Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T17:49:54.000Z Has data issue: false hasContentIssue false

Section 3

Published online by Cambridge University Press:  19 November 2021

Olutoyin A. Olutoye
Affiliation:
Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Anesthesia for Maternal-Fetal Surgery
Concepts and Clinical Practice
, pp. 137 - 206
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

McLone, DG, Knepper, PA. The cause of Chiari II malformation: a unified theory. Pediatr Neurosc. 1989;15:112.CrossRefGoogle ScholarPubMed
Heffez, DS, Aryanpur, J, Hutchins, GM, Freeman, JM. The paralysis associated with myelomeningocele: clinical and experimental data implicating a preventable spinal cord injury. Neurosurgery. 1990;26:987992.Google Scholar
Meuli, M, Meuli-Simmen, C, Hutchins, GM, et al. In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat Med. 1995;1:342347.Google Scholar
Meuli, M, Meuli-Simmen, C, Yingling, CD, et al. Creation of myelomeningocele in utero: a model of functional damage from spinal cord exposure in fetal sheep. J Pediatr Surg. 1995;30:1028–32; discussion 32–3.CrossRefGoogle Scholar
Michejda, M. Intrauterine treatment of spina bifida: primate model. Z Kinderchir. 1984;39:259261.Google ScholarPubMed
Bruner, JP, Tulipan, NE, Richards, WO. Endoscopic coverage of fetal open myelomeningocele in utero. Am J Obstet Gynecol. 1997;176:256257.CrossRefGoogle ScholarPubMed
Farmer, DL, von Koch, CS, Peacock, WJ, et al. In utero repair of myelomeningocele: experimental pathophysiology, initial clinical experience, and outcomes. Arch Surg. 2003;138:872878.CrossRefGoogle ScholarPubMed
Blencowe, H, Cousens, S, Modell, B, Lawn, J. Folic acid to reduce neonatal mortality from neural tube disorders. Int J Epidemiol. 2010;39 Suppl1: i110121.CrossRefGoogle ScholarPubMed
Maroto, A, Illescas, T, Melendez, M, et al. Ultrasound functional evaluation of fetuses with myelomeningocele: study of the interpretation of results. J Matern Fetal Neonatal Med. 2017;30:23012305.CrossRefGoogle ScholarPubMed
Midrio, P, Silberstein, HJ, Bilaniuk, LT, Adzick, NS, Sutton, LN. Prenatal diagnosis of terminal myelocystocele in the fetal surgery era: case report. Neurosurgery. 2002;50:11521154; discussion 4–5.Google Scholar
Heffez, DS, Aryanpur, J, Rotellini, NA, et al. Intrauterine repair of experimental surgically created dysraphism. Neurosurgery. 1993;32:10051010.CrossRefGoogle ScholarPubMed
Ueber, HC. Veränderungen des Kleinhirns infolge von Hydrocephalie des Grosshirns. Deutsche Medicinische Wochenschrift. 1891;17:11721175.Google Scholar
Stevenson, KL. Chiari Type II malformation: past, present, and future. Neurosurg Focus. 2004;16:E5.CrossRefGoogle ScholarPubMed
Tulipan, N, Wellons, JC, 3rd, Thom, EA, et al. Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. J Neurosurg Pediatr. 2015;16:613620.CrossRefGoogle ScholarPubMed
McComb, JG, Mittler, M. Myelomeningoceles and meningoceles. In: Albright, AL, Pollack, IF, Adelson, PD, eds. Operative Techniques in Pediatric Neurosurgery. New York: Thieme; 2001:7588.Google Scholar
Heuer, GG, Adzick, NS, Sutton, LN. Fetal myelomeningocele closure: technical considerations. Fetal Diagn Ther. 2015;37:166171.Google Scholar
Kohl, T. Percutaneous minimally invasive fetoscopic surgery for spina bifida aperta. Part I: surgical technique and perioperative outcome. Ultrasound Obstet Gynecol. 2014;44:515524.Google ScholarPubMed
Adzick, NS, Thom, EA, Spong, CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:9931004.CrossRefGoogle ScholarPubMed
Cheek, WR, Laurent, JP, Cech, DA. Operative repair of lumbosacral myelomeningocele. Technical note. J Neurosurg. 1983;59:718722.Google ScholarPubMed
Bennett, KA, Carroll, MA, Shannon, CN, et al. Reducing perinatal complications and preterm delivery for patients undergoing in utero closure of fetal myelomeningocele: further modifications to the multidisciplinary surgical technique. J Neurosurg Pediatr. 2014;14:108114.CrossRefGoogle Scholar
Meuli, M, Meuli-Simmen, C, Mazzone, L, et al. In utero plastic surgery in Zurich: successful use of distally pedicled random pattern transposition flaps for definitive skin closure during open fetal spina bifida repair. Fetal Diagn Ther. 2018;44:173178.CrossRefGoogle Scholar
Belfort, MA, Whitehead, WE, Shamshirsaz, AA, et al. Fetoscopic repair of meningomyelocele. Obstet Gynecol. 2015;126:881884.CrossRefGoogle ScholarPubMed
Kabagambe, SK, Jensen, GW, Chen, YJ, et al. Fetal surgery for myelomeningocele: a systematic review and meta-analysis of outcomes in fetoscopic versus open repair. Fetal Diagn Ther. 2018;43:161174CrossRefGoogle ScholarPubMed
Ferschl, M, Ball, R, Lee, H, Rollins, MD. Anesthesia for in utero repair of myelomeningocele. Anesthesiology. 2013;118:12111223.Google Scholar
Grivell, R, Andersen, C, Dodd, J. Prenatal versus postnatal repair procedures for spina bifida for improving infant and maternal outcomes. Cochrane Database Syst Rev. 2014;10:CD008825.Google Scholar
