Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T08:06:48.472Z Has data issue: false hasContentIssue false

Section 3, Part D - Hemolytic Anemias

from Section 3 - Specific Forms of Anemia

Published online by Cambridge University Press:  18 April 2018

Edward J. Benz, Jr.
Affiliation:
Dana Farber Cancer Institute
Nancy Berliner
Affiliation:
Brigham and Women's Hospital, Boston
Fred J. Schiffman
Affiliation:
Children's Hospital, Boston
Get access
Type
Chapter
Information
Anemia
Pathophysiology, Diagnosis, and Management
, pp. 84 - 127
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Sokol, RJ, Booker, DJ, Stamps, R. The pathology of autoimmune haemolytic anaemia. J Clin Pathol. 1992; 45(12): 10471052.CrossRefGoogle ScholarPubMed
Sachs, UJ, et al. Does a negative direct antiglobulin test exclude warm autoimmune haemolytic anaemia? A prospective study of 504 cases. Br J Haematol. 2006; 132(5): 655656.CrossRefGoogle ScholarPubMed
Wheeler, CA, Calhoun, L, Blackall, DP. Warm reactive autoantibodies: clinical and serologic correlations. Am J Clin Pathol. 2004; 122(5): 680685.Google Scholar
Vos, GH, Petz, L, Fudenberg, HH. Specificity of acquired haemolytic anaemia autoantibodies and their serological characteristics. Br J Haematol. 1970; 19(1): 5766.CrossRefGoogle ScholarPubMed
Garratty, G, Arndt, PA. An update on drug-induced immune hemolytic anemia. Immunohematology. 2007; 23(3): 105119.CrossRefGoogle ScholarPubMed
Worlledge, SM, Carstairs, KC, Dacie, JV. Autoimmune haemolytic anaemia associated with alpha-methyldopa therapy. Lancet. 1966; 2(7455): 135139.Google Scholar
Garratty, G, Petz, LD. Drug-induced immune hemolytic anemia. Am J Med. 1975; 58(3): 398407.Google Scholar
Mueller-Eckhardt, C, Salama, A. Drug-induced immune cytopenias: a unifying pathogenetic concept with special emphasis on the role of drug metabolites. Transfus Med Rev. 1990;4(1): 6977.CrossRefGoogle ScholarPubMed
Garratty, G, Arndt, PA. Positive direct antiglobulin tests and haemolytic anaemia following therapy with beta-lactamase inhibitor containing drugs may be associated with nonimmunologic adsorption of protein onto red blood cells. Br J Haematol. 1998; 100(4): 777783.CrossRefGoogle Scholar
Leger, RM, Garratty, G. Evaluation of methods for detecting alloantibodies underlying warm autoantibodies. Transfusion. 1999;39(1): 1116.CrossRefGoogle ScholarPubMed
Lechner, K, Jäger, U. How I treat autoimmune hemolytic anemias in adults. Blood. 2010; 116(11): 18311838.CrossRefGoogle Scholar
Murphy, S, LoBuglio, AF. Drug therapy of autoimmune hemolytic anemia. Semin Hematol. 1976; 13(4): 323334.Google Scholar
Gehrs, BC, Friedberg, RC. Autoimmune hemolytic anemia. Am J Hematol. 2002; 69(4): 258271.CrossRefGoogle ScholarPubMed
Akpek, G, McAneny, D, Weintraub, L. Comparative response to splenectomy in Coombs-positive autoimmune hemolytic anemia with or without associated disease. Am J Hematol. 1999; 61(2): 98102.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Atkinson, JP, Schreiber, AD, Frank, MM. Effects of corticosteroids and splenectomy on the immune clearance and destruction of erythrocytes. J Clin Invest. 1973; 52(6): 15091517.Google Scholar
Casaccia, M, et al. Laparoscopic splenectomy for hematologic diseases: a preliminary analysis performed on the Italian Registry of Laparoscopic Surgery of the Spleen (IRLSS). Surg Endosc. 2006; 20(8): 12141220.CrossRefGoogle ScholarPubMed
Ikeda, M, et al. High incidence of thrombosis of the portal venous system after laparoscopic splenectomy: a prospective study with contrast-enhanced CT scan. Ann Surg. 2005; 241(2): 208216.CrossRefGoogle ScholarPubMed
