Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T16:03:34.309Z Has data issue: false hasContentIssue false

Chapter 6 - Molecular Markers in Anthropological Genetic Studies

Published online by Cambridge University Press:  05 June 2012

Rohina C. Rubicz
Affiliation:
University of Kansas
Phillip Melton
Affiliation:
University of Kansas
Michael H. Crawford
Affiliation:
University of Kansas
Michael H. Crawford
Affiliation:
University of Kansas
Get access

Summary

Introduction

In 1973, a chapter entitled ‘The use of genetic markers of the blood in the study of the evolution of human populations’, was published in the first volume that attempted to synthesize the field of anthropological genetics (Crawford, 1973). This chapter defined genetic markers as "discrete segregating, genetic traits which can be used to characterize populations by virtue of their presence, absence, or high frequency in some populations and low frequency in others' (Crawford, 1973: 38). This definition similarly applies to molecular markers, which are segregating regions of DNA, present in some populations but absent or infrequent in others. The 1973 chapter summarized the available genetic markers of the blood that could be used for the measurement of evolutionary processes and the characterization of human population structure. The list of available polymorphic loci included 16 blood groups, 11 red blood cell proteins, 10 serum proteins and 3 white cell and platelet systems. These ‘riches’ of available variation of the blood followed 70 years of research on the blood group systems (since Karl Landsteiner's original work in 1900), and Oliver Smithies (1955) development of zone electrophoresis for the separation of specific proteins from mixtures such as the serum of the blood (Landsteiner and Levine, 1927). At the time the first volume in anthropological genetics was compiled, the physiological functions of blood groups were unknown, other than their involvement in blood transfusion and some suspect statistical associations with disease.

Type
Chapter
Information
Anthropological Genetics
Theory, Methods and Applications
, pp. 141 - 186
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aris-Brosou, S. and Excoffier, L. (1996). The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Molecular Biology and Evolution, 13, 494–504CrossRefGoogle ScholarPubMed
Bamshad, M., Mummidi, S., Gonzalez, E., Ahuja, S. S., Dunn, D. M., Watkins, W. S., Wooding, S., Stone, A. C., Jorde, L. B., Weiss, R. B. and Ahuja, S. K. (2002). A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5. Proceedings of the National Academy of Sciences, USA, 99, 10539–44CrossRefGoogle ScholarPubMed
Bamshad, M. and Wooding, S. P. (2003). Signatures of natural selection in the human genome. Nature Reviews, 4, 99–111CrossRefGoogle ScholarPubMed
Bandelt, H. J., Forster, P. and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48CrossRefGoogle ScholarPubMed
Bandelt, H. J., Forster, P., Sykes, B. C. and Richards, M. B. (1995). Mitochondrial portraits of human populations using median networks. Genetics, 141, 743–53Google ScholarPubMed
Bernstein, F. (1931). Die geographische verteilung der blutgruppen und ihre anthropologische bedeutung. Comitato Italiano per Studio dei Problemi della Populazione. Istituto Poligraficao dello Stato, Rome, pp. 227–43.Google Scholar
Brion, M., Salas, A., Gonzalez-Neira, A., Lareu, M. V. and Carracedo, A. (2003). Insights into Iberian population origins through the construction of highly informative Y-chromosome haplotypes using biallelic markers, STRs, and the MSY1 minisatellite. American Journal of Physical Anthropology, 122, 147–161CrossRefGoogle ScholarPubMed
Brooke, J., McCurrah, M., Harley, H., Buckler, A., Church, D., Aburatani, H., Hunter, K., et al. (1992). Molecular basis for myotonic dystrophy: expansion of trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell, 68, 799–808CrossRefGoogle Scholar
Cavalli-Sforza, L. L. and Bodmer, W. F. (1971). The Genetics of Human Populations. San Francisco: W. H. Freeman.Google Scholar