Van de Velde, M, De Buck, F. Fetal and maternal analgesia/anesthesia for fetal procedures. Fetal Diagn Ther. 2012;31:201209.CrossRefGoogle ScholarPubMed
Committee Opinion No. 720: Maternal–Fetal Surgery for Myelomeningocele. Obstet Gynecol. 2017;130:e164167.CrossRefGoogle Scholar
Hoagland, MA, Chatterjee, D. Anesthesia for fetal surgery. Pediatr Anesth. 2017;27:346357.Google Scholar
Belfort, MA, Whitehead, WE, Shamshirsaz, AA, et al. Fetoscopic open neural tube defect repair: development and refinement of a two-port, carbon dioxide insufflation technique. Obstet Gynecol. 2017;129:734743.Google Scholar

References

Fowler, DJ, Gould, SJ. The pathology of congenital lung lesions. Semin Pediatr Surg. 2015;24(4):176182.Google Scholar
Kim, YT, Kim, JS, Park, JD, et al. Treatment of congenital cystic adenomatoid malformation–does resection in the early postnatal period increase surgical risk? Eur J Cardiothorac Surg. 2005;27(4):658661.CrossRefGoogle ScholarPubMed
Cass, DL, Olutoye, OO, Cassady, CI, et al. Prenatal diagnosis and outcome of fetal lung masses. J Pediatr Surg. 2011;46(2):292298.Google Scholar
Correia-Pinto, J, Gonzaga, S, Huang, Y, Rottier, R. Congenital lung lesions–underlying molecular mechanisms. Semin Pediatr Surg. 2010;19(3):171179.Google Scholar
Mullassery, D, Smith, NP. Lung development. Semin Pediatr Surg. 2015;24(4):152155.Google Scholar
Herriges, M, Morrisey, EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141(3):502513.Google Scholar
Chen, F, Desai, TJ, Qian, J, et al. Inhibition of Tgf beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development. 2007;134(16):29692979.Google Scholar
Mendelsohn, C, Mark, M, Dolle, P, et al. Retinoic acid receptor beta 2 (RAR beta 2) null mutant mice appear normal. Dev Biol. 1994;166(1):246258.CrossRefGoogle ScholarPubMed
Miura, T. Modeling lung branching morphogenesis. Curr Top Dev Biol. 2008;81:291310.CrossRefGoogle ScholarPubMed
Metzger, RJ, Klein, OD, Martin, GR, Krasnow, MA. The branching programme of mouse lung development. Nature. 2008;453(7196):745750.CrossRefGoogle ScholarPubMed
Boucherat, O, Jeannotte, L, Hadchouel, A, et al. Pathomechanisms of congenital cystic lung diseases: focus on congenital cystic adenomatoid malformation and pleuropulmonary blastoma. Paediatr Respir Rev. 2016;19:6268.Google ScholarPubMed
Burri, PH. Structural aspects of postnatal lung development – alveolar formation and growth. Biol Neonate. 2006;89(4):313322.CrossRefGoogle ScholarPubMed
Kitaoka, H, Burri, PH, Weibel, ER. Development of the human fetal airway tree: analysis of the numerical density of airway endtips. Anat Rec. 1996;244(2):207213.Google Scholar
Wilkinson, GA, Schittny, JC, Reinhardt, DP, Klein, R. Role for ephrinB2 in postnatal lung alveolar development and elastic matrix integrity. Dev Dyn. 2008;237(8):22202234.CrossRefGoogle ScholarPubMed
Morotti, RA, Cangiarella, J, Gutierrez, MC, et al. Congenital cystic adenomatoid malformation of the lung (CCAM): evaluation of the cellular components. Hum Pathol. 1999;30(6):618625.CrossRefGoogle ScholarPubMed
Cass, DL, Quinn, TM, Yang, EY, et al. Increased cell proliferation and decreased apoptosis characterize congenital cystic adenomatoid malformation of the lung. J Pediatr Surg. 1998;33(7):1043–6; discussion 7.CrossRefGoogle ScholarPubMed
Swarr, DT, Peranteau, WH, Pogoriler, J, et al. Novel molecular and phenotypic insights into congenital lung malformations. Am J Respir Crit Care Med. 2018;197(10):13281339.Google Scholar
Harfe, BD, Scherz, PJ, Nissim, S, et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell. 2004;118(4):517528.CrossRefGoogle ScholarPubMed
Harris, KS, Zhang, Z, McManus, MT, et al. Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA. 2006;103(7):22082213.Google Scholar
Shanmugam, G, MacArthur, K, Pollock, JC. Congenital lung malformations–antenatal and postnatal evaluation and management. Eur J Cardiothorac Surg. 2005;27(1):4552.CrossRefGoogle ScholarPubMed
Adzick, NS. Management of fetal lung lesions. Clin Perinatol. 2009;36(2):363–76, x.Google Scholar
Stocker, JT, Madewell, JE, Drake, RM. Congenital cystic adenomatoid malformation of the lung. Classification and morphologic spectrum. Hum Pathol. 1977;8(2):155171.CrossRefGoogle ScholarPubMed
Stocker, JT. Congenital and developmental diseases. In: Dail, DH Hammar SP, eds. Pulmonary Pathology. Springer; 2008, pp. 154–80.Google Scholar
Adzick, NS, Harrison, MR. Management of the fetus with a cystic adenomatoid malformation. World J Surg. 1993;17(3):342349.CrossRefGoogle ScholarPubMed
Azizkhan, RG, Crombleholme, TM. Congenital cystic lung disease: contemporary antenatal and postnatal management. Pediatr Surg Int. 2008;24(6):643657.Google Scholar
Riley, JS, Urwin, JW, Oliver, ER, et al. Prenatal growth characteristics and pre/postnatal management of bronchopulmonary sequestrations. J Pediatr Surg. 2018;53(2):265269.Google Scholar
Mubang, R, Brady, JJ, Mao, M, et al. Intradiaphragmatic bronchogenic cysts: case report and systematic review. J Cardiothorac Surg. 2016;11(1):79.Google Scholar
