Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T22:47:40.178Z Has data issue: false hasContentIssue false

Section 3, Part E - Hypoplastic Anemias

from Section 3 - Specific Forms of Anemia

Published online by Cambridge University Press:  18 April 2018

Edward J. Benz, Jr.
Affiliation:
Dana Farber Cancer Institute
Nancy Berliner
Affiliation:
Brigham and Women's Hospital, Boston
Fred J. Schiffman
Affiliation:
Children's Hospital, Boston
Get access
Type
Chapter
Information
Anemia
Pathophysiology, Diagnosis, and Management
, pp. 128 - 166
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Young, NS, Kaufman, DW. The epidemiology of acquired aplastic anemia. Haematologica. 2008; 93(4):489492.Google Scholar
Zaimoku, Y, Takamatsu, H, Hosomichi, K, Ozawa, T, Nakagawa, N, Imi, T, et al. Identification of an HLA class I allele closely involved in the autoantigen presentation in acquired aplastic anemia. Blood. 2017; 129(21):29082916.Google Scholar
Babushok, DV, Duke, JL, Xie, HM, Stanley, N, Atienza, J, Perdigones, N, et al. Somatic HLA mutations expose the role of class I-mediated autoimmunity in aplastic anemia and its clonal complications. Blood Adv. 2017; 1:19001910.CrossRefGoogle ScholarPubMed
Nakao, S, Takamatsu, H, Chuhjo, T, Ueda, M, Shiobara, S, Matsuda, T, et al. Identification of a specific HLA class II haplotype strongly associated with susceptibility to cyclosporine-dependent aplastic anemia. Blood. 1994; 84(12):42574261.CrossRefGoogle ScholarPubMed
Young, NS, Calado, RT, Scheinberg, P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006; 108(8):25092519.CrossRefGoogle ScholarPubMed
Ehrlich, P. Uber einen Fall von Anamie mit Bemerkungen uber regenerative Veranderungen des Knochenmarks. Charite-Annalen. 1888; 13:300.Google Scholar
Pegg, DE, Fleming, WJ, Compston, N. A case of aplastic anaemia treated by isologous bone marrow infusion. Postgrad Med J. 1964; 40:213216.Google Scholar
Thomas, ED, Storb, R, Giblett, ER, Longpre, B, Weiden, PL, Fefer, A, et al. Recovery from aplastic anemia following attempted marrow transplantation. Exp Hematol. 1976; 4(2):97102.Google Scholar
Ascensao, J, Pahwa, R, Kagan, W, Hansen, J, Moore, M, Good, R. Aplastic anaemia: evidence for an immunological mechanism. Lancet. 1976; 1(7961):669671.Google Scholar
Dunn, DE, Tanawattanacharoen, P, Boccuni, P, Nagakura, S, Green, SW, Kirby, MR, et al. Paroxysmal nocturnal hemoglobinuria cells in patients with bone marrow failure syndromes. Ann Intern Med. 1999; 131(6):401408.CrossRefGoogle ScholarPubMed
Katagiri, T, Sato-Otsubo, A, Kashiwase, K, Morishima, S, Sato, Y, Mori, Y, et al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood. 2011; 118(25):66019660.CrossRefGoogle ScholarPubMed
Socie, G, Rosenfeld, S, Frickhofen, N, Gluckman, E, Tichelli, A. Late clonal diseases of treated aplastic anemia. Semin Hematol. 2000; 37(1):91101.CrossRefGoogle ScholarPubMed
Gupta, V, Eapen, M, Brazauskas, R, Carreras, J, Aljurf, M, Gale, RP, et al. Impact of age on outcomes after bone marrow transplantation for acquired aplastic anemia using HLA-matched sibling donors. Haematologica. 2010; 95(12):21192125.Google Scholar
Locasciulli, A, Oneto, R, Bacigalupo, A, Socie, G, Korthof, E, Bekassy, A, et al. Outcome of patients with acquired aplastic anemia given first line bone marrow transplantation or immunosuppressive treatment in the last decade: a report from the European Group for Blood and Marrow Transplantation (EBMT). Haematologica. 2007; 92(1):1118.CrossRefGoogle ScholarPubMed
Storb, R, Etzioni, R, Anasetti, C, Appelbaum, FR, Buckner, CD, Bensinger, W, et al. Cyclophosphamide combined with antithymocyte globulin in preparation for allogeneic marrow transplants in patients with aplastic anemia. Blood. 1994; 84(3):941949.CrossRefGoogle ScholarPubMed
Maury, S, Bacigalupo, A, Anderlini, P, Aljurf, M, Marsh, J, Socie, G, et al. Improved outcome of patients older than 30 years receiving HLA-identical sibling hematopoietic stem cell transplantation for severe acquired aplastic anemia using fludarabine-based conditioning: a comparison with conventional conditioning regimen. Haematologica. 2009; 94(9):13121315.Google Scholar