Cavalli-Sforza, L. L., Menozzi, P. and Piazza, A. (1994). The History and Geography of Human Genes. Princeton, NJ: Princeton University Press.Google Scholar
Cleland, R. E. (1923). Chromosome arrangements during meiosis in certain oenotheras. American Naturalist, 57, 562–66CrossRefGoogle Scholar
Crawford, M. H. (1973). The use of genetic markers of the blood in the study of the evolution of human populations. In Methods and Theories of Anthropological Genetics, eds. Crawford, M. H. & Workman, P. L.. Albuquerque: University of New Mexico Press, pp. 19–38.Google Scholar
Crawford, M. H. (1998). The Origins of Native Americans. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Crawford, M. H. and Duggirala, R. (1992). Digital dermatoglyphic patterns of Eskimo and Amerindian populations: relationships between geographic, dermatoglyphic, genetic, and linguistic distances. Human Biology, 64, 683–704Google ScholarPubMed
Crawford, M. H., McComb, J., Schanfield, M. and Mitchell, R. (2002). Genetic structure of pastoral populations of Siberia: the Evenki of central Siberia and Kizhi of Gorno Altai. In Human Biology of Pastoral Populations, eds. Leonard, W. & Crawford, M. H.. Cambridge, UK: Cambridge University Press, pp. 10–49.Google Scholar
Crawford, M. H., Williams, J. T. and Duggirala, R. (1997). Genetic structure of the indigenous populations of Siberia. American Journal of Physical Anthropology, 104, 177–923.0.CO;2-W>CrossRefGoogle ScholarPubMed
Crawford, M. H., Workman, P. L., McLean, C. and Lees, F. C. (1976). Admixture estimates and selection in Tlaxcala. In The Tlaxcaltecans. Prehistory, Demography, Morphology and Genetics, ed. Crawford, M. H.. Lawrence: University of Kansas Publications in Anthropology, pp. 161–8.Google Scholar
Crow, J. and Kimura, M. (1970). An Introduction to Population Genetics Theory. New York: Harper and Row.Google Scholar
DaSilva, E. M. (1949). Blood groups of Indians, whites and white-Indian mixtures in southern Mato Grosso. Brazil. American Journal of Physical Anthropology, 7, 575–86CrossRefGoogle Scholar
Deininger, P. and Batzer, M. (1993). Evolution of retroposons. In Evolutionary Biology, eds. Hect, M., MacIntyre, R. & Clegg, M.. New York: Plenum Press, pp. 157–96.CrossRefGoogle Scholar
Derbeneva, O., Sukernik, R., Volovko, N., Hosseini, S., Lott, M. and Wallace, D. (2002). Analysis of mitochondrial DNA diversity of the Aleuts of the Commander Islands and its implications for the genetic history of Beringia. American Journal of Human Genetics, 71, 415–21CrossRefGoogle ScholarPubMed
Derenko, M. V., Grzybowski, T., Malyarchuk, B. A., Dambueva, I. K., Denisova, G. A., Czarny, J., Dorzhu, C. M., Kakpakov, C. M., Miscicka-Sliwaka, D., Wozniak, M. and Zakharaov, I. A. (2003). Diversity of mitochondrial DNA lineages in South Siberia. Annals of Human Genetics, 67, 391–411CrossRefGoogle ScholarPubMed
Destro-Bisol, G., Spedini, G. and Pascali, V. L. (2000). Application of different genetic distance methods to microsatellite data. Human Genetics, 106, 130–2CrossRefGoogle ScholarPubMed
Destro-Bisol, G., Maviglia, R., Caglia, A., Boschi, I., Spedini, G., Pascali, V., Clark, A. and Tishkoff, S. (1999). Estimating European admixture in African Americans by using microsatellites and a microsatellite haplotype (CD4/Alu). Human Genetics, 104, 149–57CrossRefGoogle Scholar
Vries, H. (1901–1903). Die Mutationstherorie. Leipzig: Von Veit. (109–10 English translation). The Mutation Theory, trans. J. B. Farmer and A. D. Darbishire. Chicago: Open court.Google Scholar
DiBenedetto, G., Erguven, A., Stenico, M., Castri, L., Bertorelle, G., Togan, I. and Barbujani, G. (2001). DNA diversity and population admixture in Anatolia. American Journal of Physical Anthropology, 115, 144–56CrossRefGoogle Scholar
Dubrova, Y. E., Grant, G., Chumak, A. A., Stezhka, V. A. and Karakasian, A. N. (2002). Elevated minisatellite mutation rate in the post-Chernobyl families from Ukraine. American Journal of Human Genetics, 71(4), 801–9CrossRefGoogle ScholarPubMed