Ramsay, BH, Byron, FX. Mucocele, congenital bronchiectasis, and bronchiogenic cyst. J Thorac Surg. 1953;26(1):2130.Google Scholar
Kinsella, D, Sissons, G, Williams, MP. The radiological imaging of bronchial atresia. Br J Radiol. 1992;65(776):681685.Google Scholar
Wang, Y, Dai, W, Sun, Y, et al. Congenital bronchial atresia: diagnosis and treatment. Int J Med Sci. 2012;9(3):207212.Google Scholar
Zamora, IJ, Sheikh, F, Olutoye, OO, et al. Mainstem bronchial atresia: a lethal anomaly amenable to fetal surgical treatment. J Pediatr Surg. 2014;49(5):706711.CrossRefGoogle ScholarPubMed
Mourya, M, Meena, DS. Congenital lobar emphysema: an approach of anesthetic management. J Clin Diagn Res. 2016;10(8):UD013.Google Scholar
Pariente, G, Aviram, M, Landau, D, Hershkovitz, R. Prenatal diagnosis of congenital lobar emphysema: case report and review of the literature. J Ultrasound Med. 2009;28(8):10811084.Google Scholar
Aslan, H, Ekiz, A, Acar, DK, et al. Prenatal diagnosis of congenital high airway obstruction syndrome (CHAOS). Five case report. Med Ultrason. 2015;17(1):115118.Google Scholar
Vidaeff, AC, Szmuk, P, Mastrobattista, JM, et al. More or less CHAOS: case report and literature review suggesting the existence of a distinct subtype of congenital high airway obstruction syndrome. Ultrasound Obstet Gynecol. 2007;30(1):114117.CrossRefGoogle ScholarPubMed
Chowdhury, MM, Chakraborty, S. Imaging of congenital lung malformations. Semin Pediatr Surg. 2015;24(4):168175.CrossRefGoogle ScholarPubMed
Kane, SC, Da Silva Costa, F, Crameri, JA, et al. Antenatal assessment and postnatal outcome of fetal echogenic lung lesions: a decade’s experience at a tertiary referral hospital. J Matern Fetal Neonatal Med. 2019;32(5):703709.CrossRefGoogle ScholarPubMed
MacGillivray, TE, Harrison, MR, Goldstein, RB, Adzick, NS. Disappearing fetal lung lesions. J Pediatr Surg. 1993;28(10):13211324; discussion 4–5.Google Scholar
Meagher, SE, Fisk, NM, Harvey, JG, et al. Disappearing lung echogenicity in fetal bronchopulmonary malformations: a reassuring sign? Prenat Diagn. 1993;13(6):495501.CrossRefGoogle ScholarPubMed
Cavoretto, P, Molina, F, Poggi, S, et al. Prenatal diagnosis and outcome of echogenic fetal lung lesions. Ultrasound Obstet Gynecol. 2008;32(6):769783.CrossRefGoogle ScholarPubMed
Hadchouel, A, Benachi, A, Delacourt, C. Outcome of prenatally diagnosed bronchial atresia. Ultrasound Obstet Gynecol. 2011;38(1):119; author reply -20.Google Scholar
Kunisaki, SM, Ehrenberg-Buchner, S, Dillman, JR, et al. Vanishing fetal lung malformations: Prenatal sonographic characteristics and postnatal outcomes. J Pediatr Surg. 2015;50(6):978982.Google Scholar
Adzick, NS, Harrison, MR, Crombleholme, TM, et al. Fetal lung lesions: management and outcome. Am J Obstet Gynecol. 1998;179(4):884889.Google Scholar
Crombleholme, TM, Coleman, B, Hedrick, H, et al. Cystic adenomatoid malformation volume ratio predicts outcome in prenatally diagnosed cystic adenomatoid malformation of the lung. J Pediatr Surg. 2002;37(3):331338.CrossRefGoogle ScholarPubMed
Ehrenberg-Buchner, S, Stapf, AM, Berman, DR, et al. Fetal lung lesions: can we start to breathe easier? Am J Obstet Gynecol. 2013;208(2):151 e17.Google Scholar
Feghali, M, Jean, KM, Emery, SP. Ultrasound assessment of congenital fetal lung masses and neonatal respiratory outcomes. Prenat Diagn. 2015;35(12):12081212.CrossRefGoogle ScholarPubMed
Mahle, WT, Rychik, J, Tian, ZY, et al. Echocardiographic evaluation of the fetus with congenital cystic adenomatoid malformation. Ultrasound Obstet Gynecol. 2000;16(7):620624.Google Scholar
Peranteau, WH, Boelig, MM, Khalek, N, et al. Effect of single and multiple courses of maternal betamethasone on prenatal congenital lung lesion growth and fetal survival. J Pediatr Surg. 2016;51(1):2832.Google Scholar
Curran, PF, Jelin, EB, Rand, L, et al. Prenatal steroids for microcystic congenital cystic adenomatoid malformations. J Pediatr Surg. 2010;45(1):145150.CrossRefGoogle ScholarPubMed
Morris, LM, Lim, FY, Livingston, JC, et al. High-risk fetal congenital pulmonary airway malformations have a variable response to steroids. J Pediatr Surg. 2009;44(1):6065.Google Scholar
Miller, JA, Corteville, JE, Langer, JC. Congenital cystic adenomatoid malformation in the fetus: natural history and predictors of outcome. J Pediatr Surg. 1996;31(6):805808.Google Scholar
Litwinska, M, Litwinska, E, Janiak, K, et al. Thoracoamniotic shunts in macrocystic lung lesions: case series and review of the literature. Fetal Diagn Ther. 2017;41(3):179183.Google Scholar
Schrey, S, Kelly, EN, Langer, JC, et al. Fetal thoracoamniotic shunting for large macrocystic congenital cystic adenomatoid malformations of the lung. Ultrasound Obstet Gynecol. 2012;39(5):515520.Google Scholar
Wilson, RD, Johnson, MP. Prenatal ultrasound guided percutaneous shunts for obstructive uropathy and thoracic disease. Semin Pediatr Surg. 2003;12(3):182189.Google Scholar