Bacigalupo, A, Socie, G, Schrezenmeier, H, Tichelli, A, Locasciulli, A, Fuehrer, M, et al. Bone marrow versus peripheral blood as the stem cell source for sibling transplants in acquired aplastic anemia: survival advantage for bone marrow in all age groups. Haematologica. 2012; 97(8):11421148.Google Scholar
Bacigalupo, A, Marsh, JC. Unrelated donor search and unrelated donor transplantation in the adult aplastic anaemia patient aged 18–40 years without an HLA-identical sibling and failing immunosuppression. Bone Marrow Transplant. 2013; 48(2):198200.Google Scholar
DeZern, AE, Zahurak, M, Symons, H, Cooke, K, Jones, RJ, Brodsky, RA. Alternative donor transplantation with high-dose post-transplantation cyclophosphamide for refractory severe aplastic anemia. Biol Blood Marrow Transplant. 2017; 23(3):498504.Google Scholar
Esteves, I, Bonfim, C, Pasquini, R, Funke, V, Pereira, NF, Rocha, V, et al. Haploidentical BMT and post-transplant Cy for severe aplastic anemia: a multicenter retrospective study. Bone Marrow Transplant. 2015; 50(5):685689.Google Scholar
Frickhofen, N, Kaltwasser, JP, Schrezenmeier, H, Raghavachar, A, Vogt, HG, Herrmann, F, et al. Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. The German Aplastic Anemia Study Group. N Engl J Med. 1991; 324(19):12971304.Google Scholar
Scheinberg, P, Nunez, O, Weinstein, B, Biancotto, A, Wu, CO, Young, NS. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N Engl J Med. 2011; 365(5):430438.CrossRefGoogle ScholarPubMed
Hochsmann, B, Moicean, A, Risitano, A, Ljungman, P, Schrezenmeier, H. Supportive care in severe and very severe aplastic anemia. Bone Marrow Transplant. 2013; 48(2):168–73.Google Scholar
Young, NS, Bacigalupo, A, Marsh, JC. Aplastic anemia: pathophysiology and treatment. Biol Blood Marrow Transplant. 2010; 16(1 Suppl):S119–125.CrossRefGoogle ScholarPubMed
Saracco, P, Quarello, P, Iori, AP, Zecca, M, Longoni, D, Svahn, J, et al. Cyclosporin A response and dependence in children with acquired aplastic anaemia: a multicentre retrospective study with long-term observation follow-up. Br J Haematol. 2008; 140(2):197205.Google Scholar
Townsley, DM, Scheinberg, P, Winkler, T, Desmond, R, Dumitriu, B, Rios, O, et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N Engl J Med. 2017; 376(16):15401550.Google Scholar
Fureder, W, Valent, P. Treatment of refractory or relapsed acquired aplastic anemia: review of established and experimental approaches. Leuk Lymphoma. 2011; 52(8):14351445.Google Scholar
Shahani, S, Braga-Basaria, M, Maggio, M, Basaria, S. Androgens and erythropoiesis: past and present. J Endocrinol Invest. 2009; 32(8):704716.Google Scholar
Olnes, MJ, Scheinberg, P, Calvo, KR, Desmond, R, Tang, Y, Dumitriu, B, et al. Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N Engl J Med. 2012; 367(1):1119.Google Scholar
Desmond, R, Townsley, DM, Dumitriu, B, Olnes, MJ, Scheinberg, P, Bevans, M, et al. Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on discontinuation of drug. Blood. 2014; 123(12):18181825.Google Scholar
Sawada, K, Hirokawa, M, Fujishima, N. Diagnosis and management of acquired pure red cell aplasia. Hematol Oncol Clin North Am. 2009; 23(2):249259.Google Scholar
Brown, KE, Anderson, SM, Young, NS. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science. 1993; 262(5130):114117.CrossRefGoogle ScholarPubMed
Macdougall, IC. Antibody-mediated pure red cell aplasia (PRCA): epidemiology, immunogenicity and risks. Nephrol Dial Transplant. 2005; 20 Suppl 4:iv9–15.Google Scholar
Bolan, CD, Leitman, SF, Griffith, LM, Wesley, RA, Procter, JL, Stroncek, DF, et al. Delayed donor red cell chimerism and pure red cell aplasia following major ABO-incompatible nonmyeloablative hematopoietic stem cell transplantation. Blood. 2001; 98(6):16871694.Google Scholar
