Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T18:26:00.007Z Has data issue: false hasContentIssue false

Section 1

Published online by Cambridge University Press:  19 November 2021

Olutoyin A. Olutoye
Affiliation:
Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Anesthesia for Maternal-Fetal Surgery
Concepts and Clinical Practice
, pp. 1 - 82
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Robson, SC, Dunlop, W, Moore, M, Hunter, S. Combined Doppler and echocardiographic measurement of cardiac output: theory and application in pregnancy. Br J Obstet Gynaecol. 1987;94(11):10141027. doi:10.1111/j.1471–0528.1987.tb02285.x.Google Scholar
Geva, T, Mauer, MB, Strikera, L, Kirshon, B, Pivarnik, JM. Effects of physiologic load of pregnancy on left ventricular contractility and remodeling. Am Heart J. 1997;133(1):5359. doi:10.1016/S0002–8703(97)70247–3.Google Scholar
Simmons, LA, Gillin, AG, Jeremy, RW. Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy. Am J Physiol Heart Circ Physiol. 2002;283(4):H16271633.Google Scholar
Melchiorre, K, Sharma, R, Thilaganathan, B. Cardiac structure and function in normal pregnancy. Curr Opin Obstet Gynecol. 2012;24(6):413421. doi:10.1097/GCO.0b013e328359826 f.CrossRefGoogle ScholarPubMed
Vered, Z, Mark Poler, S, Gibson, P, Wlody, D, Pérez, JE. Noninvasive detection of the morphologic and hemodynamic changes during normal pregnancy. Clin Cardiol. 1991;14(4):327334. doi:10.1002/clc.4960140409.Google Scholar
Gilson, G, Samaan, S, Crawford, M, Quails, C, Curet, L. Changes in hemodynamics, ventricular remodeling, and ventricular contractility during normal pregnancy: A longitudinal study. Obstet Gynecol. 1997;89(6):957962. doi:10.1016/S0029–7844(97)85765–1.CrossRefGoogle ScholarPubMed
Carruth, JE, Mirvis, SB, Brogan, DR, Wenger, NK. The electrocardiogram in normal pregnancy. Am Heart J. 1981;102(6):10751078. doi:10.1016/0002–8703(81)90497-X.Google Scholar
Oram, S, Holt, M. Innocent depression of the S-T segments and flattening of the T-wave during pregnancy. J Obstet Gynaecol Br Emp. 1961;68(5):765770. doi:10.1111/j.1471–0528.1961.tb02807.x.Google Scholar
Campos, O, Andrade, JL, Bocanegra, J, et al. Physiologic multivalvular regurgitation during pregnancy: a longitudinal Doppler echocardiographic study. Int J Cardiol. 1993;40(3):265272. doi:10.1016/0167–5273(93)90010-E.Google Scholar
Duvekot, JJ, Cheriex, EC, Pieters, FAA, Menheere, PPCA, Peeters, LLH. Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone. Am J Obstet Gynecol. 1993;169(6):13821392. doi:10.1016/0002–9378(93)90405–8.Google Scholar
Clapp, JF, Capeless, E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am J Cardiol. 1997;80(11):14691473. doi:10.1016/S0002–9149(97)00738–8.Google Scholar
Atkins, AFJ, Watt, JM, Milan, P, Davies, P, Crawford, JS. A longitudinal study of cardiovascular dynamic changes throughout pregnancy. Eur J Obstet Gynecol Reprod Biol. 1981;12(4):215224. doi:10.1016/0028–2243(81)90012–5.CrossRefGoogle ScholarPubMed
Robson, SC, Hunter, S, Boys, RJ, Dunlop, W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol. 1989;256(4 Pt 2):H1060–1065.Google Scholar
Capeless, EL, Clapp, JF. Cardiovascular changes in early phase of pregnancy. Am J Obstet Gynecol. 1989;161(6):14491453. doi:10.1016/0002–9378(89)90902–2.Google Scholar
Rubler, S, Damani, PM, Pinto, ER. Cardiac size and performance during pregnancy estimated with echocardiography. Am J Cardiol. 1977;40(4):534540. doi:10.1016/0002–9149(77)90068–6.Google Scholar
Pöpping, DM, Elia, N, Marret, E, Wenk, M, Tramr, MR. Opioids added to local anesthetics for single-shot intrathecal anesthesia in patients undergoing minor surgery: A meta-analysis of randomized trials. Pain. 2012;153(4):784793. doi:10.1016/j.pain.2011.11.028.CrossRefGoogle ScholarPubMed
Laird-Meeter, K, van de Ley, G, Bom, TH, Wladimiroff, JW, Roelandt, J. Cardiocirculatory adjustments during pregnancy – An echocardiographic study. Clin Cardiol. 1979;2(5):328332. doi:10.1002/clc.4960020503.Google Scholar
Katz, R, Karliner, JS, Resnik, R. Effects of a natural volume overload state (pregnancy) on left ventricular performance in normal human subjects. Circulation. 1978;58(3):434441.CrossRefGoogle ScholarPubMed
Clark, SL, Cotton, DB, Lee, W, et al. Central hemodynamic assessment of normal term pregnancy. Am J Obstet Gynecol. 1989;161(6):14391442. doi:10.1016/0002–9378(89)90900–9.Google Scholar
Assali, NS, Douglass, RA, Baird, WW, Nicholson, DB, Suyemoto, R. Measurement of uterine blood flow and uterine metabolism. Am J Obstet Gynecol. 1953;66(2):248253. doi:10.1016/0002–9378(53)90560–2.CrossRefGoogle ScholarPubMed
Thaler, I, Manor, D, Itskovitz, J, et al. Changes in uterine blood flow during human pregnancy. Am J Obstet Gynecol. 1990;162(1):121125. doi:10.1016/0002–9378(90)90834-T.CrossRefGoogle ScholarPubMed
Katz, M, Sokal, MM. Skin perfusion in pregnancy. Am J Obstet Gynecol. 1980;137(1):3033. doi:10.1016/0002–9378(80)90381–6.Google Scholar
Dunlop, W. Serial changes in renal haemodynamics during normal human pregnancy. Br J Obstet Gynaecol. 1981;88(1):19. doi:10.1111/j.1471–0528.1981.tb00929.x.Google Scholar
O’Day, MP. Cardio-respiratory physiological adaptation of pregnancy. Semin Perinatol. 1997;21(4):268275. doi:10.1016/S0146–0005(97)80069–9.CrossRefGoogle ScholarPubMed
Macarthur, A, Riley, ET. Obstetric anesthesia controversies: vasopressor choice for postspinal hypotension during cesarean delivery. Int Anesthesiol Clin. 2007;45(1):115132. doi:10.1097/AIA.0b013e31802b8d53.Google Scholar
Dyer, RA, Reed, AR, van Dyk, D, et al. Hemodynamic effects of ephedrine, phenylephrine, and the coadministration of phenylephrine with oxytocin during spinal anesthesia for elective cesarean delivery. Anesthesiology. 2009;111(4):753765. doi:10.1097/ALN.0b013e3181b437e0.Google Scholar
Gaiser, R. Physiologic changes of pregnancy. In: Chestnut, D, ed. Chestnut’s Obstetric Anesthesia: Principles and Practice. Fifth ed. Philadelphia: Elsevier Saunders; 2014.Google Scholar
Gunderson, EP, Chiang, V, Lewis, CE, et al. Long-term blood pressure changes measured from before to after pregnancy relative to nonparous women. Obstet Gynecol. 2008;112(6):12941302. doi:10.1097/AOG.0b013e31818da09b.Google Scholar
Mabie, WC, DiSessa, TG, Crocker, LG, Sibai, BM, Arheart, KL. A longitudinal study of cardiac output in normal human pregnancy. Am J Obstet Gynecol. 1994;170(3):849856. doi:10.1016/S0002–9378(94)70297–7.Google Scholar
Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol. 2000;183(1):s1s22. doi:10.1067/mob.2000.107928.Google Scholar
Ansari, I, Wallace, G, Clemetson, CAB, Mallikarjuneswara, VR, Clemetson, CD. Tilt caesarean section. J Obstet Gynaecol Br Commonw. 1970;77(8):713721. doi:10.1111/j.1471–0528.1970.tb03597.x.Google Scholar
Kinsella, SM. Lateral tilt for pregnant women: why 15 degrees? Anaesthesia. 2003;58(9):835836. doi:10.1046/j.1365–2044.2003.03397.x.Google Scholar
Abengochea, A, Morales-Roselló, J, Del Río-Vellosillo, M, Argente, P, Barberá, M. Effect of lateral tilt angle on the volume of the abdominal aorta and inferior vena cava in pregnant and nonpregnant women determined by magnetic resonance imaging. Anesthesiology. 2015;123(3):733734. doi:10.1097/ALN.0000000000000791.CrossRefGoogle ScholarPubMed
Kjeldsen, J. Hemodynamic investigations during labour and delivery. Acta Obstet Gynecol Scand. 1979;58(89):218249.Google Scholar
Kuhn, JC, Falk, RS, Langesæter, E. Haemodynamic changes during labour: continuous minimally invasive monitoring in 20 healthy parturients. Int J Obstet Anesth. 2017;31:7483. doi:10.1016/j.ijoa.2017.03.003.Google Scholar
Hendricks, CH. The hemodynamics of a uterine contraction. Am J Obstet Gynecol. 1958;76(5):969982. doi:10.1016/0002–9378(58)90181–9.Google Scholar
Adams, J, Alexander, A. Alterations in cardiovascular physiology during labor. Obstet Gynecol. 1958;12(5):542548.Google Scholar
Filippatos, G, Baltopoulos, G, Lazaris, D, et al. Cardiac output monitoring during vaginal delivery. J Obstet Gynaecol. 2009;17(3):270272.Google Scholar
Robson, SC, Dunlop, W, Boys, RJ, Hunter, S. Cardiac output during labour. Br Med J. 1987;295(6607).CrossRefGoogle ScholarPubMed
Palanisamy, A, Mitani, AA, Tsen, LC. General anesthesia for cesarean delivery at a tertiary care hospital from 2000 to 2005: a retrospective analysis and 10-year update. Int J Obstet Anesth. 2011;20(1):1016. doi:10.1016/j.ijoa.2010.07.002.Google Scholar
Leontic, E. Respiratory disease in pregnancy. Med Clin North Am. 1977;61:111128.CrossRefGoogle ScholarPubMed