Wittman, BK, Martin, KA, Wilson, RD, Peacock, D. Complications of long-term drainage of fetal pleural effusion: case report and review of the literature. Am J Perinatol. 1997;14(8):443447.Google Scholar
Davenport, M, Warne, SA, Cacciaguerra, S, et al. Current outcome of antenally diagnosed cystic lung disease. J Pediatr Surg. 2004;39(4):549556.Google Scholar
Parikh, DH, Rasiah, SV. Congenital lung lesions: Postnatal management and outcome. Semin Pediatr Surg. 2015;24(4):160167.Google Scholar
Shin, H, Kim, E, Hwang, J, et al. Comparison of upper airway patency in patients with mild obstructive sleep apnea during dexmedetomidine or propofol sedation: a prospective, randomized, controlled trial. BMC Anesthesiol. 2018;18:120.Google Scholar
Harrison, MR, Adzick, NS, Jennings, RW, et al. Antenatal intervention for congenital cystic adenomatoid malformation. Lancet. 1990;336(8721):965967.Google Scholar
Adzick, NS, Harrison, MR, Flake, AW, et al. Fetal surgery for cystic adenomatoid malformation of the lung. J Pediatr Surg. 1993;28(6):806812.CrossRefGoogle ScholarPubMed
Jancelewicz, T, Harrison, MR. A history of fetal surgery. Clin Perinatol. 2009;36(2):227236, vii.Google Scholar
Cass, DL, Olutoye, OO, Ayres, NA, et al. Defining hydrops and indications for open fetal surgery for fetuses with lung masses and vascular tumors. J Pediatr Surg. 2012;47(1):4045.Google Scholar
Boat, A, Mahmoud, M, Michelfelder, EC, et al. Supplementing desflurane with intravenous anesthesia reduces fetal cardiac dysfunction during open fetal surgery. Paediatr Anaesth. 2010;20(8):748756.CrossRefGoogle ScholarPubMed
Donepudi, R, Huynh, M, Moise, KJ Jr., et al. Early administration of magnesium sulfate during open fetal myelomeningocele repair reduces the dose of inhalational anesthesia. Fetal Diagn Ther. 2019;45(3):192196. doi: 10.1159/000487883.Google Scholar
Ferschl, M, Ball, R, Lee, H, Rollins, MD. Anesthesia for in utero repair of myelomeningocele. Anesthesiology. 2013;118(5):12111223. doi: 10.1097/ALN.0b013e31828ea597.Google Scholar
Adzick, NS. Open fetal surgery for life-threatening fetal anomalies. Semin Fetal Neonatal Med. 2010;15(1):18.Google Scholar
Abraham, RJ, Sau, A, Maxwell, D. A review of the EXIT (Ex utero Intrapartum Treatment) procedure. J Obstet Gynaecol. 2010;30(1):15.CrossRefGoogle ScholarPubMed
Al-Refai, A, Ryan, G, Van Mieghem, T. Maternal risks of fetal therapy. Curr Opin Obstet Gynecol. 2017;29(2):8084.Google Scholar
Cass, DL, Olutoye, OO, Cassady, CI, et al. EXIT-to-resection for fetuses with large lung masses and persistent mediastinal compression near birth. J Pediatr Surg. 2013;48(1):138144.Google Scholar
Hedrick, HL, Flake, AW, Crombleholme, TM, et al. The ex utero intrapartum therapy procedure for high-risk fetal lung lesions. J Pediatr Surg. 2005;40(6):10381043; discussion 44.Google Scholar
Moldenhauer, JS. Ex utero intrapartum therapy. Semin Pediatr Surg. 2013;22(1):4449.Google Scholar
Style, CC, Cass, DL, Verla, MA, et al. Early vs late resection of asymptomatic congenital lung malformations. J Pediatr Surg. 2019;54(1):7074.CrossRefGoogle ScholarPubMed
Tsai, AY, Liechty, KW, Hedrick, HL, et al. Outcomes after postnatal resection of prenatally diagnosed asymptomatic cystic lung lesions. J Pediatr Surg. 2008;43(3):513517.Google Scholar
Colon, N, Schlegel, C, Pietsch, J, et al. Congenital lung anomalies: can we postpone resection? J Pediatr Surg. 2012;47(1):8792.Google Scholar
Stanton, M. The argument for a non-operative approach to asymptomatic lung lesions. Semin Pediatr Surg. 2015;24(4):183186.Google Scholar

References

Mintz, B, Cronmiller, C, Custer, RP. Somatic cell origin of teratocarcinomas. Proc Natl Acad Sci USA. 1978;75(6):28342838.Google Scholar
Flake, AW. Fetal sacrococcygeal teratoma. Semin Pediatr Surg. 1993;2(2):113120.Google ScholarPubMed
Bale, PM, Painter, DM, Cohen, D. Teratomas in childhood. Pathology. 1975;7(3):209218.Google Scholar
Altman, RP, Randolph, JG, Lilly, JR. Sacrococcygeal teratoma: American Academy of Pediatrics Surgical Section Survey–1973. J Pediatr Surg. 1974;9(3):389398.CrossRefGoogle Scholar
Bale, PM. Sacrococcygeal developmental abnormalities and tumors in children. Perspect Pediatr Pathol. 1984;8(1):956.Google Scholar
Carney, JA, Thompson, DP, Johnson, CL, Lynn, HB. Teratomas in children: clinical and pathologic aspects. J Pediatr Surg. 1972;7(3):271282.Google Scholar
Noseworthy, J, Lack, EE, Kozakewich, HP, et al. Sacrococcygeal germ cell tumors in childhood: an updated experience with 118 patients. J Pediatr Surg. 1981;16(3):358364.Google Scholar
Yao, W, Li, K, Zheng, S, et al. Analysis of recurrence risks for sacrococcygeal teratoma in children. J Pediatr Surg. 2014;49(12):18391842.Google Scholar
Gonzalez-Crussi, F, Winkler, RF, Mirkin, DL. Sacrococcygeal teratomas in infants and children: relationship of histology and prognosis in 40 cases. Arch Pathol Lab Med. 1978;102(8):420425.Google ScholarPubMed