Kurtzman, G, Frickhofen, N, Kimball, J, Jenkins, DW, Nienhuis, AW, Young, NS. Pure red-cell aplasia of 10 years’ duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. N Engl J Med. 1989; 321(8):519523.Google Scholar
Sawada, K, Fujishima, N, Hirokawa, M. Acquired pure red cell aplasia: updated review of treatment. Br J Haematol. 2008; 142(4):505514.CrossRefGoogle ScholarPubMed
Macdougall, IC, Rossert, J, Casadevall, N, Stead, RB, Duliege, AM, Froissart, M, et al. A peptide-based erythropoietin-receptor agonist for pure red-cell aplasia. N Engl J Med. 2009; 361(19):18481855.CrossRefGoogle ScholarPubMed
Clark, DA, Dessypris, EN, Krantz, SB. Studies on pure red cell aplasia. XI. Results of immunosuppressive treatment of 37 patients. Blood. 1984; 63(2):277286.CrossRefGoogle ScholarPubMed
Sawada, K, Hirokawa, M, Fujishima, N, Teramura, M, Bessho, M, Dan, K, et al. Long-term outcome of patients with acquired primary idiopathic pure red cell aplasia receiving cyclosporine A. A nationwide cohort study in Japan for the PRCA Collaborative Study Group. Haematologica. 2007; 92(8):10211028.Google Scholar
Risitano, AM, Selleri, C, Serio, B, Torelli, GF, Kulagin, A, Maury, S, et al. Alemtuzumab is safe and effective as immunosuppressive treatment for aplastic anaemia and single-lineage marrow failure: a pilot study and a survey from the EBMT WPSAA. Br J Haematol. 2010; 148(5):791796.Google Scholar

References

Hillmen, P, Lewis, SM, Bessler, M, Luzzatto, L, Dacie, JV. Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1995; 333:12531258.Google Scholar
Socie, G, Mary, JY, de Gramont, A, Rio, B, Leporrier, M, Rose, C, et al. Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors. Lancet. 1996 Aug 31; 348(9027):573577.Google Scholar
Moyo, VM, Mukhina, GL, Garrett, ES, Brodsky, RA. Natural history of paroxysmal nocturnal hemoglobinuria using modern diagnostic assays. Brit J Haematol. 2004; 126:133138.CrossRefGoogle ScholarPubMed
Brodsky, RA. Narrative review: paroxysmal nocturnal hemoglobinuria: the physiology of complement-related hemolytic anemia. Ann Intern Med. 2008 Apr 15; 148(8):587595.Google Scholar
Miyata, T, Takeda, J, Iida, Y, Yamada, N, Inoue, N, Takahashi, M, et al. The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science. 1993; 259:13181320.Google Scholar
Miyata, T, Yamada, N, Iida, Y, Nishimura, J, Takeda, J, Kitani, T, et al. Abnormalities of PIG-A transcripts in granulocytes from patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1994; 330:249255.CrossRefGoogle ScholarPubMed
Nagarajan, S, Brodsky, R, Young, NS, Medof, ME. Genetic defects underlying paroxysmal nocturnal hemoglobinuria that arises out of aplastic anemia. Blood. 1995; 86:46564661.Google Scholar
Mukhina, GL, Buckley, JT, Barber, JP, Jones, RJ, Brodsky, RA. Multilineage glycosylphosphatidylinositol anchor deficient hematopoiesis in untreated aplastic anemia. Br J Haematol. 2001; 115:476482.Google Scholar
Luzzatto, L, Bessler, M, Rotoli, B. Somatic mutations in paroxysmal nocturnal hemoglobinuria: A blessing in disguise? Cell. 1997; 88(January 10):14.CrossRefGoogle ScholarPubMed
Medof, ME, Kinoshita, T, Nussenzweig, V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med. 1984; 160:15581578.CrossRefGoogle ScholarPubMed
Rollins, SA, Sims, PJ. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J Immunol. 1990 May 1; 144(9):34783483.Google Scholar
Rother, RP, Bell, L, Hillmen, P, Gladwin, MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005 Apr 6; 293(13):16531662.Google Scholar
Hall, SE, Rosse, WF. The use of monoclonal antibodies and flow cytometry in the diagnosis of paroxysmal nocturnal hemoglobinuria. Blood. 1996; 87:53325340.Google Scholar
Borowitz, MJ, Craig, FE, DiGiuseppe, JA, Illingworth, AJ, Rosse, W, Sutherland, DR, et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom. 2010;78(4):211230.Google Scholar
Brodsky, RA, Mukhina, GL, Nelson, KL, Lawrence, TS, Jones, RJ, Buckley, JT. Resistance of paroxysmal nocturnal hemoglobinuria cells to the glycosylphosphatidylinositol-binding toxin aerolysin. Blood. 1999; 93(5):17491756.CrossRefGoogle Scholar