Advisory Committee on Immunization Practices (ACIP) recommended immunization schedules for persons aged 0 through 18 years and adults aged 19 years and older–United States, 2013. MMWR Surveill Summ. 2013(62 Suppl 1): 1.Google Scholar
D’Arena, G, et al. Rituximab therapy for chronic lymphocytic leukemia-associated autoimmune hemolytic anemia. Am J Hematol. 2006; 81(8): 598602.CrossRefGoogle ScholarPubMed
Bussone, G, et al. Efficacy and safety of rituximab in adults’ warm antibody autoimmune haemolytic anemia: retrospective analysis of 27 cases. Am J Hematol. 2009; 84(3): 153157.Google Scholar
Dierickx, D, et al. Rituximab in auto-immune haemolytic anaemia and immune thrombocytopenic purpura: a Belgian retrospective multicentric study. J Intern Med. 2009; 266(5):484491.CrossRefGoogle ScholarPubMed
Narat, S, et al. Rituximab in the treatment of refractory autoimmune cytopenias in adults. Haematologica. 2005; 90(9):12731274.Google ScholarPubMed
Anderson, D, et al. Guidelines on the use of intravenous immune globulin for hematologic conditions. Transfus Med Rev. 2007; 21(2 Suppl 1):S9–56.Google Scholar
Gertz, MA. Cold agglutinin disease and cryoglobulinemia. Clin Lymphoma. 2005; 5(4):290293.Google Scholar
Bessman, JD, Banks, D. Spurious macrocytosis, a common clue to erythrocyte cold agglutinins. Am J Clin Pathol. 1980; 74(6):797800.Google Scholar
Rosse, WF, Adams, JP. The variability of hemolysis in the cold agglutinin syndrome. Blood. 1980; 56(3):409–16.CrossRefGoogle ScholarPubMed
Feizi, T. Monotypic cold agglutinins in infection by mycoplasma pneumoniae. Nature. 1967; 215(5100):540542.CrossRefGoogle ScholarPubMed
Horwitz, CA, et al. Cold agglutinins in infectious mononucleosis and heterophil-antibody-negative mononucleosis-like syndromes. Blood. 1977; 50(2):195202.Google Scholar
Swiecicki, PL, Hegerova, LT, Gertz, MA. Cold agglutinin disease. Blood. 2013; 122(7):11141121.CrossRefGoogle ScholarPubMed
Nydegger, UE, Kazatchkine, MD, Miescher, PA. Immunopathologic and clinical features of hemolytic anemia due to cold agglutinins. Semin Hematol. 1991; 28(1):6677.Google Scholar
Jaffe, CJ, Atkinson, JP, Frank, MM. The role of complement in the clearance of cold agglutinin-sensitized erythrocytes in man. J Clin Invest. 1976; 58(4):942949.CrossRefGoogle ScholarPubMed
Mickley, H, Sorensen, PG. Immune haemolytic anaemia associated with ampicillin dependent warm antibodies and high titre cold agglutinins in a patient with Mycoplasma pneumonia. Scand J Haematol. 1984; 32(3):323326.CrossRefGoogle Scholar
Ulvestad, E. Paradoxical haemolysis in a patient with cold agglutinin disease. Eur J Haematol. 1998; 60(2):93100.Google Scholar
Berentsen, S, et al. High response rate and durable remissions following fludarabine and rituximab combination therapy for chronic cold agglutinin disease. Blood. 2010; 116(17):31803184.Google Scholar
Berentsen, S, et al. Rituximab for primary chronic cold agglutinin disease: a prospective study of 37 courses of therapy in 27 patients. Blood. 2004; 103(8):29252928.CrossRefGoogle ScholarPubMed
Berentsen, S, et al. Primary chronic cold agglutinin disease: a population based clinical study of 86 patients. Haematologica. 2006; 91(4):460466.Google ScholarPubMed
Schollkopf, C, et al. Rituximab in chronic cold agglutinin disease: a prospective study of 20 patients. Leuk Lymphoma. 2006; 47(2):253260.Google Scholar
Ghielmini, M, et al. Effect of single-agent rituximab given at the standard schedule or as prolonged treatment in patients with mantle cell lymphoma: a study of the Swiss Group for Clinical Cancer Research (SAKK). J Clin Oncol. 2005; 23(4):705711.Google Scholar