Bond, SJ, Harrison, MR, Schmidt, KG, et al. Death due to high-output cardiac failure in fetal sacrococcygeal teratoma. J Pediatr Surg. 1990;25(12):12871291.Google Scholar
Partridge, EA, Canning, D, Long, C, et al. Urologic and anorectal complications of sacrococcygeal teratomas: Prenatal and postnatal predictors. J Pediatr Surg. 2014;49(1):139143.Google Scholar
Tanaree, P. Delivery obstructed by sacrococcygeal teratoma. Am J Obstet Gynecol. 1982;142(2):239.Google Scholar
Weiss, DB, Wajntraub, G, Abulafia, Y, Schiller, M. Vaginal surgical intervention for a sacro-coccygeal teratoma obstructing labor. Acta Obstet Gynecol Scand. 1976;55(2):183185.CrossRefGoogle ScholarPubMed
Johnson, JW, Porter, J, Kellner, KR, et al. Abdominal rescue after incomplete delivery secondary to large fetal sacrococcygeal teratoma. Obstet Gynecol. 1988;71(6 Pt 2):981984.Google Scholar
Gucciardo, L, Uyttebroek, A, De Wever, I, et al. Prenatal assessment and management of sacrococcygeal teratoma. Prenat Diagn. 2011;31(7):678688.Google Scholar
Calenda, E, Bachy, B, et al. Sacrococcygeal teratoma and venous shunting through a tumor: biological evidence. Anesth Analg. 1992;74(1):165166.Google Scholar
Braun, T, Brauer, M, Fuchs, I, et al. Mirror syndrome: a systematic review of fetal associated conditions, maternal presentation and perinatal outcome. Fetal Diagn Ther. 2010;27(4):191203.Google Scholar
van Selm, M, Kanhai, HH, Gravenhorst, JB. Maternal hydrops syndrome: a review. Obstet Gynecol Surv. 1991;46(12):785788.Google Scholar
Wilson, RD, Hedrick, H, Flake, AW, et al. Sacrococcygeal teratomas: prenatal surveillance, growth and pregnancy outcome. Fetal Diagn Ther. 2009;25(1):1520.Google Scholar
Ayed, A, Tonks, AM, Lander, A, Kilby, MD. A review of pregnancies complicated by congenital sacrococcygeal teratoma in the West Midlands region over an 18-year period: population-based, cohort study. Prenat Diagn. 2015;35(11):10371047.Google Scholar
Akinkuotu, AC, Coleman, A, Shue, E, et al. Predictors of poor prognosis in prenatally diagnosed sacrococcygeal teratoma: A multiinstitutional review. J Pediatr Surg. 2015;50(5):771774.Google Scholar
Shue, E, Bolouri, M, Jelin, EB, et al. Tumor metrics and morphology predict poor prognosis in prenatally diagnosed sacrococcygeal teratoma: a 25-year experience at a single institution. J Pediatr Surg. 2013;48(6):12251231.Google Scholar
Usui, N, Kitano, Y, Sago, H, et al. Outcomes of prenatally diagnosed sacrococcygeal teratomas: the results of a Japanese nationwide survey. J Pediatr Surg. 2012;47(3):441447.Google Scholar
Hedrick, HL, Flake, AW, Crombleholme, TM, et al. Sacrococcygeal teratoma: prenatal assessment, fetal intervention, and outcome. J Pediatr Surg. 2004;39(3):430438.Google Scholar
Rodriguez, MA, Cass, DL, Lazar, DA, et al. Tumor volume to fetal weight ratio as an early prognostic classification for fetal sacrococcygeal teratoma. J Pediatr Surg. 2011;46(6):11821185.CrossRefGoogle ScholarPubMed
Flake, AW, Harrison, MR, Adzick, NS, et al. Fetal sacrococcygeal teratoma. J Pediatr Surg. 1986;21(7):563566.Google Scholar
Statile, CJ, Cnota, JF, Gomien, S, et al. Estimated cardiac output and cardiovascular profile score in fetuses with high cardiac output lesions. Ultrasound Obstet Gynecol. 2012;41(1):5458.Google Scholar
Rychik, J. Fetal cardiovascular physiology. Pediatr Cardiol. 2004;25(3):19.Google Scholar
Coleman, A, Kline-Fath, B, Keswani, S, Lim, F-Y. Prenatal solid tumor volume index: novel prenatal predictor of adverse outcome in sacrococcygeal teratoma. J Surg Res. 2013;184(1):330336.Google Scholar
Danzer, E, Hubbard, AM, Hedrick, HL, et al. Diagnosis and characterization of fetal sacrococcygeal teratoma with prenatal MRI. AJR Am J Roentgenol. 2006;187(4):W350356.Google Scholar
Van Mieghem, T, Al-Ibrahim, A, Deprest, J, et al. Minimally invasive therapy for fetal sacrococcygeal teratoma: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014;43(6):611619.CrossRefGoogle ScholarPubMed
Sananes, N, Javadian, P, Schwach Werneck Britto, I, et al. Technical aspects and effectiveness of percutaneous fetal therapies for large sacrococcygeal teratomas: cohort study and literature review. Ultrasound Obstet Gynecol. 2016;47(6):712719.Google Scholar
Makin, EC, Hyett, J, Ade-Ajayi, N, et al. Outcome of antenatally diagnosed sacrococcygeal teratomas: single-center experience (1993–2004). J Pediatr Surg. 2006;41(2):388393.Google Scholar
Ibrahim, D, Ho, E, Scherl, SA, Sullivan, CM. Newborn with an open posterior hip dislocation and sciatic nerve injury after intrauterine radiofrequency ablation of a sacrococcygeal teratoma. J Pediatr Surg. 2003;38(2):248250.CrossRefGoogle ScholarPubMed
Paek, BW, Jennings, RW, Harrison, MR, et al. Radiofrequency ablation of human fetal sacrococcygeal teratoma. Am J Obstet Gynecol. 2001;184(3):503507.Google Scholar
Benachi, A, Durin, L, Vasseur Maurer, S, et al. Prenatally diagnosed sacrococcygeal teratoma: a prognostic classification. J Pediatr Surg. 2006;41(9):15171521.Google Scholar