Brodsky, RA, Mukhina, GL, Li, S, Nelson, KL, Chiurazzi, PL, Buckley, JT, et al. Improved detection and characterization of paroxysmal nocturnal hemoglobinuria using fluorescent aerolysin. Am J Clin Pathol. 2000 Sep;114(3):459466.Google Scholar
Araten, DJ, Nafa, K, Pakdeesuwan, K, Luzzatto, L. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci USA. 1999 Apr 27; 96(9):52095214.Google Scholar
Hu, R, Mukhina, GL, Piantadosi, S, Barber, JP, Jones, RJ, Brodsky, RA. PIG-A mutations in normal hematopoiesis. Blood. 2005 May 15; 105(10):38483854.Google Scholar
Pu, JJ, Hu, R, Mukhina, GL, Carraway, HE, McDevitt, MA, Brodsky, RA. The small population of PIG-A mutant cells in myelodysplastic syndromes do not arise from multipotent hematopoietic stem cells. Haematologica. 2012; 97(8):12251233.Google Scholar
Pu, JJ, Mukhina, G, Wang, H, Savage, WJ, Brodsky, RA. Natural history of paroxysmal nocturnal hemoglobinuria clones in patients presenting as aplastic anemia. Eur J Haematol. 2011 Jul;87(1):3745.CrossRefGoogle ScholarPubMed
Wiedmer, T, Hall, SE, Ortel, TL, Kane, WH, Rosse, WF, Sims, PJ. Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood. 1993; 82(4):11921196.CrossRefGoogle ScholarPubMed
Hugel, B, Socie, G, Vu, T, Toti, F, Gluckman, E, Freyssinet, JM, et al. Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Blood. 1999 May 15; 93(10):34513456.Google Scholar
Ploug, M, Plesner, T, Ronne, E, Ellis, V, Hoyer-Hansen, G, Hansen, NE, et al. The receptor for urokinase-type plasminogen activator is deficient on peripheral blood leukocytes in patients with paroxysmal nocturnal hemoglobinuria. Blood. 1992 Mar 15; 79(6):14471455.CrossRefGoogle ScholarPubMed
Maroney, SA, Cunningham, AC, Ferrel, J, Hu, R, Haberichter, S, Mansbach, CM, et al. A GPI-anchored co-receptor for tissue factor pathway inhibitor controls its intracellular trafficking and cell surface expression. J Thromb Haemost. 2006 May;4(5):11141124.Google Scholar
Hillmen, P, Elebute, M, Kelly, R, Urbano-Ispizua, A, Hill, A, Rother, RP, et al. Long-term effect of the complement inhibitor eculizumab on kidney function in patients with paroxysmal nocturnal hemoglobinuria. Am J Hematol. 2010 Aug;85(8):553559.Google Scholar
Hillmen, P, Young, NS, Schubert, J, Brodsky, RA, Socie, G, Muus, P, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006 Sep 21; 355(12):12331243.Google Scholar
Brodsky, RA, Young, NS, Antonioli, E, Risitano, AM, Schrezenmeier, H, Schubert, J, et al. Multicenter phase 3 study of the complement inhibitor eculizumab for the treatment of patients with paroxysmal nocturnal hemoglobinuria. Blood. 2008 Feb 15; 111(4):18401847.Google Scholar
Hillmen, P, Muus, P, Duhrsen, U, Risitano, AM, Schubert, J, Young, NS, et al. The terminal complement inhibitor eculizumab reduces thrombosis in patients with paroxysmal nocturnal hemoglobinuria (abstract). Blood. 2006; 106:40a41a.Google Scholar
Saso, R, Marsh, J, Cevreska, L, Szer, J, Gale, RP, Rowlings, PA, et al. Bone marrow transplants for paroxysmal nocturnal haemoglobinuria. Br J Haematol. 1999 Feb;104(2):392396.Google Scholar
Suenaga, K, Kanda, Y, Niiya, H, Nakai, K, Saito, T, Saito, A, et al. Successful application of nonmyeloablative transplantation for paroxysmal nocturnal hemoglobinuria. Exp Hematol. 2001 May;29(5):639642.Google Scholar
Brodsky, RA, Luznik, L, Bolanos-Meade, J, Leffell, MS, Jones, RJ, Fuchs, EJ. Reduced intensity HLA-haploidentical BMT with post transplantation cyclophosphamide in nonmalignant hematologic diseases. Bone Marrow Transplant. 2008 Oct;42(8):523527.CrossRefGoogle ScholarPubMed

References

Diamond, LK, Blackfan, KD. Hypoplastic anemia. Am J Dis Child. 1938; 15:307.Google Scholar
Lipton, JM, Ellis, SR. Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am. 2009; 23(2):261282.CrossRefGoogle ScholarPubMed
Narla, A, Ebert, BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010; 115(16):3196–205.Google Scholar