Elston, R. C. (1971). The estimation of admixture in racial hybrids. Annals of Human Genetics, 35, 9–17CrossRefGoogle ScholarPubMed
Excoffier, L., Smouse, P. E. and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–91Google ScholarPubMed
Fisher, R. A. (1930). Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Fitch, W. M. and Margoliash, E. (1967). Construction of phylogenetic trees. Science, 155, 279–84CrossRefGoogle ScholarPubMed
Forster, P., Harding, R., Torroni, A. and Bandelt, H. J. (1996). Origin and evolution of Native American mtDNA variation: a reappraisal. American Journal of Human Genetics, 59, 935–45Google ScholarPubMed
Foy, J. C. and Wu, C. I. (1999). A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Molecular Biology and Evolution, 16, 1003–5CrossRefGoogle Scholar
Francalacci, P., Montiel, R. and Malgosa, A. (1999). A mitochondrial DNA database. In Genomic Diversity: Applications in Human Population Genetics, eds. Papiha, S., Deka, R. & Chakraborty, R.. New York: Kluwer Academic/Plenum Publishers, pp. 103–19.CrossRefGoogle Scholar
Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–25Google ScholarPubMed
Fu, Y., Kuhl, D., Pizzuti, A., Pieretti, M., Sutcliffe, J., Richards, S., Verkerk, A., et al. (1991). Variation in the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell, 67, 1047–58CrossRefGoogle ScholarPubMed
Galvani, A. P. and Slatkin, M. (2003). Evaluating plague and smallpox as historical selective pressures for the CCR5- 32 HIV-resistance allele. Proceedings of the National Academy of Sciences, USA, 100, 15276–9CrossRefGoogle ScholarPubMed
Glass, B. and Li, C. C. (1953). The dynamics of racial intermixture–an analysis based on the American Negro. American Journal of Human Genetics, 5, 1–20Google ScholarPubMed
Goldschmidt, E. (1963). The Genetics of Migrant and Isloate Populations. New York: Williams and Wilkins.Google Scholar
Goldstein, D. B., Ruiz Linares, A., Cavalli-Sforza, L. L. and Feldman, M. W. (1995). An evaluation of genetic distances for use with microsatellite loci. Genetics, 139, 463–71Google ScholarPubMed
Guarino, F., Federle, L., van Oorschot, R., Briceno, I., Bernal, J., Papiha, S., Schanfield, M. and Mitchell, R. (1999). Genetic diversity among five Native American tribes of Columbia: Evidence from nine autosomal microsatellites. In Genomic Diversity: Applications in Human Population Genetics, eds. Papiha, S., Deka, R. & Chakraborty, R.. New York: Kluwer Academic/Plenum Publishers, pp. 33–51.CrossRefGoogle Scholar
Gulick, J. (1872). On the diversity of evolution under one set of external conditions. Linnean Society Journal of Zoology, 11, 496–505CrossRefGoogle Scholar
Haldane, J. B. S. (1932). The Causes of Evolution. London: Longmans and Green.Google Scholar
Hammer, M. F., Karafet, T., Rasanayagam, A., Wood, E. T., Altheide, T. K., Jenkins, T., Griffiths, R. C., Templeton, A. R. and Zegura, S. L. (1998). Out of Africa and back again: Nested cladistic analysis of human Y-chromosome variation. Molecular Biology and Evolution, 15, 427–41CrossRefGoogle ScholarPubMed
Hammer, M. F., Spurdle, A. B., Karafet, T., Bonner, M. R., Wood, E. T., Novelletto, A., Malaspina, P., Mitchell, R. J., Horai, S., Jenkins, T. and Zegura, S. L. (1997). The geographic distribution of human Y-chromosome variation. Genetics, 145, 787–805Google ScholarPubMed
Harpending, H. and Jenkins, T. (1973). Genetic distance among South African populations. In Methods and Theories in Anthropological Genetics, eds. Crawford, M. H. & Workman, P. L.. Albuquerque: University of New Mexico Press, pp. 177–99.Google Scholar
Horuk, R., Chitnis, C. E., Darbonne, W. C., Colby, T. J., Rybicki, A., Hadley, T. J. and Miller, L. H. (1993). A receptor for the malarial parasite Plasmodium vivax: The erythrocyte chemokine receptor. Science, 261(5125), 1182–4CrossRefGoogle ScholarPubMed
Hudson, R. (1990). Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology, 9, 1–44Google Scholar
Jobling, M. A., Bouzekri, N. and Taylor, P. G. (1998). Hypervariable digital DNA codes for human paternal lineages: MVR-PCR at the Y-specific minisatellite, MSY1 (DYF155S1). Human Molecular Genetics, 7, 643–53CrossRefGoogle Scholar
