividad microbiana en basureros de hormigas cortadoras de hojas. Ecología Austral, 24,103110.CrossRefGoogle Scholar
Fernández, A., Farji-Brener, A. G., & Satti, P. (2014b). Moisture enhances the positive effect of leaf-cutting ant refuse dumps on soil biota activity. Austral Ecology, 39, 198203.CrossRefGoogle Scholar
Fournier, V., Rosenheim, J., Laney, L., & Johnson, M. (2003). Herbivorous mites as ecological engineers: indirect effects on arthropods inhabiting papaya foliage. Oecologia, 135, 442450.CrossRefGoogle ScholarPubMed
Gelbard, J., & Harrison, S. (2005). Invasibility of roadless grasslands: an experimental study of yellow starthistle. Ecological Applications, 15, 15701580.CrossRefGoogle Scholar
Golluscio, R. A., Deregibus, V. A., & Paruelo, J. M. (1998). Sustainability and range management in the Patagonian steppes. Ecología Austral, 8, 265284.Google Scholar
Guevara, J. C., Stasi, C. R., & Estevez, O. R. (1996). Seasonal specific selectivity by cattle on rangeland in the Monte desert of Mendoza, Argentina. Journal of Arid Environments, 34, 125132.CrossRefGoogle Scholar
Guillade, A. C., & Folgarait, P. J. (2014). Competition between grass-cutting Atta vollenweideri ants (Hymenoptera: Formicidae) and domestic cattle (Artiodactyla: Bovidae) in Argentine rangelands. Agricultural and Forest Entomology, 17, 113119.CrossRefGoogle Scholar
Hölldobler, B., & Wilson, E. O. (2011). The leafcutter ants: civilization by instinct. London: W. W. Norton and Company, Inc.Google Scholar
Jaffe, K., & Vilela, E. (1989). On nest densities of the leaf-cutting ant Atta cephalotes in tropical primary forest. Biotropica, 48, 234236.CrossRefGoogle Scholar
Jones, C., Lawton, J., & Shachar, M. (1994) Organisms as ecosystem engineers. Oikos, 69, 373386.CrossRefGoogle Scholar
Jones, C., Lawton, J., & Shachar, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78, 839841.CrossRefGoogle Scholar
Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, 29, 107116.CrossRefGoogle ScholarPubMed
Leal, I. R., Wirth, R., & Tabarelli, M. (2014). The multiple impacts of leaf-cutting ants and their novel ecological role in human-modified neotropical forests. Biotropica, 46, 516528.CrossRefGoogle Scholar
Leishman, M. R., & Thomson, V. P. (2005). Experimental evidence for the effects of additional water, nutrients and physical disturbance on invasive plants in low fertility Hawkesbury Sandstone soils, Sydney, Australia. Journal of Ecology, 93, 3849.CrossRefGoogle Scholar
Lescano, M. N., & Farji-Brener, A. G. (2011). Exotic thistles increase native ant abundance through the maintenance of enhanced aphid populations. Ecological Research, 26, 827834.CrossRefGoogle Scholar
Lescano, M. N., Farji-Brener, A. G., & Gianoli, E. (2015). Outcomes of competitive interactions after a natural increment of resources: the assemblage of aphid-tending ants in northern Patagonia. Insect Sociaux, 62, 199205.CrossRefGoogle Scholar
Lescano, M. N., Farji-Brener, A. G., Gianoli, E., & Carlo, T. (2012). Bottom-up effects may not reach the top: the influence of ant-aphid interactions on the spread of soil disturbances through trophic chains. Proceedings of the Royal Society – Series B, 279, 37793787.Google Scholar
Markl, U., Schleuning, M., Forget, P., Jordano, P., Lambert, J., Traveset, A., Wight, J., & Bohning-Gaese, K. (2012). Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conservation Biology, 26, 10721081.CrossRefGoogle ScholarPubMed
Meyer, S. T., Leal, I. R., & Wirth, R. (2009). Persisting hyper-abundance of keystone herbivores (Atta spp.) at the edge of an old Brazilian Atlantic Forest fragment. Biotropica, 41, 711716.CrossRefGoogle Scholar