Sankaran, V, Chazvinian, R, Do, R, et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest. 2012; 122(7):24392443.CrossRefGoogle ScholarPubMed
Fumagalli, S, Thomas, G. The role of p53 in ribosomopathies. Semin Hematol. 2011; 48(2):97105.Google Scholar
Narla, A, Vlachos, A, Nathan, DG. Diamond Blackfan anemia treatment: past, present, and future. Semin Hematol. 2011; 48(2):117123.Google Scholar
Zinsser, F. Atrophia cutis reticularis cum pigmentations, dystrophia unguium et leukoplakis oris (Poikioodermia atrophicans vascularis Jacobi). Ikonogr. Dermatol. 1910; 5:219233.Google Scholar
Savage, SA, Alter, BP. Dyskeratosis congenita. Hematol Oncol Clin North Am. 2009; 23(2):215231.CrossRefGoogle ScholarPubMed
Ballew, BJ, Savage, SA. Updates on the biology and management of dyskeratosis congenital and related telomere biology disorders. Expert Rev Hematol. 2013; 6(3):327337.CrossRefGoogle ScholarPubMed
Alter, B, Giri, N, Savage, S, et al. Malignancies and survival patters in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010; 150(2):179188.Google Scholar
Lobitz, S, Velleuer, E. Guido Fanconi: a jack of all trades. Nat Rev Cancer. 2006; 6(11):893898.Google Scholar
Bagby, GC, Alter, BP. Fanconi anemia. Semin Hematol. 2006; 43(3):147156.CrossRefGoogle ScholarPubMed
Garaycoechea, J, Patel, KJ. Why does the bone marrow fail in Fanconi anemia. Blood. 2014; 123(1):2634.Google Scholar
Kupfer, GM. Fanconi anemia: a signal transduction and DNA repair pathway. Yale J Biol Med. 2013; 60(6):12911310.Google Scholar
Kee, Y, D’Andrea, D. Molecular pathogenesis and clinical management of Fanconi anemia. J Clin Invest. 2012; 122(11):37993806.Google Scholar
Schwachman, H, Diamond, LK, Oski, FA, Khaw, KT. The syndrome of pancreatic insufficiency and bone marrow dysfunction. J Pediatr. 1964; 65:645663.Google Scholar
Myers, KC, Davies, SM, Shimamura, A. Clinical and molecular pathophysiology of Schwachman-Diamond syndrome: an update. Hematol Oncol Clin N Am. 2013;(27):117128.CrossRefGoogle ScholarPubMed
Boocock, GR, Morrioson, JA, Popvic, M, et al. Mutations in SBDS are associated with Schwachman-Diamond Syndrome. Nat Genet. 2003; 33(1):97101.Google Scholar
Wong, CC, Traynor, D, Basse, N, et al. Defective ribosome assembly in Shwachman-Diamond syndrome. Blood. 2011; 118(16):43054312.Google Scholar
Ballmaier, M, Germeshausen, M. Congenital amegakaryocytic thrombocytopenia: clinical presentation, diagnosis, and treatment. Semin Thromb Hemost. 2011; 37(6):673681.Google Scholar
Ballmaier, M, Germeshausen, M, Schulze, H, et al. C-MPL mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood. 2001; 97:139146.Google Scholar
Al-Qahtani, . Congenital amegakaryocytic thrombocytopenia: a brief review of the literature. Clin Med Insights Pathol. 2010; 3:2530.CrossRefGoogle ScholarPubMed
DiMauro, S, Hirano, M. Mitochondrial DNA Deletion Syndromes. 2003 Dec 17 [Updated 2011 May 3]. In: Pagon RA, Adam MP, Bird TD, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2014. Available from: www.ncbi.nlm.nih.gov/books/NBK1203/Google Scholar
Rotig, A, Colonna, M, Bonnefont, JP, et al. A mitochondrial DNA deletion in Pearson’s marrow pancreas syndrome. Lancet. 1989; 333:902903.CrossRefGoogle Scholar
Cherry, AB, Gagne, KE, McLoughlin, EM, et al. Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells. 2013; 31(7):12871297.Google Scholar
Boxer, LA. Severe congenital neutropenia: genetics and pathogenesis. Trans Am Clin Climatol Assoc. 2006; 117:1332.Google ScholarPubMed
Horwitz, MS, Corey, SJ, Grimes, HL, et al. ELANE mutations in cyclic and severe congenital neutropenia. Hematol Oncol Clin N Am. 2013; 27:1941.Google Scholar
Khincha, PP, Savage, SA. Genomic characterization of the inherited bone marrow failure syndromes. Semin Hematol. 2013; 50(4):333347.Google Scholar
Albers, CA, Newbury-Ecob, R, Ouwehand, WH, et al. New insights into the genetic basis of TAR (thrombocytopenia-absent radii syndrome). Curr Opin Genet Dev. 2013; 23(3):316323.Google Scholar

References