Munnur, U, Suresh, MS. Airway problems in pregnancy. Crit Care Clin. 2004;20(4):617642. doi:10.1016/j.ccc.2004.05.011.Google Scholar
Wise, RA, Polito, AJ, Krishnan, V. Respiratory physiologic changes in pregnancy. Immunol Allergy Clin North Am. 2006;26(1):112. doi:10.1016/j.iac.2005.10.004.Google Scholar
Contreras, G, Gutiérrez, M, Beroíza, T, et al. Ventilatory drive and respiratory muscle function in pregnancy. Am Rev Respir Dis. 1991;144(4):837841. doi:10.1164/ajrccm/144.4.837.CrossRefGoogle ScholarPubMed
Mushambi, MC, Kinsella, SM, Popat, M, et al. Obstetric Anaesthetists’ Association and Difficult Airway Society guidelines for the management of difficult and failed tracheal intubation in obstetrics. Anaesthesia. 2015;70(11):12861306. doi:10.1111/anae.13260.CrossRefGoogle Scholar
Grenville-Mathers, R, Trenchard, HJ. The diaphragm in the puerperium. J Obstet Gynaecol Br Emp. 1953;60(6):825833.CrossRefGoogle ScholarPubMed
Russell, IF, Chambers, WA. Closing volume in normal pregnancy. Br J Anaesth. 1981;53(10):10431047.Google Scholar
Alaily, AB, Carrol, KB. Pulmonary ventilation in pregnancy. Br J Obstet Gynaecol. 1978;85(7):518524.Google Scholar
Gee, JB, Packer, BS, Millen, JE, Robin, ED. Pulmonary mechanics during pregnancy. J Clin Invest. 1967;46(6):945952. doi:10.1172/JCI105600.CrossRefGoogle ScholarPubMed
Hignett, R, Fernando, R, McGlennan, A, et al. A randomized crossover study to determine the effect of a 30° head-up versus a supine position on the functional residual capacity of term parturients. Anesth Analg. 2011;113(5):10981102. doi:10.1213/ANE.0b013e31822bf1d2.Google Scholar
Bobrowski, RA. Pulmonary physiology in pregnancy. Clin Obstet Gynecol. 2010;53(2):285300. doi:10.1097/GRF.0b013e3181e04776.Google Scholar
Zwillich, CW, Natalino, MR, Sutton, FD, Weil, JV. Effects of progesterone on chemosensitivity in normal men. J Lab Clin Med. 1978;92(2):262269.Google Scholar
Jensen, D, Duffin, J, Lam, Y-M, et al. Physiological mechanisms of hyperventilation during human pregnancy. Respir Physiol Neurobiol. 2008;161(1):7686. doi:10.1016/j.resp.2008.01.001.Google Scholar
Abbassi-Ghanavati, M, Greer, L, Cunningham, F. A reference table for clinicians. Obstet Gynecol. 2009;114(6):13261331.Google Scholar
Shankar, KB, Moseley, H, Vemula, V, Ramasamy, M, Kumar, Y. Arterial to end-tidal carbon dioxide tension difference during anaesthesia in early pregnancy. Can J Anaesth. 1989;36(2):124127. doi:10.1007/BF03011432.Google Scholar
Hirabayashi, Y, Shimizu, R, Fukuda, H, Saitoh, K, Igarashi, T. Soft tissue anatomy within the vertebral canal in pregnant women. Br J Anaesth. 1996;77(2):153156.Google Scholar
Ansari, NN, Hasson, S, Naghdi, S, Keyhani, S, Jalaie, S. Low back pain during pregnancy in Iranian women: Prevalence and risk factors. Physiother Theory Pract. 2010;26(1):4048. doi:10.3109/09593980802664968.Google Scholar
Weinreb, JC, Wolbarsht, LB, Cohen, JM, Brown, CE, Maravilla, KR. Prevalence of lumbosacral intervertebral disk abnormalities on MR images in pregnant and asymptomatic nonpregnant women. Radiology. 1989;170(1):125128. doi:10.1148/radiology.170.1.2521192.Google Scholar
Nevo, O, Soustiel, JF, Thaler, I. Maternal cerebral blood flow during normal pregnancy: a cross-sectional study. Am J Obstet Gynecol. 2010;203(5):475.e16. doi:10.1016/j.ajog.2010.05.031.CrossRefGoogle ScholarPubMed
Johnson, AC, Cipolla, MJ. The cerebral circulation during pregnancy: adapting to preserve normalcy. Physiology. 2015;30(2):139147. doi:10.1152/physiol.00048.2014.Google Scholar
van Veen, TR, Panerai, RB, Haeri, S, Griffioen, AC, Zeeman, GG, Belfort, MA. Cerebral autoregulation in normal pregnancy and preeclampsia. Obstet Gynecol. 2013;122(5):10641069. doi:10.1097/AOG.0b013e3182a93fb5.CrossRefGoogle ScholarPubMed
Cogan, R, Spinnato, JA. Pain and discomfort thresholds in late pregnancy. Pain. 1986;27(1):6368.Google Scholar
Abboud, TK, Sarkis, F, Hung, TT, et al. Effects of epidural anesthesia during labor on maternal plasma beta-endorphin levels. Anesthesiology. 1983;59(1):15.Google Scholar
Manconi, M, Govoni, V, De Vito, A, et al. Restless legs syndrome and pregnancy. Neurology. 2004;63(6):10651069.Google Scholar
Pien, GW, Schwab, RJ. Sleep disorders during pregnancy. Sleep. 2004;27(7):14051417.Google Scholar
Bernstein, IM, Ziegler, W, Badger, GJ. Plasma volume expansion in early pregnancy. Obstet Gynecol. 2001; 97 (5 Pt 1): 669672.Google Scholar
Lund, CJ, Donovan, JC. Blood volume during pregnancy. Significance of plasma and red cell volumes. Am J Obstet Gynecol. 1967;98(3):394403.Google Scholar
Pritchard, JA. Changes in the blood volume during pregnancy and delivery. Anesthesiology. 1965;26:393399.Google Scholar
Schrier, RW, Fassett, RG. Pathogenesis of sodium and water retention in cardiac failure. Ren Fail. 1998;20(6):773781.Google Scholar
Nadel, AS, Ballermann, BJ, Anderson, S, Brenner, BM. Interrelationships among atrial peptides, renin, and blood volume in pregnant rats. Am J Physiol. 1988; 254 (5 Pt 2): R793800.Google Scholar
Peck, TM, Arias, F. Hematology changes associated with pregnancy. Clin Obstet Gynecol. 1979;22(4):785798.Google Scholar
Whittaker, PG, Macphail, S, Lind, T. Serial hematologic changes and pregnancy outcome. Obstet Gynecol. 1996;88(1):3339. doi:10.1016/0029–7844(96)00095–6.Google Scholar
Centers for Disease Control (CDC). CDC criteria for anemia in children and childbearing-aged women. MMWR Morb Mortal Wkly Rep. 1989;38(22):400404.Google Scholar
Earl, R, Woteki, C. Iron deficiency anemia: recommended guidelines for the prevention, detection, and management among U.S. children and women of childbearing age. In: Institute of Medicine (US) Committee on the Prevention, Detection, and Management of Iron Deficiency Anemia Among U.S. Children and Women of Childbearing Age. Washington, D.C.: National Academies Press; 1993. doi:10.17226/2251.Google Scholar
Kuvin, SF, Brecher, G. Differential neutrophil counts in pregnancy. N Engl J Med. 1962;266(17):877878. doi:10.1056/NEJM196204262661708.CrossRefGoogle ScholarPubMed
Molberg, P, Johnson, C, Brown, TS. Leukocytosis in labor: what are its implications? Fam Pract Res J. 1994;14(3):229236.Google Scholar
Acker, DB, Johnson, MP, Sachs, BP, Friedman, EA. The leukocyte count in labor. Am J Obstet Gynecol. 1985;153(7):737739.CrossRefGoogle ScholarPubMed
Camann, W. Obstetric neuraxial anesthesia contraindicated? Really? Time to rethink old dogma. Anesth Analg. 2015;121(4):846848. doi:10.1213/ANE.0000000000000925.Google Scholar
Khan, KS, Wojdyla, D, Say, L, Gulmezoglu, AM, Van Look, PF. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367(9516):10661074. doi:10.1016/S0140–6736(06)68397–9.Google Scholar
Say, L, Chou, D, Gemmill, A, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Heal. 2014;2(6):e323e333. doi:10.1016/S2214–109X(14)70227-X.Google Scholar
D’Alton, ME, Friedman, AM, Smiley, RM, et al. National Partnership for Maternal Safety: Consensus Bundle on Venous Thromboembolism. J Midwifery Womens Health. 2016;61(5):649657. doi:10.1111/jmwh.12544.Google Scholar
Palmerola, K, D’Alton, M, Brock, C, Friedman, A. A comparison of recommendations for pharmacologic thromboembolism prophylaxis after caesarean delivery from three major guidelines. BJOG. 2016;123(13):21572162. doi:10.1111/1471–0528.13706.Google Scholar
D’Alton, ME, Friedman, AM, Smiley, RM, et al. National Partnership for Maternal Safety Consensus Bundle on Venous Thromboembolism. Obstet Gynecol. 2016;128(4):688698. doi:10.1097/AOG.0000000000001579.Google Scholar
Shakur, H, Roberts, I, Fawole, B, et al. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389(10084):21052116. doi:10.1016/S0140–6736(17)30638–4.Google Scholar
Van Thiel, DH, Gavaler, JS, Stremple, J. Lower esophageal sphincter pressure in women using sequential oral contraceptives. Gastroenterology. 1976;71(0016–5085;2):232234.Google Scholar
Richter, JE. Review article: The management of heartburn in pregnancy. Aliment Pharmacol Ther. 2005;22(9):749757. doi:10.1111/j.1365–2036.2005.02654.x.Google Scholar
Wong, CA, McCarthy, RJ, Fitzgerald, PC, Raikoff, K, Avram, MJ. Gastric emptying of water in obese pregnant women at term. Anesth Analg. 2007;105(3):751755. doi:10.1213/01.ane.0000278136.98611.d6.Google Scholar
Chiloiro, M, Darconza, G, Piccioli, E, De Carne, M, Clemente, C, Riezzo, G. Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol. 2001;36(8):538543. doi:10.1007/s005350170056.Google Scholar
Derbyshire, EJ, Davies, J, Detmar, P. Changes in bowel function: Pregnancy and the puerperium. Dig Dis Sci. 2007;52(2):324328. doi:10.1007/s10620–006–9538-x.CrossRefGoogle ScholarPubMed