Hoppe, B, et al. Response to intravenous immunoglobulin G in an infant with immunoglobulin A-associated autoimmune haemolytic anaemia. Vox Sang. 2004; 86(2):151153.Google Scholar
Geurs, F, et al. Successful plasmapheresis in corticosteroid-resistant hemolysis in infectious mononucleosis: role of autoantibodies against triosephosphate isomerase. Acta Haematol. 1992; 88(2–3):142146.Google Scholar
Berentsen, S. How I manage cold agglutinin disease. Br J Haematol. 2011; 153(3):309317.CrossRefGoogle Scholar
Heddle, NM. Acute paroxysmal cold hemoglobinuria. Transfus Med Rev. 1989; 3(3):219229.Google Scholar
Sivakumaran, M, et al. Paroxysmal cold haemoglobinuria caused by non-Hodgkin’s lymphoma. Br J Haematol. 1999; 105(1):278279.Google ScholarPubMed
Ries, CA, et al. Paroxysmal cold hemoglobinuria: report of a case with an exceptionally high thermal range Donath-Landsteiner antibody. Blood. 1971; 38(4):491499.Google Scholar
Rausen, AR, et al. Compatible transfusion therapy for paroxysmal cold hemoglobinuria. Pediatrics. 1975; 55(2):275278.Google Scholar
Koppel, A, et al. Rituximab as successful therapy in a patient with refractory paroxysmal cold hemoglobinuria. Transfusion. 2007; 47(10):19021904.CrossRefGoogle Scholar
Gregory, GP, et al. Failure of eculizumab to correct paroxysmal cold hemoglobinuria. Ann Hematol. 2011; 90(8):989990.CrossRefGoogle ScholarPubMed
Schrier, SL. Clinical Features and Diagnosis of Autoimmune Hemolytic Anemia: Warm Agglutinins. UpToDate; 2013. Retrieved April 7, 2014, from www.uptodate.com/contents/clinical-features-and-diagnosis-of-autoimmune-hemolytic-anemia-warm-agglutinins?source=search_result&search=autoimmune+hemolytic+anemia&selectedTitle=1~128.Google Scholar
Lichtman, MA, Williams, WJ. Williams hematology. 7th ed. New York: McGraw-Hill, Medical Pub. Division; 2006.Google Scholar
Kauke, T, Reininger, AJ. Images in clinical medicine. Livedo reticularis and cold agglutinins. N Engl J Med. 2007; 356(3):284.Google Scholar

References

Petz, LD GG. Immune Hemolytic Anemias. 2nd ed. Philadelphia: Churchill Livingstone; 2004.Google Scholar
Ahrens, N, Genth, R, Kiesewetter, H, Salama, A. Misdiagnosis in patients with diclofenac-induced hemolysis: new cases and a concise review. Am J Hematol. 2006; 81(2):128131.CrossRefGoogle Scholar
Ahrens, N, Genth, R, Salama, A. Belated diagnosis in three patients with rifampicin-induced immune haemolytic anaemia. Brit J Haematol. 2002; 117(2):441443.Google Scholar
Snapper, I, Marks, D, Schwartz, L, Hollander, L. Hemolytic anemia secondary to mesantoin. Ann Intern Med. 1953; 39(3):619623.Google ScholarPubMed
Arndt, PA, Garratty, G. The changing spectrum of drug-induced immune hemolytic anemia. Semin Hematol. 2005; 42(3):137144.CrossRefGoogle ScholarPubMed
Salama, A, Mueller-Eckhardt, C. The role of metabolite-specific antibodies in nomifensine-dependent immune hemolytic anemia. N Engl J Med. 1985; 313(8):469474.Google Scholar
Garratty, G. Immune hemolytic anemia associated with drug therapy. Blood Rev. 2010; 24(4–5):143150.CrossRefGoogle ScholarPubMed
Johnson, ST, Fueger, JT, Gottschall, JL. One center’s experience: the serology and drugs associated with drug-induced immune hemolytic anemia—a new paradigm. Transfusion. 2007; 47(4):697702.Google Scholar
Kirtland, HH, Mohler, DN, Horwitz, DA. Methyldopa inhibition of suppressor-lymphocyte function. N Engl J Med. 1980; 302(15):825832.Google Scholar
Pierce, A, Nester, T. Pathology consultation on drug-induced hemolytic anemia. Am J Clin Pathol. 2011; 136(1):712.CrossRefGoogle ScholarPubMed
Carstairs, KC, Breckenridge, A, Dollery, CT, Worlledge, S. Incidence of a positive direct Coombs test in patients on α-methyldopa. Lancet. 1966; 288(7455):133135.Google Scholar