Weiss, G, Goodnough, LT. Anemia of chronic disease. N Engl J Med. 2005; 352(10):10111023.Google Scholar
Cartwright, GE, Lauritsen, MA, Jones, PJ, Merrill, IM, Wintrobe, MM. The anemia of infection. I. Hypoferremia, hypercupremia, and alterations in porphyrin metabolism in patients. J Clin Invest. 1946; 25(1):6580.CrossRefGoogle ScholarPubMed
Blanc, B, et al. Nutritional anaemias. Report of a WHO scientific group. World Health Organization Technical Report Series. 1968; 405:537.Google Scholar
Yip, R, Dallman, PR. The roles of inflammation and iron deficiency as causes of anemia. Am J Clin Nutr. 1988; 48(5):12951300. Epub 1988/11/01.Google Scholar
Guralnik, JM, Eisenstaedt, RS, Ferrucci, L, Klein, HG, and Woodman, RC. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood. 2004; 104(8):22632268.Google Scholar
Masson, C. Rheumatoid anemia. Joint Bone Spine. 2011; 78(2):131137. Epub 2010/09/21.Google Scholar
Wilson, A, Reyes, E, Ofman, J. Prevalence and outcomes of anemia in inflammatory bowel disease: a systematic review of the literature. Am J Med. 2004; 116 Suppl 7A:44S49S.Google Scholar
Piagnerelli, M, Vincent, JL. The use of erythropoiesis-stimulating agents in the intensive care unit. Crit Care Clin. 2012; 28(3):345362, v. Epub 2012/06/21.Google Scholar
van Iperen, CE, van de Wiel, A, Marx, JJ. Acute event-related anaemia. Br J Haematol. 2001; 115(4):739743. Epub 2002/02/15.Google Scholar
Sihler, KC, Napolitano, LM. Anemia of inflammation in critically ill patients. J Intensive Care Med. 2008; 23(5):295302. Epub 2008/08/15.Google Scholar
Baer, AN, Dessypris, EN, Goldwasser, E, Krantz, SB. Blunted erythropoietin response to anaemia in rheumatoid arthritis. Br J Haematol. 1987; 66(4):559564.Google Scholar
Means, RT Jr., Krantz, SB. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood. 1992; 80(7):16391647.CrossRefGoogle ScholarPubMed
Koury, MJ, Ponka, P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr. 2004; 24:105131.Google Scholar
Cartwright, GE, Lee, GR. The anaemia of chronic disorders. Br J Haematol. 1971; 21(2):147152. Epub 1971/08/01.Google Scholar
Nemeth, E, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004; 306(5704):20902093.Google Scholar
Qiao, B, et al. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 2012; 15(6):918924. Epub 2012/06/12.Google Scholar
Ross, SL, et al. Molecular mechanism of hepcidin-mediated ferroportin internalization requires ferroportin lysines, not tyrosines or JAK-STAT. Cell Metab. 2012; 15(6):905917. Epub 2012/06/12.Google Scholar
Ganz, T, Nemeth, E. The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders. Hematol Am Soc Hematol Educ Program. 2011; 2011:538542. Epub 2011/12/14.Google Scholar
Schwoebel, F, et al. The effects of the anti-hepcidin Spiegelmer NOX H94 on inflammation-induced anemia in cynomolgus monkeys. Blood. 2013; 121(12):23112315. Epub 2013/01/26.Google Scholar
Wang, W, Knovich, MA, Coffman, LG, Torti, FM, Torti, SV. Serum ferritin: past, present and future. Biochim Biophys Acta. 2010; 1800(8):760769. Epub 2010/03/23.Google Scholar
Cash, JM, Sears, DA. The anemia of chronic disease: spectrum of associated diseases in a series of unselected hospitalized patients. Am J Med. 1989; 87(6):638644.Google Scholar
Roy, CN. Anemia of inflammation. Hematology Am Soc Hematol Educ Program. 2010; 30:276280.CrossRefGoogle Scholar
Skikne, BS. Serum transferrin receptor. Am J Hematol. 2008; 83(11):872–85.Google Scholar
Marti-Carvajal, AJ, Agreda-Perez, LH, Sola, I, Simancas-Racines, D. Erythropoiesis-stimulating agents for anemia in rheumatoid arthritis. Cochrane Database Syst Rev. 2013; 2:CD000332. Epub 2013/03/02.Google Scholar
Dallman, PR, Yip, R, Johnson, C. Prevalence and causes of anemia in the United States, 1976 to 1980. Am J Clin Nutr. 1984; 39(3):437445. Epub 1984/03/01.Google Scholar
Price, EA, Mehra, R, Holmes, TH, Schrier, SL. Anemia in older persons: etiology and evaluation. Blood Cells Mol Dis. 2011; 46(2):159165. Epub 2011/01/07.Google Scholar