Gill, SK, Maltepe, C, Koren, G. The effect of heartburn and acid reflux on the severity of nausea and vomiting of pregnancy. Can J Gastroenterol. 2009;23(4):270272.Google Scholar
Costantine, MM. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol. 2014;5:65. doi:10.3389/fphar.2014.00065.Google Scholar
Mendez-Sanchez, N, Chavez-Tapia, NC, Uribe, M. Pregnancy and gallbladder disease. Ann Hepatol. 2006;5(3):227230. doi:457963 [pii].Google Scholar
Davison, JM, Dunlop, W. Renal hemodynamics and tubular function in normal human pregnancy. Kidney Int. 1980;18:152161.CrossRefGoogle ScholarPubMed
Mattison, DR. Clinical Pharmacology During Pregnancy. Elsevier; 2013. doi:10.1016/C2010–0-67194-X.Google Scholar
Rasmussen, PE, Nielsen, FR. Hydronephrosis during pregnancy: a literature survey. Eur J Obstet Gynecol Reprod Biol. 1988;27(3):249259. doi:10.1016/0028–2243(88)90130-X.Google Scholar
Delzell, JE, Lefevre, ML. Urinary tract infections during pregnancy. Am Fam Physician. 2000;61(3):713720.Google Scholar
Dichtel, LE, Alexander, EK. Preventing and treating maternal hypothyroidism during pregnancy. Curr Opin Endocrinol Diabetes Obes. 2011;18(6):389394. doi:10.1097/MED.0b013e32834cd3d7.Google Scholar
Blatt, AJ, Nakamoto, JM, Kaufman, HW. National status of testing for hypothyroidism during pregnancy and postpartum. J Clin Endocrinol Metab. 2012;97(3):777784. doi:10.1210/jc.2011–2038.Google Scholar
Harada, A, Hershman, JM, Reed, AW, et al. Comparison of thyroid stimulators and thyroid hormone concentrations in the sera of pregnant women. J Clin Endocrinol Metab. 1979;48(5):793797. doi:10.1210/jcem-48–5-793.Google Scholar
Fisher, PM, Sutherland, HW, Bewsher, PD. The insulin response to glucose infusion in gestational diabetes. Diabetologia. 1980;19(1):1014.Google Scholar
Kristiansson, P, Nilsson-Wikmar, L, Von Schoultz, B, Svardsudd, K, Wramsby, H. Back pain in in-vitro fertilized and spontaneous pregnancies. Hum Reprod. 1998;13(11):32333238.Google Scholar
Berg, G, Hammar, M, Möller-Nielsen, J, Lindén, U, Thorblad, J. Low back pain during pregnancy. Obstet Gynecol. 1988;71(1):7175. doi:10.1097/01.AOG.0000129403.54061.0e.Google ScholarPubMed
Loughnan, BA, Carli, F, Romney, M, Doré, CJ, Gordon, H. Epidural analgesia and backache: A randomized controlled comparison with intramuscular meperidine for analgesia during labour. Br J Anaesth. 2002;89(3):466472. doi:10.1093/bja/aef215.CrossRefGoogle ScholarPubMed
Russell, R, Dundas, R, Reynolds, F. Long term backache after childbirth: prospective search for causative factors. BMJ 1996;312(7043):13841388. doi:10.1136/bmj.312.7043.1384a10.1136/bmj.312.7043.1384.Google Scholar
Breen, TW, Ransil, BJ, Groves, PA, Oriol, NE. Factors associated with back pain after childbirth. Anesthesiology. 1994;81(1):2934. doi:10.1097/00000542–199407000–00006.Google Scholar
Howell, CJ, Kidd, C, Roberts, W, et al. A randomised controlled trial of epidural compared with non-epidural analgesia in labour. Br J Obstet Gynaecol. 2001;108(1):2733. doi:10.1016/S0306–5456(00)00012–7.Google Scholar

References

Asakura, H. Fetal and neonatal thermoregulation. J Nippon Med Sch. 2004;71(6):360370.Google Scholar
Power, GG. Biology of temperature: The mammalian fetus. J Dev Physiol. 1989;12(6):295304.Google Scholar
Mann, DG, Nassr, AA, Whitehead, WE, Espinoza, J, Belfort, MA, Shamshirsaz, AA. Fetal bradycardia associated with maternal hypothermia after fetoscopic repair of neural tube defect. Ultrasound Obstet Gynecol. 2018;51(3):411412. doi: 10.1002/uog.17501 [doi].Google Scholar
Wassenaar, TM, Panigrahi, P. Is a foetus developing in a sterile environment? Lett Appl Microbiol. 2014;59(6):572579.Google Scholar
Gude, NM, Roberts, CT, Kalionis, B, King, RG. Growth and function of the normal human placenta. Thromb Res. 2004;114(5–6): 397407. doi: S0049-3848(04)00342-1 [pii].Google Scholar
Robbins, JR, Bakardjiev, AI. Pathogens and the placental fortress. Curr Opin Microbiol. 2012;15(1):3643. doi: 10.1016/j.mib.2011.11.006 [doi].Google Scholar
Cross, JC. Placental function in development and disease. Reprod Fertil Dev. 2006;18(1–2): 7176. doi: RD05121 [pii].Google Scholar
Theofanakis, C, Drakakis, P, Besharat, A, Loutradis, D. Human chorionic gonadotropin: The pregnancy hormone and more. Int J Mol Sci. 2017;18(5):10.3390/ijms18051059. doi: E1059 [pii].Google Scholar
Benirschke, K, Kaufmann, P. Anatomy and pathology of the umbilical cord and major fetal vessels. In: Pathology of the human placenta. Springer; 2000:335–398.CrossRefGoogle Scholar
Albrecht, ED, Pepe, GJ. Regulation of uterine spiral artery remodeling: A review. Reprod Sci. 2020;27(10):19321942. doi: 10.1007/s43032-020-00212-8 [doi].Google Scholar
Pijnenborg, R, Vercruysse, L, Hanssens, M. The uterine spiral arteries in human pregnancy: Facts and controversies. Placenta. 2006;27(9–10):939958. doi: S0143-4004(05)00320-6 [pii].Google Scholar
Lyall, F, Robson, SC, Bulmer, JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: Relationship to clinical outcome. Hypertension. 2013;62(6):10461054. doi: 10.1161/HYPERTENSIONAHA.113.01892 [doi].Google Scholar
Brosens, I, Puttemans, P, Benagiano, G. Placental bed research: I. the placental bed: From spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol. 2019;221(5):437456. doi: S0002-9378(19)30746-X [pii].Google Scholar
Miller, DA, Chollet, JA, Goodwin, TM. Clinical risk factors for placenta previa-placenta accreta. Am J Obstet Gynecol. 1997;177(1):210214. doi: S0002-9378(97)70463-0 [pii].Google Scholar
Silver, RM, Branch, DW. Placenta accreta spectrum. N Engl J Med. 2018;378(16):15291536. doi: 10.1056/NEJMcp1709324 [doi].Google Scholar
Berkley, EM. Prenatal diagnosis of placenta accreta: Is sonography all we need? J Ultrasound Med. 2013;32(8):13451350. doi: 10.7863/ultra.32.8.1345 [doi].Google Scholar
Comstock, CH, Bronsteen, RA. The antenatal diagnosis of placenta accreta. BJOG. 2014;121(2):171–81;discussion 181–2. doi: 10.1111/1471-0528.12557 [doi].Google Scholar
Warshak, CR, Eskander, R, Hull, AD, et al. Accuracy of ultrasonography and magnetic resonance imaging in the diagnosis of placenta accreta. Obstet Gynecol. 2006; 108 (3 Pt 1): 573581. doi: 108/3/573 [pii].Google Scholar
Goh, WA, Zalud, I. Placenta accreta: Diagnosis, management and the molecular biology of the morbidly adherent placenta. J Matern Fetal Neonatal Med. 2016;29(11):17951800. doi: 10.3109/14767058.2015.1064103 [doi].Google Scholar
Publications Committee, Society for Maternal-Fetal Medicine, Belfort, MA. Placenta accreta. Am J Obstet Gynecol. 2010;203(5):430439. doi: 10.1016/j.ajog.2010.09.013 [doi].Google Scholar
Kliman, HJ. Uteroplacental blood flow. The story of decidualization, menstruation, and trophoblast invasion. Am J Pathol. 2000;157(6):17591768.Google Scholar
Soares, MJ, Chakraborty, D, Kubota, K, Renaud, SJ, Rumi, MK. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int J Dev Biol. 2014;58:247. Accessed 10/23/2020 4:46:27 PM.Google Scholar
Metcalfe, J, Ueland, K. Maternal cardiovascular adjustments to pregnancy. Prog Cardiovasc Dis. 1974;16(4):363374. doi: 0033-0620(74)90028-0 [pii].Google Scholar
Ueland, K, Metcalfe, J. Circulatory changes in pregnancy. Clin Obstet Gynecol. 1975;18(3):4150. doi: 10.1097/00003081-197509000-00007 [doi].Google Scholar
Ueland, K. Maternal cardiovascular dynamics. VII. intrapartum blood volume changes. Am J Obstet Gynecol. 1976;126(6):671677. doi: 0002-9378(76)90517-2 [pii].Google Scholar
Hansen, V, Maigaard, S, Allen, J, Forman, A. Effects of vasoactive intestinal polypeptide and substance P on human intramyometrial arteries and stem villous arteries in term pregnancy. Placenta. 1988;9(5):501506. doi: 0143-4004(88)90022-7 [pii].CrossRefGoogle ScholarPubMed
Skajaa, K, Forman, A, Andersson, KE. Effects of magnesium on isolated human fetal and maternal uteroplacental vessels. Acta Physiol Scand. 1990;139(4):551559. doi: 10.1111/j.1748-1716.1990.tb08958.x [doi].Google Scholar
Wolff, K, Nisell, H, Modin, A, Lundberg, JM, Lunell, NO, Lindblom, B. Contractile effects of endothelin 1 and endothelin 3 on myometrium and small intramyometrial arteries of pregnant women at term. Gynecol Obstet Invest. 1993;36(3):166171. doi: 10.1159/000292619 [doi].Google Scholar
Fred, G, Liu, YA. Effect of endothelin, calcium blockade and EDRF inhibition on the contractility of human placental arteries. Acta Physiol Scand. 1994(151):477484.Google Scholar
Gagnon, R. Placental insufficiency and its consequences. Eur J Obstet Gynecol Reprod Biol. 2003;110 Suppl 1: S99107. doi: S0301211503001799 [pii].Google Scholar