Ruano, R, da Silva, MM, Salustiano, EMA, et al. Percutaneous laser ablation under ultrasound guidance for fetal hyperechogenic microcystic lung lesions with hydrops: a single center cohort and a literature review. Prenat Diagn. 2012;32(12):11271132.Google Scholar
Gucciardo, L, Deprest, J, Done, E, et al. Prediction of outcome in isolated congenital diaphragmatic hernia and its consequences for fetal therapy. Best Pract Res Clin Obstet Gynaecol. 2008;22(1):123138.Google Scholar
Van Mieghem, T, Al-Ibrahim, A, Deprest, J, et al. Minimally invasive therapy for fetal sacrococcygeal teratoma: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014;43(6):611619.Google Scholar
Ruano, R, Duarte, S, Zugaib, M. Percutaneous laser ablation of sacrococcygeal teratoma in a hydropic fetus with severe heart failure–too late for a surgical procedure? Fetal Diagn Ther. 2009;25(1):2630.Google Scholar
Adzick, NS, Crombleholme, TM, Morgan, MA, Quinn, TM. A rapidly growing fetal teratoma. Lancet. 1997;349(9051):538–531.Google Scholar
Langer, JC, Harrison, MR, Schmidt, KG, et al. Fetal hydrops and death from sacrococcygeal teratoma: rationale for fetal surgery. Am J Obstet Gynecol. 1989;160(5 Pt 1):11451150.CrossRefGoogle ScholarPubMed
Graf, JL, Albanese, CT, Jennings, RW, et al. Successful fetal sacrococcygeal teratoma resection in a hydropic fetus. J Pediatr Surg. 2000;35(10):14891491.Google Scholar
Grethel, EJ, Wagner, AJ, Clifton, MS, et al. Fetal intervention for mass lesions and hydrops improves outcome: a 15-year experience. J Pediatr Surg. 2007;42(1):117123.CrossRefGoogle Scholar
Roybal, JL, Moldenhauer, JS, Khalek, N, et al. Early delivery as an alternative management strategy for selected high-risk fetal sacrococcygeal teratomas. J Pediatr Surg. 2011;46(7):13251332.Google Scholar
Laje, P, Peranteau, WH, Hedrick, HL, et al. Ex utero intrapartum treatment (EXIT) in the management of cervical lymphatic malformation. J Pediatr Surg. 2015;50(2):311314.Google Scholar
Hedrick, HL. Ex utero intrapartum therapy. Semin Pediatr Surg. 2003;12(3):190195.Google Scholar
Hedrick, HL, Flake, AW, Crombleholme, TM, et al. The ex utero intrapartum therapy procedure for high-risk fetal lung lesions. J Pediatr Surg. 2005;40(6):10381044.Google Scholar
Lin, EE, Tran, KM. Anesthesia for fetal surgery. Semin Pediatr Surg. 2013;22(1):5055.Google Scholar
Rychik, J. Acute cardiovascular effects of fetal surgery in the human. Circulation. 2004;110(12):15491556.Google Scholar
Klaritsch, P, Albert, K, Van Mieghem, T, et al. Instrumental requirements for minimal invasive fetal surgery. BJOG. 2008;116(2):188197.Google Scholar
Van de Velde, M, Van Schoubroeck, D, Lewi, LE, et al. Remifentanil for fetal immobilization and maternal sedation during fetoscopic surgery: a randomized, double-blind comparison with diazepam. Anesth Analg. 2005;101(1):251258.Google Scholar
Erkkola, R, Kangas, L, Pekkarinen, A. The transfer of diazepam across the placenta during labour. Acta Obstet Gynecol Scand. 1973;52(2):167170.Google Scholar
Kopecky, EA, Simone, C, Knie, B, Koren, G. Transfer of morphine across the human placenta and its interaction with naloxone. Life Sci. 1999;65(22):23592371.Google Scholar
Kan, RE, Hughes, SC, Rosen, MA, et al. Intravenous remifentanil: placental transfer, maternal and neonatal effects. Anesthesiology. 1998;88(6):14671474.Google Scholar
Sia, AT, Sng, BL. Intravenous dexmedetomidine for obstetric anaesthesia and analgesia: converting a challenge into an opportunity? Int J Obstet Anesth. 2009;18(3):204206.Google Scholar
Cooper, J, Jauniaux, E, Gulbis, B, et al. Placental transfer of fentanyl in early human pregnancy and its detection in fetal brain. Br J Anaesth. 1999;82(6):929931.Google Scholar
Koren, G, Pastuszak, A, Ito, S. Drugs in pregnancy. N Engl J Med. 1998;338(16):11281137.Google Scholar
Wu, P-Y, Huang, M-L, Lee, W-P, et al. Effects of music listening on anxiety and physiological responses in patients undergoing awake craniotomy. Complement Ther Med. 2017;32:5660.Google Scholar
Vetter, D, Barth, J, Uyulmaz, S, et al. Effects of art on surgical patients. Ann Surg. 2015;262(5):704713.Google Scholar
Robinson, MB, Crombleholme, TM, Kurth, CD. Maternal pulmonary edema during fetoscopic surgery. Anesth Analg. 2008;107(6):19781980.Google Scholar
Barrett, JM. Fetal resuscitation with terbutaline during eclampsia-induced uterine hypertonus. Am J Obstet Gynecol. 1984;150(7):895.Google Scholar
Patriarco, MS, Viechnicki, BM, Hutchinson, TA, et al. A study on intrauterine fetal resuscitation with terbutaline. Am J Obstet Gynecol. 1987;157(2):384387.Google Scholar
Arias, F. Intrauterine resuscitation with terbutaline: a method for the management of acute intrapartum fetal distress. Am J Obstet Gynecol. 1978;131(1):3943.Google Scholar
Tran, KM. Anesthesia for fetal surgery. Semin Fetal Neonatal Med. 2010;15(1):4045.Google Scholar
Boat, A, Mahmoud, M, Michelfelder, EC, et al. Supplementing desflurane with intravenous anesthesia reduces fetal cardiac dysfunction during open fetal surgery. Paediatr Anaesth. 2010;20(8):748756.Google Scholar