Artz, AS, Thirman, MJ. Unexplained anemia predominates despite an intensive evaluation in a racially diverse cohort of older adults from a referral anemia clinic. J Gerontol A Biol Sci Med Sci. 2011; 66(8):925932. Epub 2011 Jun 9.Google Scholar
Voulgarelis, M, Kokori, SI, Ioannidis, JP, Tzioufas, AG, Kyriaki, D, Moutsopoulos, HM. Anaemia in systemic lupus erythematosus: aetiological profile and the role of erythropoietin. Ann Rheum Dis. 2000; 59(3):217222.Google Scholar
Martinez-Lado, L, et al. Relapses and recurrences in giant cell arteritis: a population-based study of patients with biopsy-proven disease from northwestern Spain. Medicine (Baltimore). 2011; 90(3):186193. Epub 2011/04/23.Google Scholar
Vincent, JL, et al. Anemia and blood transfusion in critically ill patients. J Am Med Assoc. 2002; 288(12):14991507. Epub 2002/09/24.Google Scholar

References

Sekeres, MA, Schoonen, WM, Kantarjian, H, List, A, Fryzek, J, Paquette, R, et al. Characteristics of US patients with myelodysplastic syndromes: results of six cross-sectional physician surveys. Journal of the National Cancer Institute. 2008; 100(21):15421551.Google Scholar
Rollison, DE, Howlader, N, Smith, MT, Strom, SS, Merritt, WD, Ries, LA, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood. 2008; 112(1):4552.Google Scholar
Goldberg, SL, Chen, E, Corral, M, Guo, A, Mody-Patel, N, Pecora, AL, et al. Incidence and clinical complications of myelodysplastic syndromes among United States Medicare beneficiaries. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2010; 28(17):28472852.Google Scholar
Pedersen-Bjergaard, J, Daugaard, G, Hansen, SW, Philip, P, Larsen, SO, Rorth, M. Increased risk of myelodysplasia and leukaemia after etoposide, cisplatin, and bleomycin for germ-cell tumours. Lancet. 1991; 338(8763):359363.Google Scholar
Liew, E, Owen, C. Familial myelodysplastic syndromes: a review of the literature. Haematologica. 2011; 96(10):15361542.Google Scholar
Hoffman, R. Hematology: Basic Principles and Practice. 5th ed. Philadelphia, PA: Churchill Livingstone/Elsevier; 2009:xxvii, 2523.Google Scholar
Hsu, AP, Sampaio, EP, Khan, J, Calvo, KR, Lemieux, JE, Patel, SY, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011; 118(10):26532655.Google Scholar
Bejar, R, Levine, R, Ebert, BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011; 29(5):504515.Google Scholar
Walter, MJ, Shen, D, Ding, L, Shao, J, Koboldt, DC, Chen, K, et al. Clonal architecture of secondary acute myeloid leukemia. The New England Journal of Medicine. 2012; 366(12):10901098.Google Scholar
Haase, D, Germing, U, Schanz, J, Pfeilstocker, M, Nosslinger, T, Hildebrandt, B, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007; 110(13):43854395.CrossRefGoogle ScholarPubMed
List, A, Dewald, G, Bennett, J, Giagounidis, A, Raza, A, Feldman, E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. The New England Journal of Medicine. 2006; 355(14):14561465.Google Scholar
Bejar, R, Stevenson, KE, Caughey, BA, Abdel-Wahab, O, Steensma, DP, Galili, N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012; 30(27):33763382.Google Scholar
Papaemmanuil, E, Gerstung, M, Malcovati, L, Tauro, S, Gundem, G, Van Loo, P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013; 122(22):36163627; quiz 99.Google Scholar
Haferlach, T, Nagata, Y, Grossmann, V, Okuno, Y, Bacher, U, Nagae, G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014; 28(2):241247.CrossRefGoogle ScholarPubMed
Bejar, R, Stevenson, K, Abdel-Wahab, O, Galili, N, Nilsson, B, Garcia-Manero, G, et al. Clinical effect of point mutations in myelodysplastic syndromes. The New England Journal of Medicine. 2011; 364(26):24962506.Google Scholar
Yoshida, K, Sanada, M, Shiraishi, Y, Nowak, D, Nagata, Y, Yamamoto, R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011; 478(7367):6469.Google Scholar
Christiansen, DH, Andersen, MK, Pedersen-Bjergaard, J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2001; 19(5):14051413.CrossRefGoogle ScholarPubMed