Mazarico, E, Molinet-Coll, C, Martinez-Portilla, RJ, Figueras, F. Heparin therapy in placental insufficiency: Systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2020;99(2):167174. doi: 10.1111/aogs.13730 [doi].Google Scholar
Harman, CR, Baschat, AA. Comprehensive assessment of fetal wellbeing: Which doppler tests should be performed? Curr Opin Obstet Gynecol. 2003;15(2):147157. doi: 10.1097/00001703-200304000-00010 [doi].Google Scholar
Alfirevic, Z, Stampalija, T, Dowswell, T. Fetal and umbilical doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2017;6:CD007529. doi: 10.1002/14651858.CD007529.pub4 [doi].Google Scholar
Sinskey, JL, Rollins, MD, Whitlock, E, et al. Incidence and management of umbilical artery flow abnormalities during open fetal surgery. Fetal Diagn Ther. 2018;43(4):274283. doi: 10.1159/000477963 [doi].Google Scholar
Olutoye, OO, Johnson, MP, Coleman, BG, Crombleholme, TM, Adzick, NS, Flake, AW. Abnormal umbilical cord doppler sonograms may predict impending demise in fetuses with sacrococcygeal teratoma. A report of two cases. Fetal Diagn Ther. 2004;19(1):3539. doi: 10.1159/000074257 [doi].Google Scholar
Mari, G, Deter, RL, Carpenter, RL, et al. Noninvasive diagnosis by doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. collaborative group for doppler assessment of the blood velocity in anemic fetuses. N Engl J Med. 2000;342(1):914. doi: 10.1056/NEJM200001063420102 [doi].Google Scholar
Moise, KJ, Jr., Argoti, PS. Management and prevention of red cell alloimmunization in pregnancy: A systematic review. Obstet Gynecol. 2012;120(5):11321139. doi: http://10.1097/AOG.0b013e31826d7dc1 [doi].Google Scholar
Gil Guevara, E, Pazos, A, Gonzalez, O, Carretero, P, Molina, FS. Doppler assessment of patients with twin-to-twin transfusion syndrome and survival following fetoscopic laser surgery. Int J Gynaecol Obstet. 2017;137(3):241245. doi: 10.1002/ijgo.12143 [doi].Google Scholar
Lumbers, ER. Effects of drugs on uteroplacental blood flow and the health of the foetus. Clin Exp Pharmacol Physiol. 1997;24(11):864868. doi: 10.1111/j.1440-1681.1997.tb02706.x [doi].Google Scholar
Musk, GC, Netto, JD, Maker, GL, Trengove, RD. Transplacental transfer of medetomidine and ketamine in pregnant ewes. Lab Anim. 2012;46(1):4650. doi: 10.1258/la.2011.010179 [doi].Google Scholar
Ngamprasertwong, P, Dong, M, Niu, J, Venkatasubramanian, R, Vinks, A, Shamdasimvam, S. Propofol pharmacokinetics and estimation of fetal propofol exposure during mid-gestational fetal surgery: A maternal-fetal sheep model. PLOS One. 2016;11(1):e0146563.Google Scholar
He, YL, Tsujimoto, S, Tanimoto, M, Okutani, R, Murakawa, K, Tashiro, C. Effects of protein binding on the placental transfer of propofol in the human dually perfused cotyledon in vitro. Br J Anaesth. 2000;85(2):281286. doi: S0007-0912(17)37318-X [pii].Google Scholar
He, YL, Seno, H, Tsujimoto, S, Tashiro, C. The effects of uterine and umbilical blood flows on the transfer of propofol across the human placenta during in vitro perfusion. Anesth Analg. 2001;93(1):151156. doi: 10.1097/00000539-200107000-00030 [doi].Google Scholar
Ueki, R, Tatara, T, Kariya, N, Shimode, N, Hirose, M, Tashiro, C. Effect of decreased fetal perfusion on placental clearance of volatile anesthetics in a dual perfused human placental cotyledon model. J Anesth. 2014;28(4):635638. doi: 10.1007/s00540-013-1777-3 [doi].Google Scholar
Koren, G, Ornoy, A. The role of the placenta in drug transport and fetal drug exposure. Expert Rev Clin Pharmacol. 2018;11(4):373385. doi: 10.1080/17512433.2018.1425615 [doi].Google Scholar
Gregory, MA, Davidson, DG. Plasma etomidate levels in mother and fetus. Anaesthesia. 1991;46(9):716718. doi: 10.1111/j.1365-2044.1991.tb09762.x [doi].CrossRefGoogle ScholarPubMed
Satoh, D, Iwatsuki, N, Naito, M, Sato, M, Hashimoto, Y. Comparison of the placental transfer of halothane, enflurane, sevoflurane, and isoflurane during cesarean section. J Anesth. 1995;9(3):220223. doi: 10.1007/BF02479867 [doi].Google Scholar
de Barros Duarte, L, Moisés, ECD, Cavalli, RC, Lanchote, VL, Duarte, G, Da Cunha, SP. Distribution of fentanyl in the placental intervillous space and in the different maternal and fetal compartments in term pregnant women. Eur J Clin Pharmacol. 2009;65(8):803808.Google Scholar
Soens, M, Tsen, L. Fetal physiology. In: Chestnut, D, Wong, C, Tsen, L, et al, eds. Chestnut’s Obstetric Anesthesia: Principles and Practice. Fifth ed. USA: Saunders; 2014:7591.Google Scholar
Cadkin, AV, McAlpin, J. Detection of fetal cardiac activity between 41 and 43 days of gestation. J Ultrasound Med. 1984;3(11):499503. doi: 10.7863/jum.1984.3.11.499 [doi].Google Scholar
Kiserud, T. Physiology of the fetal circulation. Semin Fetal Neonatal Med. 2005;10(6):493503. doi: S1744-165X(05)00068-5 [pii].Google Scholar
Grant, DA, Fauchere, JC, Eede, KJ, Tyberg, JV, Walker, AM. Left ventricular stroke volume in the fetal sheep is limited by extracardiac constraint and arterial pressure. J Physiol. 2001;535(Pt1): 231239. doi: PHY_12256 [pii].CrossRefGoogle ScholarPubMed
Kirkpatrick, SE, Pitlick, PT, Naliboff, J, Friedman, WF. Frank-Starling relationship as an important determinant of fetal cardiac output. Am J Physiol. 1976;231(2):495500. doi: 10.1152/ajplegacy.1976.231.2.495 [doi].Google Scholar
Weil, SR, Russo, PA, Heckman, JL, Balsara, RK, Pasiecki, V, Dunn, JM. Pressure-volume relationship of the fetal lamb heart. Ann Thorac Surg. 1993;55(2):470475. doi: 0003-4975(93)91021-E [pii].CrossRefGoogle ScholarPubMed
Gilbert, RD. Control of fetal cardiac output during changes in blood volume. Am J Physiol. 1980;238(1):H8086. doi: 10.1152/ajpheart.1980.238.1.H80 [doi].Google Scholar
Thornburg, KL, Morton, MJ. Filling and arterial pressures as determinants of RV stroke volume in the sheep fetus. Am J Physiol. 1983;244(5):H656663. doi: 10.1152/ajpheart.1983.244.5.H656 [doi].Google Scholar
Rudolph, AM, Heymann, MA. Circulatory changes during growth in the fetal lamb. Circ Res. 1970;26(3):289299. doi: 10.1161/01.res.26.3.289 [doi].Google Scholar
Papp, JG. Autonomic responses and neurohumoral control in the human early antenatal heart. Basic Res Cardiol. 1988;83(1):29. doi: 10.1007/BF01907099 [doi].Google Scholar
Hildreth, V, Anderson, RH, Henderson, DJ. Autonomic innervation of the developing heart: Origins and function. Clin Anat. 2009;22(1):3646. doi: 10.1002/ca.20695 [doi].Google Scholar
Brace, RA. Fetal blood volume responses to intravenous saline solution and dextran. Am J Obstet Gynecol. 1983;147(7):777781. doi: 0002-9378(83)90036-4 [pii].CrossRefGoogle ScholarPubMed
Nicolaides, KH, Clewell, WH, Rodeck, CH. Measurement of human fetoplacental blood volume in erythroblastosis fetalis. Am J Obstet Gynecol 1987;151(1):5053.Google Scholar
Brace, R. Regulation of blood volume in utero. In: Hanson, M, Spencer, J, Rodeck, C, eds. The circulation, fetus and neonate. UK: Cambridge University Press; 1993:7599.Google Scholar
Johnson, P, Maxwell, DJ, Tynan, MJ, Allan, LD. Intracardiac pressures in the human fetus. Heart. 2000;84(1):5963.Google Scholar
Schoenwolf, GC, Bleyl, SB, Brauer, PR, Francis-West, PH, eds. Larsen’s Human Embryology. Fifth ed. Philadelphia, PA: Elsevier; 2015.Google Scholar
Burri, P. Postnatal lung development and modulation of lung growth. In: Physiology of the Fetal and Neonatal Lung. Springer; 1987:3959.Google Scholar
Deprest, J, Jani, J, Cannie, M, et al. Prenatal intervention for isolated congenital diaphragmatic hernia. Curr Opin Obstet Gynecol. 2006;18(3):355367. doi: 10.1097/01.gco.0000193000.12416.80.Google Scholar
Merrill, JD, Ballard, RA. Antenatal hormone therapy for fetal lung maturation. Clin Perinatol. 1998;25(4):983997.Google Scholar
Roberts, D, Brown, J, Medley, N, Dalziel, SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3:CD004454. doi: 10.1002/14651858.CD004454.pub3 [doi].Google Scholar
Stubblefield, PG. Pulmonary edema occurring after therapy with dexamethasone and terbutaline for premature labor: A case report. Am J Obstet Gynecol. 1978;132(3):341342. doi: 0002-9378(78)90907-9 [pii].Google Scholar
Arant, BS, Jr. Postnatal development of renal function during the first year of life. Pediatr Nephrol. 1987;1(3):308313. doi: 10.1007/BF00849229 [doi].Google Scholar
Modena, AB, Fieni, S. Amniotic fluid dynamics. Acta Biomed. 2004;75 Suppl 1:1113.Google Scholar
Anand, KJ, Coskun, V, Hrivikraman, KV, Nemeroff, CB, Plotsky, PM. Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav. 1999;66(4):627637.Google Scholar
Bhutta, AT, Rovnaghi, C, Simpson, PM, Gossett, JM, Scalzo, FM, Anand, KJ. Interactions of inflammatory pain and morphine in infant rats: Long-term behavioral effects. Physiol Behav. 2001;73(1–2):5158.Google Scholar