Montoya-Lerma, J., Giraldo-Echeverri, C., Armbrecht, I., Farji-Brener, A. G., & Calle, Z. (2012). Leaf-cutting ants revisited: towards rational management and control. International Journal of Pest Management, 58, 225247.CrossRefGoogle Scholar
Raymond, A., Moranz, R. A., Debinski, D. M., Winkler, L., Trager, J., Mc Granahan, D., Engle, D., & Miller, J. (2013). Effects of grassland management practices on ant functional groups in central North America. Journal of Insect Conservation, 17, 699713.Google Scholar
Rickey, M. A., & Anderson, R. C. (2004). Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata. Journal of Applied Ecology, 41, 888896.CrossRefGoogle Scholar
Robinson, S. W., & Fowler, H. G. (1982). Foraging and pest potential of Paraguayan grass-cutting ants (Atta and Acromyrmex) to the cattle industry. Zeitschrift fuer angewandte Entomologie, 93, 4254.CrossRefGoogle Scholar
Sallanbanks, R., Arnett, E. B., & Marzluff, J. M. (2000). An evaluation of research on the effects of timber harvest on bird populations. Wildlife Society Bulletin, 28, 11441155.Google Scholar
Satti, P., Mazzarino, M. J., Gobbi, M., Funes, F., Roselli, L., & Fernandez, H. (2003). Soil N dynamics in relation to leaf litter quality and soil fertility in north-western Patagonian forests. Journal of Ecology, 91, 173181.CrossRefGoogle Scholar
Spellerberg, I. F. (1998). Ecological effects of roads and traffic: a literature review. Global Ecology and Biogeography, 7, 317333.CrossRefGoogle Scholar
Tabarelli, M., Silva, J. & Gascon, C. (2004). Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodiversity and Conservation., 13, 14191425.Google Scholar
Tadey, M. (2006). Grazing without grasses: effects of introduced livestock on plant community of an arid ecosystem in northern Patagonia. Applied Vegetation Science, 9, 109116.CrossRefGoogle Scholar
Tadey, M., & Farji-Brener, A. G. (2007). Indirect effects of exotic grazers: livestock decreases the nutrient content of refuse dumps of leaf-cutting ants through vegetation impoverishment. Journal of Applied Ecology, 44, 12091218.CrossRefGoogle Scholar
Thompson, I. A., Baker, J. A., & Ter-Mikaelian, M. (2003). A review of the long-term effects of post-harvest silviculture on vertebrate wildlife, and predictive models, with an emphasis on boreal forest in Ontario, Canada. Forest Ecology and Management, 177, 441469.CrossRefGoogle Scholar
Trombulak, S. C., & Frissell, C. A. (2002). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 1830.CrossRefGoogle Scholar
Vasconcelos, H. L. (1990). Habitat selection by the queens of the leaf-cutting ant Atta sexdens L. in Brazil. Journal of Tropical Ecology, 6, 249252.CrossRefGoogle Scholar
Vieira-Neto, E. H. M., & Vasconcelos, H. L. (2010). Developmental changes in factors limiting colony survival and growth of the leaf-cutter ant Atta laevigata. Ecography, 33, 538544.CrossRefGoogle Scholar
Way, M. J. (1963). Mutualism between ants and honeydew producing Homoptera. Annual Review of Entomology, 8, 307344.CrossRefGoogle Scholar
Wirth, R., Herz, H., Rye, I., Beyschlag, W., & Hölldobler, B. (2003). Herbivory of leaf-cutting ants. Berlin: Springer.CrossRefGoogle Scholar
Wirth, R., Meyer, S. T., Almeida, W. R., Araújo, M. V., Jr., Barbosa, V. S., & Leal, I. R. (2007). Increasing densities of leaf-cutting ants (Atta spp.) with proximity to the edge in a Brazilian Atlantic forest. Journal of Tropical Ecology, 23, 501505.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×