Ngamprasertwong, P, Michelfelder, EC, Arbabi, S, et al. Anesthetic techniques for fetal surgery: effects of maternal anesthesia on intraoperative fetal outcomes in a sheep model. Anesthesiology. 2013;118(4):796808.Google Scholar
Lin, EE, Moldenhauer, JS, Tran, KM, et al. Anesthetic management of 65 cases of ex utero intrapartum therapy: a 13-year single-center experience. Anesth Analg. 2016;123(2):411417.Google Scholar
Moldenhauer, JS, Soni, S, Rintoul, NE, et al. Fetal myelomeningocele repair: the post-MOMS experience at the Children’s Hospital of Philadelphia. Fetal Diagn Ther. 2015;37(3):235240.Google Scholar
Tran, KM, Maxwell, LG, Cohen, DE, et al. Quantification of serum fentanyl concentrations from umbilical cord blood during ex utero intrapartum therapy. Anesth Analg. 2012;114(6):12651267.Google Scholar
Robinson, S, Laussen, PC, Brown, TC, Woodward, AA. Anaesthesia for sacrococcygeal teratoma–a case report and a review of 32 cases. Anaesth Intensive Care. 1992;20(3):354358.Google Scholar
Tran, KM, Flake, AW, Kalawadia, NV, et al. Emergent excision of a prenatally diagnosed sacrococcygeal teratoma. Pediatr Anesth. 2008;18(5):431434.Google Scholar
Kim, J-W, Gwak, M, Park, J-Y, et al. Cardiac arrest during excision of a huge sacrococcygeal teratoma – A report of two cases. Korean J Anesthesiol. 2012;63(1):8084.Google Scholar
Girisch, M, Rauch, R, Carbon, R, et al. Refractory bleeding following major surgery of a giant sacrococcygeal teratoma in a premature infant: successful use of recombinant factor VIIa. Eur J Pediatr. 2004;163(2):118119.Google Scholar
Reinoso-Barbero, F, Sepulveda, I, Pérez-Ferrer, A, De Andres, A. Cardiac arrest secondary to hyperkalemia during surgery for a neonatal giant sacrococcygeal teratoma. Pediatr Anesth. 2009;19(7):712714.CrossRefGoogle ScholarPubMed
Jafra, A, Dwivedi, D, Jain, D, Bala, I. Giant sacrococcygeal teratoma: Management concerns with reporting of a rare occurrence of venous air embolism. Saudi J Anaesth. 2017;11(1):124125.Google ScholarPubMed
Isserman, RS, Nelson, O, Tran, KM, et al. Risk factors for perioperative mortality and transfusion in sacrococcygeal teratoma resections. Paediatr Anaesth. 2017;27(7):726732.Google Scholar
Murphy, JJ, Blair, GK, Fraser, GC. Coagulopathy associated with large sacrococcygeal teratomas. J Pediatr Surg. 1992;27(10):13081310.Google Scholar

References

Mychaliska, GB, Bealer, JF, Graf, JL, et al. Operating on placental support: the ex utero intrapartum treatment procedure. J Pediatr Surg. 1997;32(2):227230.Google Scholar
Norris, MC, Joseph, J, Leighton, BL. Anesthesia for perinatal surgery. Am J Perinatol. 1989;6(1):3940.Google Scholar
Schwartz, MZ, Silver, H, Schulman, S. Maintenance of the placental circulation to evaluate and treat an infant with massive head and neck hemangioma. J Pediatr Surg. 1993;28(4):520522.Google Scholar
Lazar, DA, Cassady, CI, Olutoye, OO, et al. Tracheoesophageal displacement index and predictors of airway obstruction for fetuses with neck masses. J Pediatr Surg. 2012;47(1):4650.Google Scholar
Mong, A, Johnson, AM, Kramer, SS, et al. Congenital high airway obstruction syndrome: MR/US findings, effect on management, and outcome. Pediatr Radiol. 2008;38(11):11711179.Google Scholar
Saadai, P, Jelin, EB, Nijagal, A, et al. Long-term outcomes after fetal therapy for congenital high airway obstructive syndrome. J Pediatr Surg. 2012;47(6):10951100.Google Scholar
Hedrick, HL, Flake, AW, Crombleholme, TM, et al. The ex utero intrapartum therapy procedure for high-risk fetal lung lesions. J Pediatr Surg. 2005;40(6):10381043.Google Scholar
Cass, DL, Olutoye, OO, Cassady, CI, et al. EXIT-to-resection for foetuses with large lung masses and persistent mediastinal compression near birth. J Pediatr Surg. 2013;48(1):138144.Google Scholar
Kunisaki, SM, Barnewolt, CE, Estroff, JA, et al. Ex utero intrapartum treatment with extracorporeal membrane oxygenation for severe congenital diaphragmatic hernia. J Pediatr Surg. 2007;42(1):98104.Google Scholar
Stoffan, AP, Wilson, JM, Jennings, RW, et al. Does the ex utero intrapartum treatment to extracorporeal membrane oxygenation procedure change outcomes for high-risk patients with congenital diaphragmatic hernia? J Pediatr Surg. 2012;47(6):10531057.Google Scholar
Shieh, HF, Wilson, JM, Sheils, CA, et al. Does the ex utero intrapartum treatment to extracorporeal membrane oxygenation procedure change morbidity outcomes for high-risk congenital diaphragmatic hernia survivors? J Pediatr Surg. 2017;52(1):2225.Google Scholar
Mackenzie, TC, Crombleholme, TM, Johnson, MP, et al. The natural history of prenatally diagnosed conjoined twins. J Pediatr Surg. 2002;37(3):303309.Google Scholar
Golombeck, K, Ball, RH, Lee, H, et al. Maternal morbidity after maternal-fetal surgery. Am J Obstet Gynecol. 2006;194(3):834839.Google Scholar
American College of Obstetricians and Gynecologists, Committee on Ethics; American Academy of Pediatrics, Committee on Bioethics. Maternal-fetal intervention and fetal care centers. Pediatrics. 2011;128(2):e473478.Google Scholar