Radunovic, N, Lockwood, CJ, Ghidini, A, Alvarez, M, Berkowitz, RL. Is fetal blood sampling associated with increased beta-endorphin release into the fetal circulation? Am J Perinatol. 1993;10(2):112114. doi: 10.1055/s-2007-994640.Google Scholar
Giannakoulopoulos, X, Teixeira, J, Fisk, N, Glover, V. Human fetal and maternal noradrenaline responses to invasive procedures. Pediatr Res. 1999; 45 (4 Pt 1): 494499.Google Scholar
Teixeira, JM, Glover, V, Fisk, NM. Acute cerebral redistribution in response to invasive procedures in the human fetus. Obstet Gynecol. 1999;181(4):10181025.Google Scholar
Carrasco, GA, Van de Kar, LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol. 2003;463(1–3):235272. doi: S0014299903012858 [pii].Google Scholar
Anand, K. Sippell, WG, and Aynsley-Green, A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet. 1987;1:6266.Google Scholar
Anand, K. Neonatal analgesia and anesthesia. Introduction. Semin Perinatol. 1998;22(5):347.Google Scholar
Anand, KJ, Maze, M. Fetuses, fentanyl, and the stress response: Signals from the beginnings of pain? Anesthesiology. 2001;95(4):823825. doi: 10.1097/00000542-200110000-00006 [doi].Google Scholar
Lee, SJ, Ralston, HJP, Drey, EA, Partridge, JC, Rosen, MA. Fetal pain: A systematic multidisciplinary review of the evidence. JAMA. 2005;294(8):947954.Google Scholar
Mrzljak, L, Uylings, HB, Van Eden, GG, Judáš, M. Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog Brain Res. 1991 ;85:185222.Google Scholar
Krmpotić-Nemanić, J, Kostović, I, Kelović, Z, Nemanić, Đ, Mrzljak, L. Development of the human fetal auditory cortex: Growth of afferent fibres. Acta Anat (Basel). 1983;116(1):6973.Google Scholar
Kostovic, I, Rakic, P. Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J Neurosci. 1984;4(1):2542.Google Scholar
Van de Velde, M, De Buck, F. Fetal and maternal analgesia/anesthesia for fetal procedures. Fetal Diagn Ther. 2012;31(4):201209.Google Scholar
Kostovic, I, Judas, M. Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec. 2002;267(1):16. doi: 10.1002/ar.10069 [doi].Google Scholar
Clancy, RR, Bergqvist, AGC, Dlugos, DJ. Neonatal electroencephalography. In: Ebersole, JS, Pedley, TA, eds. Current Practice of Clinical Electroencephalography. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2003:160234.Google Scholar
Torres, F, Anderson, C. The normal EEG of the human newborn. J Clin Neurophysiol. 1985;2(2):89103. doi: 10.1097/00004691-198504000-00001 [doi].Google Scholar
Fisk, NM, Gitau, R, Teixeira, JM, Giannakoulopoulos, X, Cameron, AD, Glover, VA. Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology. 2001;95(4):828835.Google Scholar
Schenone, MH, Mari, G. The MCA doppler and its role in the evaluation of fetal anemia and fetal growth restriction. Clin Perinatol. 2011;38(1):83102, vi. doi: 10.1016/j.clp.2010.12.003 [doi].Google Scholar
Kehlet, H, Brandt, MR, Hansen, AP, Alberti, KG. Effect of epidural analgesia on metabolic profiles during and after surgery. Br J Surg. 1979;66(8):543546. doi: 10.1002/bjs.1800660807 [doi].Google Scholar
Johnston, CC, Stevens, BJ. Experience in a neonatal intensive care unit affects pain response. Pediatrics. 1996;98(5):925930.Google Scholar
Lowery, CL, Hardman, MP, Manning, N, Hall, RW, Anand, KJ, Clancy, B. Neurodevelopmental changes of fetal pain. Semin Perinatol. 2007;31(5):275282. doi: S0146-0005(07)00068-7 [pii].Google Scholar
Robinson, S, Gregory, GA. Fentanyl-air-oxygen anesthesia for ligation of patent ductus arteriosus in preterm infants. Anesth Analg. 1981;60(5):331334.Google Scholar
Van de Velde, M, Van Schoubroeck, D, Lewi, LE, et al. Remifentanil for fetal immobilization and maternal sedation during fetoscopic surgery: A randomized, double-blind comparison with diazepam. Anesth Analg. 2005;101(1):251–8. doi: 10.1213/01.ANE.0000156566.62182.AB.Google Scholar
Danzer, E, Sydorak, RM, Harrison, MR, Albanese, CT. Minimal access fetal surgery. Eur J Obstet Gynecol Reprod Biol. 2003;108(1):313. doi: S0301211502004219 [pii].Google Scholar
Golombeck, K, Ball, RH, Lee, H, et al. Maternal morbidity after maternal-fetal surgery. Obstet Gynecol. 2006;194(3):834839.Google Scholar
Pomini, F, Noia, G, Mancuso, S. Hypothetical role of prostaglandins in the onset of preterm labor after fetal surgery. Fetal Diagn Ther. 2007;22(2):9499. doi: 97104 [pii].Google Scholar
Ruiz, RJ, Dwivedi, AK, Mallawaarachichi, I, et al. Psychological, cultural and neuroendocrine profiles of risk for preterm birth. BMC Pregnancy Childbirth. 2015;15:204–015–0640-y. doi: 10.1186/s12884-015-0640-y [doi].Google Scholar
Jevtovic-Todorovic, V, Hartman, RE, Izumi, Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876882. doi: 23/3/876 [pii].Google Scholar
Coleman, K, Robertson, ND, Dissen, GA, et al. Isoflurane anesthesia has long-term consequences on motor and behavioral development in infant rhesus macaques. Anesthesiology. 2017;126(1):7484. doi: 10.1097/ALN.0000000000001383 [doi].Google Scholar
Rizzi, S, Carter, LB, Ori, C, Jevtovic-Todorovic, V. Clinical anesthesia causes permanent damage to the fetal guinea pig brain. Brain Pathol. 2008;18(2):198210. doi: 10.1111/j.1750-3639.2007.00116.x.Google Scholar
Loepke, AW, Soriano, SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg. 2008;106(6):16811707. doi: 10.1213/ane.0b013e318167ad77 [doi].Google Scholar
Olutoye, OA, Sheikh, F, Zamora, IJ, et al. Repeated isoflurane exposure and neuroapoptosis in the midgestation fetal sheep brain. Am J Obstet Gynecol. 2016;214(4):542.e1–542.e8. doi: 10.1016/j.ajog.2015.10.927 [doi].Google Scholar
Olutoye, OA, Cruz, SM, Akinkuotu, AC, et al. Fetal surgery decreases anesthesia-induced neuroapoptosis in the mid-gestational fetal ovine brain. Fetal Diagn Ther. 2019;46(2):111118. doi: 10.1159/000491925 [doi].Google Scholar
Sprung, J, Flick, RP, Wilder, RT, et al. Anesthesia for cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;111(2):302310. doi: 10.1097/ALN.0b013e3181adf481 [doi].Google Scholar
Davidson, AJ, Disma, N, de Graaff, JC, et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): An international multicentre, randomised controlled trial. Lancet. 2016;387(10015):239250. doi: 10.1016/S0140-6736(15)00608-X [doi].Google Scholar
McCann, ME, de Graaff, JC, Dorris, L, et al. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): An international, multicentre, randomised, controlled equivalence trial. Lancet. 2019;393(10172):664677. doi: S0140-6736(18)32485-1 [pii].Google Scholar
United States Food and Drug Administration. FDA drug safety communication: FDA review results in new warnings about using general anesthetics and sedation drugs in young children and pregnant women. Updated 2017. Accessed 07/06/2017.Google Scholar
Andropoulos, DB. Effect of anesthesia on the developing brain: Infant and fetus. Fetal Diagn Ther. 2018;43(1):111. doi: 10.1159/000475928 [doi].Google Scholar
Olutoye, OA, Baker, BW, Belfort, MA, Olutoye, OO. Food and drug administration warning on anesthesia and brain development: Implications for obstetric and fetal surgery. Am J Obstet Gynecol. 2018;218(1):98102. doi: S0002-9378(17)31094-3 [pii].Google Scholar

References

Harrison, MR, Filly, RA, Golbus, MS, et al. Fetal treatment 1982. N Engl J Med. 1982;307(26): 16511652.Google Scholar
Post, LF. Bioethical consideration of maternal-fetal issues. Fordham Urban Law J. 1996;24(4):757776.Google Scholar
Moaddab, A, Nassr, AA, Belfort, MA, Shamshirsaz, AA. Ethical issues in fetal therapy. Best Pract Res Clin Obstet Gynaecol. 2017;43:5867.Google Scholar
English, A, Bass, L, Boyle, AD, Eshrage, F. State Minor Consent Laws: A Summary. 3rd ed. Center for Adolescent Health & the Law;2010.Google Scholar
Chervenak, FA, McCullough, LB. Ethics of maternal-fetal surgery. Semin Fetal Neonatal Med. 2007;12(6):426431.Google Scholar
Chervenak, FA, McCullough, LB. An ethically justified framework for clinical investigation to benefit pregnant and fetal patients. Am J Bioethics. 2011;11(5):3949.Google Scholar
Chervenak, FA, McCullough, LB. Ethical issues in recommending and offering fetal therapy. Western J Med. 1993;159:396399.Google Scholar
Lyerly, AD, Little, MO, Faden, RR. A critique of the “fetus as patient.” Am J Bioethics. 2008;8(7):4244.Google Scholar
Antiel, RM. Ethical challenges in the new world of maternal-fetal surgery. Semin Perinatol. 2016;40:227233.Google Scholar