Spath, P, Garratty, G, Petz, L. Studies on the immune response to penicillin and cephalothin in humans: ii. immunohematologic reactions to cephalothin administration. J Immunol. 1971; 107(3):860869.CrossRefGoogle ScholarPubMed
Broadberry, RE, Farren, TW, Bevin, SV, Kohler, JA, Yates, S, Skidmore, I, et al. Tazobactam-induced haemolytic anaemia, possibly caused by non-immunological adsorption of IgG onto patient’s red cells. Transf Med. 2004; 14(1):5357.Google Scholar
Arndt, PA, Leger, RM, Garratty, G. Positive direct antiglobulin tests and haemolytic anaemia following therapy with the beta-lactamase inhibitor, tazobactam, may also be associated with non-immunologic adsorption of protein onto red blood cells. Vox Sanguinis. 2003; 85(1):53.CrossRefGoogle ScholarPubMed
Arndt, P, Garratty, G, Isaak, E, Bolger, M, Lu, Q. Positive direct and indirect antiglobulin tests associated with oxaliplatin can be due to drug antibody and/or drug-induced nonimmunologic protein adsorption. Transfusion. 2009; 49(4):711718.Google Scholar
Arndt, PA, Leger, RM, Garratty, G. Serologic characteristics of ceftriaxone antibodies in 25 patients with drug-induced immune hemolytic anemia. Transfusion. 2012; 52(3):602612.CrossRefGoogle ScholarPubMed
Kapur, G, Valentini, RP, Mattoo, TK, Warrier, I, Imam, AA. Ceftriaxone induced hemolysis complicated by acute renal failure. Pediatr Blood Cancer. 2008; 50(1):139142.Google Scholar
Garratty, G. Drug-induced immune hemolytic anemia. Hematology Am Soc Hematol Educ Program. 2009:73–79.Google Scholar
Viraraghavan, R, Chakravarty, AG, Soreth, J. Cefotetan-induced haemolytic anaemia. A review of 85 cases. Adverse Drug Reac Toxicol Rev. 2002; 21(1–2):101107.Google Scholar
Croft, JD Jr., Swisher, SN Jr., Gilliland, BC, Bakemeier, RF, Leddy, JP, Weed, RI. Coombs’-test positivity induced by drugs. Mechanisms of immunologic reactions and red cell destruction. Ann Intern Med. 1968; 68(1):176187.Google Scholar

References

Gallagher, PG. Abnormalities of the erythrocyte membrane. Pediatr Clin North Am. 2013; 60(6):13491362.CrossRefGoogle ScholarPubMed
Perrotta, S, Gallagher, PG, Mohandas, N. Hereditary spherocytosis. Lancet. 2008; 372(9647):14111426.Google Scholar
Eber, S, Lux, SE. Hereditary spherocytosis – defects in proteins that connect the membrane skeleton to the lipid bilayer. Semi Hematol. 2004; 41(2):118141.Google Scholar
Gallagher, PG. Update on the clinical spectrum and genetics of red blood cell membrane disorders. Curr Hematol Rep. 2004; 3(2):8591.Google Scholar
Miraglia del Giudice, E, Francese, M, Nobili, B, et al. High frequency of de novo mutations in ankyrin gene (ANK1) in children with hereditary spherocytosis. J Pediatr. 1998; 132(1):117120.Google Scholar
Miraglia del Giudice, E, Lombardi, C, Francese, M, et al. Frequent de novo monoallelic expression of beta-spectrin gene (SPTB) in children with hereditary spherocytosis and isolated spectrin deficiency. Br J Haematol. 1998; 101(2):251254.CrossRefGoogle ScholarPubMed
Mohandas, N, Gallagher, PG. Red cell membrane: past, present, and future. Blood. 2008; 112(10):39393948.CrossRefGoogle ScholarPubMed
Lusher, JM, Barnhart, MI. The role of the spleen in the pathoophysiology of hereditary spherocytosis and hereditary elliptocytosis. Am J Pediatr Hematol Oncol. 1980; 2:3139.Google Scholar
Safeukui, I, Buffet, PA, Deplaine, G, et al. Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen. Blood. 2012; 120(2):424430.Google Scholar