Jobling, M., Hurles, M. and Tyler-Smith, C. (2004). Human Evolutionary Genetics: Origins, Peoples & Disease. New York: Garland Science.Google Scholar
Jorde, L. B. (1985). Human genetic distance studies: present status and future prospects. Annual Review of Anthropology, 14, 343–73CrossRefGoogle Scholar
Karn, M. N. and Penrose, L. S. (1951). Birth weight and gestation time in relation to maternal age, parity, and infant survival. Annals of Eugenics, 15, 206–33Google Scholar
Kimura, M. (1968a). Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genetic Research, 11, 247–69CrossRefGoogle Scholar
Kimura, M. (1968b). Evolutionary rate at the molecular level. Nature, 217, 624–26CrossRefGoogle Scholar
Kimura, M. (1983). The Neutral Theory of Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
King, J. L. and Jukes, T. H. (1969). Non-Darwinian evolution. Science, 164, 788–98CrossRefGoogle ScholarPubMed
Kingman, J. (1982). The coalescent. Stochastic Processes and their Applications, 13, 335–48CrossRefGoogle Scholar
Kreitman, M. (2000). Methods to detect selection in populations with application to the human. Annual Review of Genomics and Human Genetics, 1, 539–59CrossRefGoogle Scholar
Kwiatkowski, D. C. (2005). How malaria has affected the human genome and what human genetics can teach us about malaria. American Journal of Human Genetics, 77, 171–92CrossRefGoogle ScholarPubMed
Lander, E., Linton, L., Birren, B., Nusbaum, C., Zody, M., Baldwin, J., Devon, K., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921CrossRefGoogle ScholarPubMed
Landsteiner, K. and Levine, P. (1927). Further observations on individual difference of human blood. Proceedings of the Society of Experimental Biology, 24, 941–2CrossRefGoogle Scholar
Lorenz, J. and Smith, D. (1996). Distribution of the four founding haplogroups among Native North Americans. American Journal of Physical Anthropology, 101, 307–233.0.CO;2-W>CrossRefGoogle ScholarPubMed
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–20Google Scholar
Margulis, L. (1981). Symbiosis in Cell Evolution: Life and its Environment on the Early Earth, New York: W. H. Freedman & Co.Google Scholar
Marjoram, P. and Donnelly, P. (1994). Pairwise comparisons of mitochondrial DNA sequences in subdivided populations and implications for early human evolution. Genetics, 136, 673–83Google ScholarPubMed
Marini, A.-M. and Urrestarazu, A. (1997). The Rh (Rhesus) blood group polypeptides are related to NH4+ transporters. Trends in Biochemical Sciences, 22, 460–1CrossRefGoogle ScholarPubMed
Maxam, A. M. and Gilbert, W. (1977). A method for sequencing DNA. Proceedings of the National Academy of Sciences, USA, 74, 560–4CrossRefGoogle ScholarPubMed
McComb, J. (1999). The development of dual-primer randomly amplified polymorphic DNA (RAPD) and the application to the study of anthropological genetics. Unpublished Dissertation. Lawrence, Kansas: University of Kansas.
McComb, J., Crawford, M., Osipova, L., Karaphet, T., Posukh, O. and Schanfield, M. (1996). DNA interpopulational variation in Siberian indigenous populations: The mountain Altai. American Journal of Human Biology, 8, 559–6073.0.CO;2-R>CrossRefGoogle ScholarPubMed
McComb, J., Blagitko, N., Comuzzie, A., Schanfield, M., Sukernik, R., Leonard, W. and Crawford, M. H. (1995). VNTR DNA variation in Siberian indigenous populations. Human Biology, 67, 217–29Google ScholarPubMed
McKusick, V., Egeland, J., Eldridge, R. and Krusen, D. (1964). Dwarfism in the Amish. I. The Ellis-van Creveld syndrome. Bulletin Johns Hopkins Hospital, 115, 306–36Google ScholarPubMed
McKusick, V., Hostetler, J., Egeland, J. and Eldridge, R. (1971). The distribution of certain genes in the Old Order Amish. In Human Populations, Genetic Variation, and Evolution, ed. Morris, L. N.. San Francisco: Chandler Publishing Company, pp. 358–80.Google Scholar
Melvin, K. (2001). Genetic diversity among the chuvash using randomly amplified polymorphic DNA (RAPD) markers. Unpublished thesis. Lawrence, Kansas: University of Kansas.