Department of Health and Human Services, National Institutes of Health, and Office for Human Research Protections. The Common Rule, Title 45 (Public Welfare), Code of Federal Regulations, Part 46 (Protection of Human Subjects). [Online] 13 May 2018. Available: https://www.hhs.gov/ohrp/regulations-and-policy/regulations/45-cfr-46/index.htmlGoogle Scholar

References

Harrison, MR, Evans, ME, Adzick, NS. eds: Professional considerations in fetal treatment. The Unborn Patient 3rd Ed. 39. Philadelphia: WB Saunders; 2001.Google Scholar
Harrison, MR. Fetal Surgery: trials, tribulations and turf. J Pediatr Surg. 2003;38:275282.Google Scholar
American College of Obstetricians and Gynecologists Committee Opinion. Maternal-fetal intervention and fetal care centers. Obstet Gynecol. 2011;118:405410.Google Scholar
Howell, LJ, Johnson, MP, Adzick, NS. Creating a state of the art center for fetal diagnosis and treatment: Importance of a multidisciplinary approach. Prog Pediatr Cardiol. 2006;22:121127.Google Scholar
Howell, LJ, Adzick, NS. The essentials of a fetal therapy center. Semin Perinatol. 1999;23:535540.Google Scholar
Howell, LJ, Adzick, NS. Establishing a Fetal Therapy Center: Lessons Learned. Semin Pediatr Surg. 2003;12:209217.Google Scholar
Moon-Grady, AJ, Baschat, A, Cass, D, et al. Fetal treatment 2017: the evolution of fetal therapy centers – a joint opinion from the International Fetal Medicine and Surgical Society (IFMSS) and the North American Fetal Therapy Network (NAFTNet). Fetal Diagn Ther. 2017;42:241248.Google Scholar
Johnson, MP. The North American Fetal Therapy Network (NAFTNet): a new approach to collaborative research in fetal diagnosis and therapy. Semin Fetal Neonatal Med. 2010;15: 5257.Google Scholar
Moise, KJ, Moldenhauer, JS, Bennett, KA, et al. Current selection criteria and perioperative therapy used for fetal myelomeningocele surgery. Obstet Gynecol. 2016;127(3):593597.Google Scholar
Guidelines for Perinatal Care. 8th Edition. American Academy of Pediatrics and American College of Obstetricians and Gynecologists; 2017.Google Scholar
Crombleholme, TM, D’Alton, M, Cendron, M, et al. Prenatal diagnosis and the pediatric surgeon: the impact of prenatal consultation on perinatal management. J Pediatr Surg. 1996;31:156163.Google Scholar
Coleman, BG, Adzick, NS, Crombleholme, TM, et al. Fetal therapy state of the art. J Ultrasound Med. 2002;21:12571288.Google Scholar
Didier, RA, DeBari, SE, Oliver, ER, et al. Secondary imaging findings in prenatal diagnosis and characterization of congenital diaphragmatic hernia: abnormal orientation of vascular structures and gallbladder position. J Ultrasound Med. 2019;38:14491456.Google Scholar
Keswani, SG, Crombleholme, TM, Rychik, J, et al. Impact of continuous intraoperative monitoring on outcomes in open fetal surgery. Fetal Diagn Ther. 2005;20:316320.Google Scholar
Rychik, J, Cohen, D, Tran, KM, et al. The role of echocardiography in the intraoperative management of the fetus undergoing myelomeningocele repair. Fetal Diagn Ther. 2015;37:172178.Google Scholar
Miquel-Verges, F, Woods, SL, Aucott, SW, et al. Prenatal consultation with a neonatologist for congenital anomalies: parental perceptions. Pediatrics. 2009;124:e573e579.Google Scholar
Besuner, P, Imhoff, S. The fetal patient: coordinated care for families. Newborn Infant Nurs Rev. 2007;7:211215.Google Scholar
Adzick, NS, Thom, EA, Spong, CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):9931004.Google Scholar
Cole, JCM, Moldenhauer, JS, Jones, TR, et al. A proposed model for perinatal palliative care. J Obstet Gynecol Neonatal Nurs. 2017;46(6):904911. Doi: 10.1016/j/jogn.2017.01.014.Google Scholar
Cole, JCM, Olkkola, M, Zarrin, H, et al. Universal postpartum mental health screening for parents of newborns with prenatally diagnosed birth defects. J Obstet Gynecol Neonatal Nurs. 2018;47(1):8493. Doi: 10.1016/j.jogn.2017.04.131.Google Scholar
Adzick, NS. Open fetal surgery for life-threatening fetal anomalies. Semin Fetal Neonatal Med. 2010;15:18.Google Scholar
Lin, EE, Tran, KM. Anesthesia for fetal surgery. Semin Pediatr Surg. 2013;22:5055.CrossRefGoogle ScholarPubMed
Sviggum, HP, Kodali, BS. Maternal anesthesia for fetal surgery. Clin Perinatol. 2013;40:413427.Google Scholar
Brusseau, R, Mizarhi-Arnaud, A. Fetal anesthesia and pain management for intrauterine therapy. Clin Perinatol. 2013;40:429442.Google Scholar
Oliveira, E, Pereira, P, Retroz, C, et al. Anesthesia for EXIT procedure (ex utero intrapartum treatment) in congenital cervical malformation – a challenge to the anesthesiologist. Braz J Anesthesiol. 2015;65:529533.Google Scholar
Braden, A, Maani, C, Nagy, C. Anesthetic management of an ex utero intrapartum treatment procedure: a novel balanced approach. J Clin Anesth. 2016;31:6063.Google Scholar
Helfer, DC, Clivatti, J, Yamashita, AM, et al. Anesthesia for ex utero intrapartum treatment (EXIT procedure) in fetus with prenatal diagnosis of oral and cervical malformations: case reports. Rev Bras Anestesiol. 2012;62:411423.Google Scholar
Saracoglu, A, Saracoglu, KT, Alatas, I, Kafali, H. Secrets of anesthesia in fetoscopic surgery. Trends Anesth Crit Care. 2015;5:179183.Google Scholar
Wilson, RD, Johnson, MP, Crombleholme, TM, et al. Chorioamniotic membrane separation following open fetal surgery: Pregnancy outcome. Fetal Diagn Ther. 2003;18:314320.Google Scholar
Deprest, J, Brady, P, Nicolaides, K, et al. Prenatal management of the fetus with isolated congenital diaphragmatic hernia in the era of the TOTAL trial. Semin Fetal Neonatal Med. 2014;19:338348.Google Scholar
Ville, Y. Fetal therapy: practical ethical considerations. Prenat Diagn. 2011;31:621627.Google Scholar
Johnson, A, Luks, FI. A cautionary note on new fetal interventions. Obstet Gynecol. 2014;2:411415.Google Scholar
Moldenhauer, JS, Soni, S, Rintoul, NE, et al. Fetal myelomeningocele repair: the post-MOMS experience at the Children’s Hospital of Philadelphia. Fetal Diagn Ther. 2014;37:235240.Google Scholar
Goldberg, DJ, Dodds, K, Rychik, J. New concepts: development of a survivorship programme for patients with a functionally univentricular heart. Cardiol Young. 2011;2:7779.Google Scholar
Danzer, E, Hoffman, C, D’Agostino, JA, et al. Neurodevelopmental outcomes at 5 years of age in congenital diaphragmatic hernia. J Pediatr Surg. 2017;52(3):437443. doi: 10.1016/j.jpedsurg.2016.08.008.Google Scholar
Wilson, RD, Johnson, MP, Flake, AW, et al. Reproductive outcomes after pregnancy complicated by maternal-fetal surgery. Am J Obstet Gynecol. 2004;191:14301436.Google Scholar

References

Fairweather, DV, Tacchi, D, Coxon, A, et al. Intrauterine transfusion in Rh-isoimmunization. Br Med J. 1967;4:189194.Google Scholar
Liley, AW. Intrauterine transfusion of foetus in haemolytic disease. Br Med J. 1963;2:11071109.Google Scholar
Rodeck, CH, Kemp, JR, Holman, CA, et al. Direct intravascular fetal blood transfusion by fetoscopy in severe Rhesus isoimmunization. Lancet. 1981;1:625627.Google Scholar
Hendrickson, JE, Delaney, M. Hemolytic disease of the fetus and newborn: modern practice and future investigations. Transfus Med Rev. 2016;30:159164.Google Scholar
Weissman, A, Jakobi, P, Bronshtein, M, Goldstein, I. Sonographic measurements of the umbilical cord and vessels during normal pregnancies. J Ultrasound Med. 1994;13:1114.Google Scholar
Medearis, AL, Hensleigh, PA, Parks, DR, Herzenberg, LA. Detection of fetal erythrocytes in maternal blood post partum with the fluorescence-activated cell sorter. Am J Obstet Gynecol. 1984;148:290295.Google Scholar
Zipursky, A, Paul, VK. The global burden of Rh disease. Arch Dis Child Fetal Neonatal Ed. 2011 ;96(2):F8485.Google Scholar
Koelewijn, JM, Vrijkotte, TG, van der Schoot, CE, et al. Effect of screening for red cell antibodies, other than anti-D, to detect hemolytic disease of the fetus and newborn: a population study in the Netherlands. Transfusion. 2008;48:941952.Google Scholar
Bombard, AT, Akolekar, R, Farkas, DH, et al. Fetal RHD genotype detection from circulating cell-free fetal DNA in maternal plasma in non-sensitized RhD negative women. Prenat Diagn. 2011;31:802808.Google Scholar
Daniels, G, van der Schoot, CE, Olsson, ML. Report of the First International Workshop on molecular blood group genotyping. Vox Sang. 2005;88:136142.Google Scholar
Pirelli, KJ, Pietz, BC, Johnson, ST, et al. Molecular determination of RHD zygosity: predicting risk of hemolytic disease of the fetus and newborn related to anti-D. Prenat Diagn. 2010;30:12071212.Google Scholar
Singleton, BK, Green, CA, Avent, ND, et al. The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in Africans with the Rh D-negative blood group phenotype. Blood. 2000;95:1218.Google Scholar
