Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T20:46:55.313Z Has data issue: false hasContentIssue false

Chapter 6 - Iron Deficiency Anemia

from Section 3, Part A - Microcytic Anemias

Published online by Cambridge University Press:  18 April 2018

Edward J. Benz, Jr.
Affiliation:
Dana Farber Cancer Institute
Nancy Berliner
Affiliation:
Brigham and Women's Hospital, Boston
Fred J. Schiffman
Affiliation:
Children's Hospital, Boston
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Anemia
Pathophysiology, Diagnosis, and Management
, pp. 39 - 43
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

WHO. World prevalence of anaemia 1993–2005. WHO Global Database on Anaemia 2008.Google Scholar
Black, RE, Allen, LH, Bhutta, ZA, Caulfield, LE, de Onis, M, Ezzati, M, Mathers, C, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008; 371:243260.CrossRefGoogle ScholarPubMed
Ganz, T, Nemeth, E. Iron metabolism: interactions with normal and disordered erythropoiesis. Cold Spring Harb Perspect Med. 2012; 2:a011668.CrossRefGoogle ScholarPubMed
Ganz, T, Nemeth, E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012; 1823:14341443.Google Scholar
Miller, JL. Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med. 2013; 3.CrossRefGoogle ScholarPubMed
Andrews, NC. Forging a field: the golden age of iron biology. Blood. 2008; 112:219230.Google Scholar
Hentze, MW, Muckenthaler, MU, Andrews, NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004; 117:285297.CrossRefGoogle ScholarPubMed
Pigeon, C, Ilyin, G, Courselaud, B, Leroyer, P, Turlin, B, Brissot, P, Loreal, O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001; 276:78117819.CrossRefGoogle ScholarPubMed
Bolondi, G, Garuti, C, Corradini, E, Zoller, H, Vogel, W, Finkenstedt, A, Babitt, JL, et al. Altered hepatic BMP signaling pathway in human HFE hemochromatosis. Blood Cells Mol Dis. 2010; 45:308312.Google Scholar
Kemna, E, Pickkers, P, Nemeth, E, van der Hoeven, H, Swinkels, D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005; 106:18641866.Google Scholar
Nemeth, E, Rivera, S, Gabayan, V, Keller, C, Taudorf, S, Pedersen, BK, Ganz, T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004; 113:12711276.CrossRefGoogle Scholar
Nicolas, G, Chauvet, C, Viatte, L, Danan, JL, Bigard, X, Devaux, I, Beaumont, C, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002; 110:10371044.CrossRefGoogle ScholarPubMed
Andriopoulos, B Jr., Corradini, E, Xia, Y, Faasse, SA, Chen, S, Grgurevic, L, Knutson, MD, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet. 2009; 41:482487.CrossRefGoogle ScholarPubMed
Verga Falzacappa, MV, Casanovas, G, Hentze, MW, Muckenthaler, MU. A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. J Mol Med (Berl). 2008; 86:531540.CrossRefGoogle ScholarPubMed
Zhang, AS, Anderson, SA, Meyers, KR, Hernandez, C, Eisenstein, RS, Enns, CA. Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through neogenin. J Biol Chem. 2007; 282:1254712556.CrossRefGoogle ScholarPubMed
Lin, L, Nemeth, E, Goodnough, JB, Thapa, DR, Gabayan, V, Ganz, T. Soluble hemojuvelin is released by proprotein convertase-mediated cleavage at a conserved polybasic RNRR site. Blood Cells Mol Dis. 2008; 40:122131.CrossRefGoogle Scholar
Silvestri, L, Pagani, A, Camaschella, C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood. 2008; 111:924931.CrossRefGoogle ScholarPubMed
Silvestri, L, Pagani, A, Nai, A, De Domenico, I, Kaplan, J, Camaschella, C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008; 8:502511.Google Scholar
Lin, L, Goldberg, YP, Ganz, T. Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin. Blood. 2005; 106:28842889.CrossRefGoogle ScholarPubMed
Babitt, JL, Huang, FW, Xia, Y, Sidis, Y, Andrews, NC, Lin, HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest. 2007; 117:19331939.Google Scholar
Du, X, She, E, Gelbart, T, Truksa, J, Lee, P, Xia, Y, Khovananth, K, et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008; 320:10881092.Google Scholar
Nemeth, E, Tuttle, MS, Powelson, J, Vaughn, MB, Donovan, A, Ward, DM, Ganz, T, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004; 306:20902093.CrossRefGoogle ScholarPubMed
Fraenkel, PG, Traver, D, Donovan, A, Zahrieh, D, Zon, LI. Ferroportin1 is required for normal iron cycling in zebrafish. J Clin Invest. 2005; 115:15321541.Google Scholar
James, AH, Kouides, PA, Abdul-Kadir, R, Dietrich, JE, Edlund, M, Federici, AB, Halimeh, S, et al. Evaluation and management of acute menorrhagia in women with and without underlying bleeding disorders: consensus from an international expert panel. Eur J Obstet Gynecol Reprod Biol. 2011; 158:124134.CrossRefGoogle ScholarPubMed
Khalafallah, AA, Dennis, AE. Iron deficiency anaemia in pregnancy and postpartum: pathophysiology and effect of oral versus intravenous iron therapy. J Pregnancy. 2012; 2012:630519.CrossRefGoogle ScholarPubMed
Christensen, L, Sguassero, Y, Cuesta, CB. Anemia and compliance to oral iron supplementation in a sample of children attending the public health network of Rosario, Santa Fe. Arch Argent Pediatr. 2013; 111:288294.Google Scholar
Bregman, DB, Morris, D, Koch, TA, He, A, Goodnough, LT. Hepcidin levels predict nonresponsiveness to oral iron therapy in patients with iron deficiency anemia. Am J Hematol. 2013; 88:97101.CrossRefGoogle ScholarPubMed
Auerbach, M, Ballard, H. Clinical use of intravenous iron: administration, efficacy, and safety. Hematology Am Soc Hematol Educ Program. 2010; 2010:338347.CrossRefGoogle ScholarPubMed
Khalafallah, AA, Dennis, AE, Ogden, K, Robertson, I, Charlton, RH, Bellette, JM, Shady, JL, et al. Three-year follow-up of a randomised clinical trial of intravenous versus oral iron for anaemia in pregnancy. BMJ Open. 2012; 2.Google Scholar
Vaziri, ND. Understanding iron: promoting its safe use in patients with chronic kidney failure treated by hemodialysis. Am J Kidney Dis. 2013; 61:9921000.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×