Merriwether, D., Rothhammer, F. and Ferrell, R. (1995). Distribution of the four founding lineage haplotypes in Native Americans suggests a single wave of migration for the New World. American Journal of Physical Anthropology, 98, 411–30CrossRefGoogle ScholarPubMed
Miller, L. H., Mason, S. J., Clyde, D. F. and McGinniss, M. H. (1976). The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. New England Journal of Medicine, 295, 302–4CrossRefGoogle Scholar
Mishmar, D., Ruiz-Pesini, E., Golik, P., Macaulay, V., Clark, A. G., Hosseini, S., Brandon, M., Easley, K., Chen, E., Brown, M. D., Sukernik, R. I., Olckers, A. and Wallace, D. C. (2003). Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Sciences, USA, 100, 171–6CrossRefGoogle ScholarPubMed
Mitchell, R., Howlett, S., White, N., Federle, L., Papiha, S., Briceno, I., McComb, J., Schanfield, M., Tyler-Smith, C., Osipova, L., Livshits, G. and Crawford, M. H. (1999). Deletion polymorphism in the human COL1A2 gene: Genetic evidence of a non-African population whose descendants spread to all continents. Human Biology, 71, 901–14Google ScholarPubMed
Morgan, T. H. (1925). Evolution and Genetics. Princeton, NJ: Princeton University Press.Google Scholar
Morgan, T. H. (1932). The Scientific Basis of Evolution. New York: Norton.Google Scholar
Morgan, T. H., Muller, H. J., Sturtevant, and Bridges, C. B. (1915). The Mechanisms of Mendelian Heredity. New York: Holt.Google Scholar
Nachman, M. W. and Crowell, S. L. (2000). Estimate of the mutation rate per nucleotide in humans. Genetics, 156, 297–304Google ScholarPubMed
Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.Google Scholar
Novick, G., Batzer, M., Deininger, P. and Herrera, R. (1996). The mobile genetic element Alu in the human genome. Bioscience, 46, 32–44CrossRefGoogle Scholar
Olson, S. (2002). Seeking the signs of selection. Science, 298, 1324–5CrossRefGoogle Scholar
Oota, H., Settheetham-Ishida, W., Tiwawech, D., Ishida, T. and Stoneking, M. (2001). Human mtDNA and Y chromosome variation is correlated with matrilocal versus patrilocal residence. Nature Genetics, 29, 20–21CrossRefGoogle ScholarPubMed
Ottensooser, F. (1944). Calculo do gran de mistura racial atranes dos grupos sanguineos. Review of Brasilian Biology, 4, 531–7Google Scholar
Perez-Lezaun, A., Calafell, F., Mateu, E., Comas, D., Ruiz-Pacheco, R. and Bertranpetit, J. (1997). Microsatellite variation and the differentiation of modern humans. Human Genetics, 99, 1–7CrossRefGoogle ScholarPubMed
Pollitzer, W. S. (1964). Analysis of a tri-racial isolate. Human Biology, 36, 362–73Google Scholar
Przeworski, M. (2002). The signature of positive selection at randomly chosen loci. Genetics, 160, 1179–89Google ScholarPubMed
Pybus, O. G. and Rambaut, A. (2002). GENIE: estimating demographic history from molecular phylogenies. Bioinformatics, 18, 1404–5CrossRefGoogle ScholarPubMed
Ramos-Onsins, S. E. and Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19, 2092–100CrossRefGoogle ScholarPubMed
Renner, O. (1914). Befruchtung und Embroylobilidng bei Oenothera lamrckiana und einigen Verwandten Arten. Flora, 107, 115–50Google Scholar
Reynolds, J., Weir, B. S. and Cockerham, C. C. (1993). Estimation of the coancestry coefficient for a short term genetic distance. Genetics, 105, 767–79Google Scholar
Roberts, D. (1968). Genetic effects on population size reduction. Nature, 220, 1084–8CrossRefGoogle ScholarPubMed
Roberts, D. F. and Hiorns, R. W. (1962). The dynamics of racial intermixture. American Journal of Human Genetics, 14, 261–77Google ScholarPubMed
Rogers, A. R., Fraley, A. E., Bamshad, M. J., Watkins, W. S. and Jorde, L. B. (1996). Mitochondrial mismatch analysis is insensitive to the mutational process. Molecular Biology and Evolution, 13, 895–902CrossRefGoogle Scholar
Rogers, A. R. and Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–69Google ScholarPubMed
Romualdi, C., Balding, D., Nasidze, I. S., Risch, G., Robichaux, M., Sherry, S., Stoneking, M., Batzer, M. and Barbujani, G. (2002). Patterns of human diversity, within and among continents, inferred from biallelic DNA polymorphisms. Genome Research, 12, 602–12CrossRefGoogle ScholarPubMed
Rosenberg, N. A. and Nordborg, M. (2002). Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nature Reviews Genetics, 3, 380–90CrossRefGoogle ScholarPubMed
Rubicz, R. (2001). Origins of the Aleuts: Molecular perspectives. Unpublished thesis. Lawrence, Kansas: University of Kansas.