Tynan, JA, Angkachatchai, V, Ehrich, M, et al. Multiplexed analysis of circulating cell-free fetal nucleic acids for noninvasive prenatal diagnostic RHD testing. Am J Obstet Gynecol. 2011;204:251.e16.Google Scholar
Wikman, AT, Tiblad, E, Karlsson, A, et al. Noninvasive single-exon fetal RHD determination in a routine screening program in early pregnancy. Obstet Gynecol. 2012;120:227234.Google Scholar
Finning, K, Martin, P, Summers, J, Daniels, G. Fetal genotyping for the K (Kell) and Rh C, c, and E blood groups on cell-free fetal DNA in maternal plasma. Transfusion. 2007;47:21262133.Google Scholar
Gutensohn, K, Muller, SP, Thomann, K, et al. Diagnostic accuracy of noninvasive polymerase chain reaction testing for the determination of fetal rhesus C, c and E status in early pregnancy. BJOG. 2010;117:722729.Google Scholar
Li, Y, Finning, K, Daniels, G, et al. Noninvasive genotyping fetal Kell blood group (KEL1) using cell-free fetal DNA in maternal plasma by MALDI-TOF mass spectrometry. Prenat Diagn. 2008;28:203208.Google Scholar
Moise, KJ, Jr., Gandhi, M, Boring, NH, et al. Circulating cell-free DNA to determine the fetal RHD status in all three trimesters of pregnancy. Obstet Gynecol. 2016;128:13401346.Google Scholar
Moise, KJ, Jr., Carpenter, RJ, Jr. Increased severity of fetal hemolytic disease with known rhesus alloimmunization after first-trimester transcervical chorionic villus biopsy. Fetal Diagn Ther. 1990;5:7678.Google Scholar
Le Roux, MG, Pascal, O, Andre, MT, et al. Non-paternity and genetic counselling. Lancet. 1992;340:607.Google Scholar
Rothenberg, JM, Weirermiller, B, Dirig, K, et al. Is a third-trimester antibody screen in Rh+ women necessary? Am J Manag Care. 1999;5:11451150.Google Scholar
Bowman, JM, Pollock, JM, Manning, FA, et al. Maternal Kell blood group alloimmunization. Obstet Gynecol. 1992;79:239244.Google Scholar
McKenna, DS, Nagaraja, HN, O’Shaughnessy, R. Management of pregnancies complicated by anti-Kell isoimmunization. Obstet Gynecol. 1999;93:667673.Google Scholar
van Wamelen, DJ, Klumper, FJ, de Haas, M, et al. Obstetric history and antibody titer in estimating severity of Kell alloimmunization in pregnancy. Obstet Gynecol. 2007;109:10931098.Google Scholar
Mari, G. Middle cerebral artery peak systolic velocity: is it the standard of care for the diagnosis of fetal anemia? J Ultrasound Med. 2005;24:697702.Google Scholar
Mari, G, Deter, RL, Carpenter, RL, et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med. 2000;342:914.Google Scholar
Moise, KJ, Jr. The usefulness of middle cerebral artery Doppler assessment in the treatment of the fetus at risk for anemia. Am J Obstet Gynecol. 2008;198(161).e14.Google Scholar
Oepkes, D, Seaward, PG, Vandenbussche, FP, et al. Doppler ultrasonography versus amniocentesis to predict fetal anemia. N Engl J Med. 2006;355:156164.Google Scholar
Pretlove, SJ, Fox, CE, Khan, KS, Kilby, MD. Noninvasive methods of detecting fetal anaemia: a systematic review and meta-analysis. BJOG. 2009;116:15581567.Google Scholar
van Dongen, H, Klumper, FJ, Sikkel, E, Vandenbussche, FP, Oepkes, D. Non-invasive tests to predict fetal anemia in Kell-alloimmunized pregnancies. Ultrasound Obstet Gynecol. 2005;25:341345.Google Scholar
Sallout, BI, Fung, KF, Wen, SW, Medd, LM, Walker, MC. The effect of fetal behavioral states on middle cerebral artery peak systolic velocity. Am J Obstet Gynecol. 2004;191:12831287.Google Scholar
Shono, M, Shono, H, Ito, Y, et al. The effect of behavioral states on fetal heart rate and middle cerebral artery flow-velocity waveforms in normal full-term fetuses. Int J Gynaecol Obstet. 1997;58:275280.Google Scholar
Ruma, MS, Swartz, AE, Kim, E, et al. Angle correction can be used to measure peak systolic velocity in the fetal middle cerebral artery. Am J Obstet Gynecol. 2009;200:397.e1-3.Google Scholar
MacKenzie, IZ, MacLean, DA, Fry, A, Evans, SL. Midtrimester intrauterine exchange transfusion of the fetus. Am J Obstet Gynecol. 1982;143:555559.Google Scholar
Tongsong, T, Wanapirak, C, Sirichotiyakul, S, et al. Middle cerebral artery peak systolic velocity of healthy fetuses in the first half of pregnancy. J Ultrasound Med. 2007;26:10131017.Google Scholar
Klumper, FJ, van Kamp, IL, Vandenbussche, FP, et al. Benefits and risks of fetal red-cell transfusion after 32 weeks gestation. Eur J Obstet Gynecol Reprod Biol. 2000;92:9196.Google Scholar
van Kamp, IL, Klumper, FJ, Meerman, RH, et al. Treatment of fetal anemia due to red-cell alloimmunization with intrauterine transfusions in the Netherlands, 1988–1999. Acta Obstet Gynecol Scand. 2004;83:731737.Google Scholar
Guilbaud, L, Garabedian, C, Cortey, A, et al. In utero treatment of severe fetal anemia resulting from fetomaternal red blood cell incompatibility: a comparison of simple transfusion and exchange transfusion. Eur J Obstet Gynecol Reprod Biol. 2016;201:8588.Google Scholar
Society for Maternal-Fetal Medicine. (SMFM) Clinical Guideline #8: the fetus at risk for anemia–diagnosis and management. Am J Obstet Gynecol. 2015;212:697710.Google Scholar
Tiblad, E, Kublickas, M, Ajne, G, et al. Procedure-related complications and perinatal outcome after intrauterine transfusions in red cell alloimmunization in Stockholm. Fetal Diagn Ther. 2011;30:266273.Google Scholar
Osanan, GC, Silveira Reis, ZN, Apocalypse, IG, et al. Predictive factors of perinatal mortality in transfused fetuses due to maternal alloimmunization: what really matters? J Maternal Fetal Neonatal Med. 2012;25:13331337.Google Scholar
Deka, D, Dadhwal, V, Sharma, AK, et al. Perinatal survival and procedure-related complications after intrauterine transfusion for red cell alloimmunization. Arch Gynecol Obstet. 2016;293:967973.Google Scholar
Johnstone-Ayliffe, C, Prior, T, Ong, C, et al. Early procedure-related complications of fetal blood sampling and intrauterine transfusion for fetal anemia. Acta Obstet Gynecol Scand. 2012;91:458462.Google Scholar
Schonewille, H, Prinsen-Zander, KJ, Reijnart, M, et al. Extended matched intrauterine transfusions reduce maternal Duffy, Kidd, and S antibody formation. Transfusion. 2015;55:29122919; quiz 1.Google Scholar
Fung, M. Technical Manual of the American Association of Blood Banks, 18th ed., Bethesda, Maryland: American Association of Blood Banks; 2014.Google Scholar
el-Azeem, SA, Samuels, P, Rose, RL, et al. The effect of the source of transfused blood on the rate of consumption of transfused red blood cells in pregnancies affected by red blood cell alloimmunization. Am J Obstet Gynecol. 1997;177:753757.Google Scholar
Gonsoulin, WJ, Moise, KJ, Jr., Milam, JD, et al. Serial maternal blood donations for intrauterine transfusion. Obstet Gynecol. 1990;75:158162.Google Scholar
Bleile, MJ, Rijhsinghani, A, Dwyre, DM, Raife, TJ. Successful use of maternal blood in the management of severe hemolytic disease of the fetus and newborn due to anti-Kp(b). Transfus Apher Sci. 2010;43:281283.Google Scholar
Schumacher, B, Moise, KJ, Jr. Fetal transfusion for red blood cell alloimmunization in pregnancy. Obstet Gynecol. 1996;88:137150.Google Scholar
Gaiser, RR, Kurth, CD. Anesthetic considerations for fetal surgery. Semin Perinatol. 1999;23:507514.Google Scholar
Okamoto, M, Walewski, JL, Artusio, JF, Jr., Riker, WF, Jr. Neuromuscular pharmacology in rat neonates: development of responsiveness to prototypic blocking and reversal drugs. Anesth Analg. 1992;75:361371.Google Scholar
Shearer, ES, Fahy, LT, O’Sullivan, EP, Hunter, JM. Transplacental distribution of atracurium, laudanosine and monoquaternary alcohol during elective caesarean section. Br J Anaesth. 1991;66:551556.Google Scholar
Zwiers, C, Lindenburg, ITM, Klumper, FJ, et al. Complications of intrauterine intravascular blood transfusion: lessons learned after 1678 procedures. Ultrasound Obstet Gynecol. 2017;50:180186.Google Scholar
Van Kamp, IL, Klumper, FJ, Oepkes, D, et al. Complications of intrauterine intravascular transfusion for fetal anemia due to maternal red-cell alloimmunization. Am J Obstet Gynecol. 2005;192:171177.Google Scholar
Moise, KJ, Jr. Management of rhesus alloimmunization in pregnancy. Obstet Gynecol. 2002;100:600611.Google Scholar
Moise, KJ, Jr., Deter, RL, Kirshon, B, et al. Intravenous pancuronium bromide for fetal neuromuscular blockade during intrauterine transfusion for red-cell alloimmunization. Obstet Gynecol. 1989;74:905908.Google Scholar
Leveque, C, Murat, I, Toubas, F, et al. Fetal neuromuscular blockade with vecuronium bromide: studies during intravascular intrauterine transfusion in isoimmunized pregnancies. Anesthesiology. 1992;76:642644.Google Scholar