Gaiser, R. Physiologic changes of pregnancy. In: Chestnut, DH, ed. Chestnut’s Obstetric Anesthesia: Principles and Practice. Elsevier Saunders, 2014; 1538.Google Scholar
Ueyama, H, Hagihira, S, Takashina, M, et al. Pregnancy does not enhance volatile anesthetic sensitivity on the brain: an electroencephalographic analysis study. Anesthesiology. 2010;113(3):577584.Google Scholar
Flood, P, Rollins, MD. Anesthesia for obstetrics. In: Miller, RD, ed. Miller’s Anesthesia. Saunders, 2015; 23282358.Google Scholar
Munnur, U, de Boisblanc, B, Suresh, MS. Airway problems in pregnancy. Crit Care Med. 2005;33(10 Suppl):S259268.CrossRefGoogle Scholar
Kinsella, SM, Lohmann, G. Supine hypotensive syndrome. Obstet Gynecol. 1994;83(5 Pt 1):774788.Google Scholar
Marwan, A, Crombleholme, TM. The EXIT procedure: principles, pitfalls, and progress. Semin Pediatr Surg. 2006;15(2):107115.Google Scholar
Ng, K, Parsons, J, Cyna, AM, et al. Spinal versus epidural anaesthesia for caesarean section. Cochrane Database Syst Rev. 2004;(2):CD003765.Google Scholar
Apfelbaum, JL, Hagberg, CA, Caplan, RA, et al. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology. 2013;118(2):251270.Google Scholar
Balki, M, Cooke, ME, Dunington, S, et al. Unanticipated difficult airway in obstetric patients: development of a new algorithm for formative assessment in high-fidelity simulation. Anesthesiology. 2012;117(4):883897.Google Scholar
Zakowski, MI, Geller, A. The placenta: anatomy, physiology and transfer of drugs. In: Chestnut, DH, ed. Chestnut’s Obstetric Anesthesia: Principles and Practice. Elsevier Saunders, 2014;5574.Google Scholar
Ngan Kee, WD, Khaw, KS, Ng, FF. Comparison of phenylephrine infusion regimens for maintaining maternal blood pressure during spinal anaesthesia for Caesarean section. Br J Anaesth. 2004;92(4):469474.Google Scholar
Ngan Kee, WD, Lee, A, Khaw, KS, et al. A randomized double-blinded comparison of phenylephrine and ephedrine infusion combinations to maintain blood pressure during spinal anesthesia for cesarean delivery: the effects on fetal acid-base status and hemodynamic control. Anesth Analg. 2008;107(4):12951302.Google Scholar
Boat, A, Mahmoud, M, Michelfelder, EC, et al. Supplementing desflurane with intravenous anesthesia reduces fetal cardiac dysfunction during open fetal surgery. Paediatr Anaesth. 2010;20(8):748756.Google Scholar
Ngamprasertwong, P, Michelfelder, EC, Arbabi, S, et al. Anesthetic techniques for fetal surgery: effects of maternal anesthesia on intraoperative fetal outcomes in a sheep model. Anesthesiology. 2013;118(4):796808.Google Scholar
George, RB, Melnick, AH, Rose, EC, et al. Case series: Combined spinal epidural anesthesia for Cesarean delivery and ex utero intrapartum treatment procedure. Can J Anaesth. 2007;54(3):218222.Google Scholar
Clark, KD, Viscomi, CM, Lowell, J, et al. Nitroglycerin for relaxation to establish a fetal airway (EXIT procedure). Obstet Gynecol. 2004;103(5 Pt 2):11131115.Google Scholar
El-Sayed, Y, Riley, E, Holbrook, H, Cohen, S, et al. Randomized comparison of intravenous nitroglycerin and magnesium sulfate for treatment of preterm labor. Obstet Gynecol. 1999;93(1):7983.Google Scholar
Brusseau, R, Mizrahi-Arnaud, A. Fetal anesthesia and pain management for intrauterine therapy. Clin Perinatol. 2013;40(3):429442.Google Scholar
Kaneko, M, Tokunaga, S, Mukai, M, et al. Application of a fetal scalp electrode for continuous fetal heart rate monitoring during an ex utero intrapartum treatment. J Pediatr Surg. 2011;46(2):e3740.Google Scholar
Müller, T, Nanan, R, Rehn, M, et. al. Arterial and ductus venosus Doppler in fetuses with absent or reverse end-diastolic flow in the umbilical artery: longitudinal analysis. Fetal Diagn Ther. 2003;18(3):163169.Google Scholar
Smith, GC, Cameron, AD. Estimating human fetal blood volume on the basis of gestational age and fetal abdominal circumference. BJOG. 2002;109(6):721722.Google Scholar
Lazar, DA, Olutoye, OO, Moise, KJ, et al. Ex-utero intrapartum treatment procedure for giant neck masses – fetal and maternal outcomes. J Pediatr Surg. 2011;46(5):817822.Google Scholar
Laje, P, Johnson, MP, Howell, LJ, et al. Ex utero intrapartum treatment in the management of giant cervical teratomas. J Pediatr Surg. 2012;47(6):12081216.Google Scholar
Laje, P, Howell, LJ, Johnson, MP, et al. Perinatal management of congenital oropharyngeal tumors: the ex utero intrapartum treatment (EXIT) approach. J Pediatr Surg. 2013;48(10):20052010.Google Scholar
Noah, MM, Norton, ME, Sandberg, P, et al. Short-term maternal outcomes that are associated with the EXIT procedure, as compared with caesarean delivery. Am J Obstet Gynecol. 2002;186(4):773777.Google Scholar
Zamora, IJ, Ethun, CG, Evans, LM, et al. Maternal morbidity and reproductive outcomes related to fetal surgery. J Pediatr Surg. 2013;48(5):951955.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×