Rubicz, R., Melvin, K. L. and Crawford, M. H. (2002). Genetic evidence for the phylogenetic relationship between Na-Dene and Yeniseian speakers. Human Biology, 74, 743–60CrossRefGoogle ScholarPubMed
Rubicz, R., Schurr, T., Babb, P. and Crawford, M. H. (2003). Mitochondrial DNA variation and the origins of the Aleuts. Human Biology, 75, 809–35CrossRefGoogle ScholarPubMed
Rubicz, R., Sun, G., Devor, E., Spitsyn, V., Deka, R. and Crawford, M. H. (2005). Genetic architecture of a small, isolated population: Bering Island, Russia. Poster presented at the 30th annual meeting of the Human Biology Association, Wisconsin.Google Scholar
Ruhlen, M. (1998). A Guide to the World's Languages. Stanford: Stanford University Press.Google Scholar
Salem, A., , Badr, , F., Gaballah, M. and Paabo, S. (1996). The genetics of traditional living: Y-chromosomal and mitochondrial lineages in the Sinai Peninsula. American Journal of Human Genetics, 59, 741–743Google ScholarPubMed
Saillard, J., Forster, P., Lynnerup, N., Bandelt, H. J. and Norby, S. (2000). mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. American Journal of Human Genetics, 67, 718–26CrossRefGoogle ScholarPubMed
Sanger, F., Micklen, S. and Coulson, A. R. (1977). DNA sequencing and chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA, 74, 5463–7CrossRefGoogle ScholarPubMed
Schneider, S., Roessli, D. and Excoffier, L. (2000). Arelquin ver 2.000: A software for population genetic data analysis. Geneva, Switzerland: Genetics and Biometry Laboratory, University of Geneva.
Schull, W. and MacCluer, J. (1968). Human genetics: structure of populations. Annual Review of Genetics, 2, 279–304CrossRefGoogle Scholar
Schurr, T., Ballinger, S., Gan, Y., Hodge, J., Merriwether, A., Lawrence, D., Knowler, W., Weiss, K. and Wallace, D. (1990). American mitochondrial DNAs have rare Asian mutations at high frequencies, suggesting they derived from four primary maternal lineages. American Journal of Human Genetics, 46, 613–23Google ScholarPubMed
Seielstad, M., Minch, E. and Cavalli-Sforza, L. (1998). Genetic evidence for a higher female migration rate in humans. Nature Genetics, 20, 278–280CrossRefGoogle ScholarPubMed
Shields, G. F., Schmiechen, A. M., Frazier, B. L., Redd, A., Voevoda, M. I., Reed, J. K. and Ward, R. H. (1993). mtDNA sequences suggest a recent evolutionary divergence for Beringian and Northern North American populations. American Journal of Human Genetics, 53, 549–62Google ScholarPubMed
Shriver, M. D., Jin, L., Boerwinkle, E., Deka, R., Ferrell, R. E. and Chakraborty, R. (1995). A novel measure of genetic distance for highly polymorphic tandem repeat loci. Molecular Biology and Evolution, 12, 914–20Google ScholarPubMed
Sibley, C. G. and Ahlquist, J. E. (1984). The phylogeny of the hominid primate, as indicated by DNA-DNA hybridisation. Journal of Molecular Evolution, 20, 2–15CrossRefGoogle Scholar
Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P., Cordum, H. S., Hillier, L., Brown, L. G., Repping, S., et al. (2003). The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature, 423, 825–37CrossRefGoogle ScholarPubMed
Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457–62Google ScholarPubMed
Smithies, O. (1955). Zone electrophoresis in starch gels: Group variations in serum proteins of normal human adults. Biochemistry Journal, 61, 629.CrossRefGoogle ScholarPubMed
Soodyall, H., Jenkins, T., Mukherjee, A., du Toit, E., Roberts, D. and Stoneking, M. (1997). The founding mitochondrial DNA lineages of Tristan da Cunha islanders. American Journal of Physical Anthropology, 104, 157–663.0.CO;2-W>CrossRefGoogle ScholarPubMed
Soodyall, H., Nebel, A., Morar, B. and Jenkins, T. (2003). Genealogy and genes: tracking the founding fathers of Tristan da Cunha. European Journal of Human Genetics, 11, 705–9CrossRefGoogle Scholar