Mouw, RJ, Klumper, F, Hermans, J, et al. Effect of atracurium or pancuronium on the anemic fetus during and directly after intravascular intrauterine transfusion. A double blind randomized study. Acta Obstet Gynecol Scand. 1999;78:763767.Google Scholar
Fisk, NM, Gitau, R, Teixeira, JM, et al. Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology. 2001;95:828835.Google Scholar
Adama van Scheltema, PN, Borkent, S, Sikkel, E, et al. Fetal brain hemodynamic changes in intrauterine transfusion: influence of needle puncture site. Fetal Diagn Ther. 2009;26:131133.Google Scholar
Adama van Scheltema, PN, Pasman, SA, Wolterbeek, R, et al. Fetal stress hormone changes during intrauterine transfusions. Prenat Diagn. 2011;31:555559.Google Scholar
Weiner, CP, Wenstrom, KD, Sipes, SL, Williamson, RA. Risk factors for cordocentesis and fetal intravascular transfusion. Am J Obstet Gynecol. 1991;165:10201025.Google Scholar
Pasman, SA, Claes, L, Lewi, L, et al. Intrauterine transfusion for fetal anemia due to red blood cell alloimmunization: 14 years experience in Leuven. Facts Views Vis Obgyn. 2015;7:129136.Google Scholar
Sainio, S, Nupponen, I, Kuosmanen, M, et al. Diagnosis and treatment of severe hemolytic disease of the fetus and newborn: a 10-year nationwide retrospective study. Acta Obstet Gynecol Scand. 2015;94:383390.Google Scholar
Nicolini, U, Santolaya, J, Ojo, OE, et al. The fetal intrahepatic umbilical vein as an alternative to cord needling for prenatal diagnosis and therapy. Prenat Diagn. 1988;8:665671.Google Scholar
Nicolini, U, Nicolaidis, P, Fisk, NM, et al. Fetal blood sampling from the intrahepatic vein: analysis of safety and clinical experience with 214 procedures. Obstet Gynecol. 1990;76:4753.Google Scholar
Giannakoulopoulos, X, Sepulveda, W, Kourtis, P, et al. Fetal plasma cortisol and beta-endorphin response to intrauterine needling. Lancet. 1994;344:7781.Google Scholar
Lobato, G, Soncini, CS. Fetal hydrops and other variables associated with the fetal hematocrit decrease after the first intrauterine transfusion for red cell alloimmunization. Fetal Diagn Ther. 2008;24:349352.Google Scholar
Harman, CR, Bowman, JM, Manning, FA, Menticoglou, SM. Intrauterine transfusion–intraperitoneal versus intravascular approach: a case-control comparison. Am J Obstet Gynecol. 1990;162:10531059.Google Scholar
Lewis, M, Bowman, JM, Pollock, J, Lowen, B. Absorption of red cells from the peritoneal cavity of an hydropic twin. Transfusion. 1973;13:3740.Google Scholar
Creasman, WT, Duggan, ER, Lund, CJ. Absorption of transfused chromium-labeled erythrocytes from the fetal peritoneal cavity in hydrops fetalis. Am J Obstet Gynecol. 1966;94:586588.Google Scholar
Taylor, WW, Scott, DE, Pritchard, JA. Fate of compatible adult erythrocytes in the fetal peritoneal cavity. Obstet Gynecol. 1966;28:175181.Google Scholar
Fox, C, Martin, W, Somerset, DA, et al. Early intraperitoneal transfusion and adjuvant maternal immunoglobulin therapy in the treatment of severe red cell alloimmunization prior to fetal intravascular transfusion. Fetal Diagn Ther. 2008;23:159163.Google Scholar
Moise, KJ, Jr., Carpenter, RJ, Jr., Kirshon, B, et al. Comparison of four types of intrauterine transfusion: effect on fetal hematocrit. Fetal Ther. 1989;4:126137.Google Scholar
Nicolini, U, Kochenour, NK, Greco, P, et al. When to perform the next intra-uterine transfusion in patients with Rh allo-immunization: combined intravascular and intraperitoneal transfusion allows longer intervals. Fetal Ther. 1989;4:1420.Google Scholar
Mackie, FL, Pretlove, SJ, Martin, WL, et al. Fetal intracardiac transfusions in hydropic fetuses with severe anemia. Fetal Diagn Ther. 2015;38:6164.Google Scholar
Allaf, MB, Matha, S, Chavez, MR, Vintzileos, AM. Intracardiac fetal transfusion for parvovirus-induced hydrops fetalis: a salvage procedure. J Ultrasound Med. 2015;34:21072109.Google Scholar
Radunovic, N, Lockwood, CJ, Alvarez, M, et al. The severely anemic and hydropic isoimmune fetus: changes in fetal hematocrit associated with intrauterine death. Obstet Gynecol. 1992;79:390393.Google Scholar
Papantoniou, N, Sifakis, S, Antsaklis, A. Therapeutic management of fetal anemia: review of standard practice and alternative treatment options. J Perinat Med. 2013;41:7182.Google Scholar
Dildy, GA, Smith, LG, Moise, KJ, et al. Porencephalic cyst: a complication of fetal intravascular transfusion. Am J Obstet Gynecol. 1991;165:7678.Google Scholar
Drew, JH, Guaran, RL, Cichello, M, Hobbs, JB. Neonatal whole blood hyperviscosity: the important factor influencing later neurologic function is the viscosity and not the polycythemia. Clin Hemorheol Microcirc. 1997;17:6772.Google Scholar
Giannina, G, Moise, KJ, Dorman, K. A simple method to estimate volume for fetal intravascular transfusions. Fetal Diagn Ther. 1998;13:9497.Google Scholar
Mandelbrot, L, Daffos, F, Forestier, F, et al. Assessment of fetal blood volume for computer-assisted management of in utero transfusion. Fetal Ther. 1988;3:6066.Google Scholar
Bowman, JM. The management of Rh-Isoimmunization. Obstet Gynecol. 1978;52:116.Google Scholar
Egberts, J, van Kamp, IL, Kanhai, HH, et al. The disappearance of fetal and donor red blood cells in alloimmunised pregnancies: a reappraisal. Br J Obstet Gynaecol. 1997;104:818824.Google Scholar
Lobato, G, Soncini, CS. Fetal hematocrit decrease after repeated intravascular transfusions in alloimmunized pregnancies. Arch Gynecol Obstet. 2007;276:595599.Google Scholar
Mari, G, Detti, L, Oz, U, et al. Accurate prediction of fetal hemoglobin by Doppler ultrasonography. Obstet Gynecol. 2002;99:589593.Google Scholar
Scheier, M, Hernandez-Andrade, E, Fonseca, EB, Nicolaides, KH. Prediction of severe fetal anemia in red blood cell alloimmunization after previous intrauterine transfusions. Am J Obstet Gynecol. 2006;195:15501556.Google Scholar
Detti, L, Oz, U, Guney, I, et al. Doppler ultrasound velocimetry for timing the second intrauterine transfusion in fetuses with anemia from red cell alloimmunization. Am J Obstet Gynecol. 2001;185:10481051.Google Scholar
Dodd, JM, Andersen, C, Dickinson, JE, et al. Fetal MCA Doppler to time intrauterine transfusions in red cell alloimmunisation: A randomised trial. Ultrasound Obstet Gynecol. 2018;51:306312.Google Scholar
Zwiers, C, van Kamp, I, Oepkes, D, Lopriore, E. Intrauterine transfusion and non-invasive treatment options for hemolytic disease of the fetus and newborn – review on current management and outcome. Expert Rev Hematol. 2017;10:337344.Google Scholar
Canlorbe, G, Mace, G, Cortey, A, et al. Management of very early fetal anemia resulting from red-cell alloimmunization before 20 weeks of gestation. Obstet Gynecol. 2011;118:13231329.Google Scholar
Poissonnier, MH, Picone, O, Brossard, Y, Lepercq, J. Intravenous fetal exchange transfusion before 22 weeks of gestation in early and severe red-cell fetomaternal alloimmunization. Fetal Diagn Ther. 2003;18:467471.Google Scholar
Lindenburg, IT, van Kamp, IL, van Zwet, EW, et al. Increased perinatal loss after intrauterine transfusion for alloimmune anaemia before 20 weeks of gestation. BJOG. 2013;120:847852.Google Scholar
Ruma, MS, Moise, KJ, Kim, E, et al. Combined plasmapheresis and intravenous immune globulin for the treatment of severe maternal red cell alloimmunization. Am J Obstet Gynecol. 2007;196:138.e1-6.Google Scholar
Lindenburg, IT, Wolterbeek, R, Oepkes, D, et al. Quality control for intravascular intrauterine transfusion using cumulative sum (CUSUM) analysis for the monitoring of individual performance. Fetal Diagn Ther. 2011;29:307314.Google Scholar
Watts, DH, Luthy, DA, Benedetti, TJ, et al. Intraperitoneal fetal transfusion under direct ultrasound guidance. Obstet Gynecol. 1988;71:8488.Google Scholar
De Boer, IP, Zeestraten, EC, Lopriore, E, et al. Pediatric outcome in Rhesus hemolytic disease treated with and without intrauterine transfusion. Am J Obstet Gynecol. 2008;198(54).e1-4.Google Scholar
Rath, ME, Smits-Wintjens, VE, Oepkes, D, et al. Iron status in infants with alloimmune haemolytic disease in the first three months of life. Vox Sang. 2013;105:328333.Google Scholar
Watson, WJ, Wax, JR, Miller, RC, Brost, BC. Prevalence of new maternal alloantibodies after intrauterine transfusion for severe Rhesus disease. Am J Perinatol. 2006;23:189192.Google Scholar
Lindenburg, IT, Smits-Wintjens, VE, van Klink, JM, et al. Long-term neurodevelopmental outcome after intrauterine transfusion for hemolytic disease of the fetus/newborn: the LOTUS study. Am J Obstet Gynecol. 2012;206:141.e1-8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×