Greenberg, PL, Tuechler, H, Schanz, J, Sanz, G, Garcia-Manero, G, Sole, F, et al. Cytopenia levels for aiding establishment of the diagnosis of myelodysplastic syndromes. Blood. 2016; 128(16):20962067.Google Scholar
Valent, P. Low blood counts: immune mediated, idiopathic, or myelodysplasia. Hematology/the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2012; 2012:485491.Google Scholar
Arber, DA, Orazi, A, Hasserjian, R, Thiele, J, Borowitz, MJ, Le Beau, MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127(20):23912405.Google Scholar
Bejar, R, Greenberg, PL. The impact of somatic and germline mutations in myelodysplastic syndromes and related disorders. Journal of the National Comprehensive Cancer Network. 2017; 15(1):131135.Google Scholar
Network NCC. National Comprehensive Cancer Network Guidelines: Myelodysplatic Syndromes Version 2.2014 275 Commerce Drive, Suite 300, Fort Washington, PA 190342013 Version 2.2014: Available from: www.nccn.org.Google Scholar
Cargo, CA, Rowbotham, N, Evans, PA, Barrans, SL, Bowen, DT, Crouch, S, et al. Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression. Blood. 2015; 126(21):23622365.Google Scholar
Kwok, B, Hall, JM, Witte, JS, Xu, Y, Reddy, P, Lin, K, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015; 126(21):23552361.Google Scholar
Greenberg, P, Cox, C, LeBeau, MM, Fenaux, P, Morel, P, Sanz, G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997; 89(6):20792088.CrossRefGoogle ScholarPubMed
Garcia-Manero, G, Shan, J, Faderl, S, Cortes, J, Ravandi, F, Borthakur, G, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK. 2008; 22(3):538543.Google Scholar
Bejar, R, Stevenson, KE, Caughey, BA, Abdel-Wahab, O, Steensma, DP, Galili, N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. Journal of Clinical Oncology. 2012; 30(27):33763382.CrossRefGoogle ScholarPubMed
Greenberg, PL, Tuechler, H, Schanz, J, Sanz, G, Garcia-Manero, G, Sole, F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012; 120(12):24542465.CrossRefGoogle ScholarPubMed
Greenberg, PL, Stone, RM, Al-Kali, A, Barta, SK, Bejar, R, Bennett, JM, et al. Myelodysplastic Syndromes, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network. 2017; 15(1):6087.Google Scholar
Hellstrom-Lindberg, E, Gulbrandsen, N, Lindberg, G, Ahlgren, T, Dahl, IM, Dybedal, I, et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life. British Journal of Haematology. 2003; 120(6):10371046.CrossRefGoogle ScholarPubMed
Greenberg, PL, Sun, Z, Miller, KB, Bennett, JM, Tallman, MS, Dewald, G, et al. Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colony-stimulating factor: results of a prospective randomized phase 3 trial by the Eastern Cooperative Oncology Group (E1996). Blood. 2009; 114(12):23932400.Google Scholar
Passweg, JR, Giagounidis, AA, Simcock, M, Aul, C, Dobbelstein, C, Stadler, M, et al. Immunosuppressive therapy for patients with myelodysplastic syndrome: a prospective randomized multicenter phase III trial comparing antithymocyte globulin plus cyclosporine with best supportive care–SAKK 33/99. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011; 29(3):303309.Google Scholar
Malcovati, L, Porta, MG, Pascutto, C, Invernizzi, R, Boni, M, Travaglino, E, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2005; 23(30):75947603.Google Scholar
Cutler, CS, Lee, SJ, Greenberg, P, Deeg, HJ, Perez, WS, Anasetti, C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004; 104(2):579585.Google Scholar
Koreth, J, Pidala, J, Perez, WS, Deeg, HJ, Garcia-Manero, G, Malcovati, L, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013; 31(21):26622670.Google Scholar
Silverman, LR, Demakos, EP, Peterson, BL, Kornblith, AB, Holland, JC, Odchimar-Reissig, R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2002; 20(10):24292440.Google Scholar
Kadia, TM, Jabbour, E, Kantarjian, H. Failure of hypomethylating agent-based therapy in myelodysplastic syndromes. Seminars in Oncology. 2011; 38(5):682692.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×