Spuhler, J. N. (1973). Anthropological genetics: An overview. In Methods and Theories of Anthropological Genetics, eds. Crawford, M. H. & Workman, P. L.. Albuquerque: University of New Mexico Press, pp. 423–51.Google Scholar
Stoneking, M. and Soodyall, H. (1996). Human evolution and the mitochondrial genome. Current Opinion in Genetics & Development, 6, 731–6CrossRefGoogle Scholar
Strimmer, K. and Pybus, O. G. (2001). Exploring the demographic history of DNA sequences using the generalized skyline plot. Molecular Biology and Evolution, 18, 2298–305CrossRefGoogle ScholarPubMed
Sukernik, R., Schurr, T., Starikovskaya, E. and Wilson, A. (1996). Mitochondrial DNA variation in Native Siberians, with special reference to the evolutionary history of American Indians. Genetika, 32, 432–9Google Scholar
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–95Google ScholarPubMed
Tajima, F. (1993). Measurement of DNA polymorphisms. In Mechanisms of Molecular Evolution: Introduction to Molecular Paleopopulation Biology, eds. Takahata, N. & Clark, A.. Tokyo: Japan Scientific Society Press, pp. 37–59.Google Scholar
The Huntington's Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell, 72, 971–983CrossRef
Torroni, A., Schurr, T., Cabell, M., Brown, M., Neel, J., Larsen, M., Smith, D., Vullo, C. and Wallace, D. (1993a). Asian affinities and continental radiation of the four founding Native American mtDNAs. American Journal of Human Genetics, 53, 563–90Google Scholar
Torroni, A., Sukernik, R., Schurr, T., Starikovskaya, Y., Cabell, M., Crawford, M. H., Comuzzie, A. and Wallace, D. (1993b). Mitochondrial DNA variation of aboriginal Siberians reveal distinct genetic affinities with Native Americans. American Journal of Human Genetics, 53, 591–608Google Scholar
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., et al. (2001). The sequence of the human genome. Science, 291, 1304–51CrossRefGoogle ScholarPubMed
Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. and Wilson, A. C. (1991). African populations and the evolution of human mitochondrial DNA. Science, 253, 1503–07CrossRefGoogle ScholarPubMed
Waterson, G. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7, 256–76CrossRefGoogle Scholar
Wilder, J. A., Kingan, S. B., Mobasher, Z., Pilkington, M. M. and Hammer, M. F. (2004). Global patterns of human mitochondrial DNA and Y-chromosome structure are not influenced by higher migration rates of females versus males. Nature Genetics S36(10), 1122–1125CrossRefGoogle Scholar
Workman, P. L. (1973). Genetic analyses of hybrid populations. In Methods and Theories of Anthropological Genetics eds. Crawford, M. H. & Workman, P. L.. Albuquerque, New Mexico: University of New Mexico, pp. 117–50.Google Scholar
Workman, P. L. and Jorde, J. B. (1980). The genetic structure of the Aland islands. In Population Structure and Genetic Disease, eds. Erikson, A., Forsius, H., Nevanlinna, H. & Workman, P.. New York: Academic Press, pp. 287–508.Google Scholar
Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159Google ScholarPubMed
Wright, S. (1938). Size of population and breeding structure in relation to evolution. Science, 87, 430–1Google Scholar
Wright, S. (1969). Evolution and the Genetics of Populations II. The Theory of Gene Frequencies. Chicago: University of Chicago Press.Google Scholar
Y Chromosome Consortium (2002). A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Research, 12, 339–48CrossRef
Zlojutro, M., Rubicz, R., Devor, E., Spitsyn, V. A., Wilson, K. and Crawford, M. H. (2006). Genetic structure of the Aleuts and circumpolar populations based on mitochondrial DNA sequences: A Synthesis. American Journal of Physical Anthropology, 129, 446–64CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×