Christensen, RD, Yaish, HM, Gallagher, PG. A pediatrician’s practical guide to diagnosing and treating hereditary spherocytosis in neonates. Pediatrics. 2015; 135(6):11071114.Google Scholar
Eber, SW, Armbrust, R, Schroter, W. Variable clinical severity of hereditary spherocytosis: relation to erythrocytic spectrin concentration, osmotic fragility, and autohemolysis. J Pediatr. 1990; 117(3):409416.CrossRefGoogle ScholarPubMed
Rocha, S, Costa, E, Catarino, C, et al. Erythropoietin levels in the different clinical forms of hereditary spherocytosis. Br J Haematol. 2005; 131(4):534542.CrossRefGoogle ScholarPubMed
Agre, P, Asimos, A, Casella, JF, McMillan, C. Inheritance pattern and clinical response to splenectomy as a reflection of erythrocyte spectrin deficiency in hereditary spherocytosis. N Engl J Med. 1986; 315(25):15791583.Google Scholar
Agre, P, Casella, JF, Zinkham, WH, McMillan, C, Bennett, V. Partial deficiency of erythrocyte spectrin in hereditary spherocytosis. Nature. 1985; 314(6009):380383.Google Scholar
Agre, P, Orringer, EP, Bennett, V. Deficient red-cell spectrin in severe, recessively inherited spherocytosis. N Engl J Med. 1982; 306(19):11551161.Google Scholar
Young, NS. Hematologic manifestations and diagnosis of parvovirus B19 infections. Clin Adv Hematol Oncol. 2006; 4(12):908910.Google Scholar
Lefrere, JJ, Courouce, AM, Girot, R, Bertrand, Y, Soulier, JP. Six cases of hereditary spherocytosis revealed by human parvovirus infection. Br J Haematol. 1986; 62(4):653658.Google Scholar
Delamore, IW, Richmond, J, Davies, SH. Megaloblastic anaemia in congenital spherocytosis. Br Med J. 1961; 1(5225):543545.Google Scholar
Smith, J, Rahilly, M, Davidson, K. Extramedullary haematopoiesis secondary to hereditary spherocytosis. Br J Haematol. 2011; 154(5):543.Google Scholar
Rabhi, S, Benjelloune, H, Meziane, M, et al. Hereditary spherocytosis with leg ulcers healing after splenectomy. South Med J. 2011; 104(2):150152.CrossRefGoogle ScholarPubMed
Guarnone, R, Centenara, E, Zappa, M, Zanella, A, Barosi, G. Erythropoietin production and erythropoiesis in compensated and anaemic states of hereditary spherocytosis. Br J Haematol. 1996; 92(1):150154.Google Scholar
Brugnara, C, Mohandas, N. Red cell indices in classification and treatment of anemias: from M.M. Wintrobes’s original 1934 classification to the third millennium. Curr Opin Hematol. 2013; 20(3):222230.Google Scholar
Michaels, LA, Cohen, AR, Zhao, H, Raphael, RI, Manno, CS. Screening for hereditary spherocytosis by use of automated erythrocyte indexes. J Pediatr. 1997; 130(6):957960.CrossRefGoogle ScholarPubMed
Cynober, T, Mohandas, N, Tchernia, G. Red cell abnormalities in hereditary spherocytosis: relevance to diagnosis and understanding of the variable expression of clinical severity. J Lab Clin Med. 1996; 128(3):259269.CrossRefGoogle ScholarPubMed
Bolton-Maggs, PH, Langer, JC, Iolascon, A, Tittensor, P, King, MJ, General Haematology Task Force of the British Committee for Standards in H. Guidelines for the diagnosis and management of hereditary spherocytosis–2011 update. Br J Haematol. 2012; 156(1):3749.Google Scholar
Iolascon, A, Andolfo, I, Barcellini, W, et al. Recommendations for splenectomy in hereditary hemolytic anemias. Haematologica. 2017; 102(8):13041313.Google Scholar
Baird, RN, Macpherson, AI, Richmond, J. Red-blood-cell survival after splenectomy in congenital spherocytosis. Lancet. 1971; 2(7733):10601061.CrossRefGoogle ScholarPubMed
Schilling, RF. Risks and benefits of splenectomy versus no splenectomy for hereditary spherocytosis – a personal view. Br J Haematol. 2009; 145(6):728732.CrossRefGoogle ScholarPubMed
Crary, SE, Ramaciotti, C, Buchanan, GR. Prevalence of pulmonary hypertension in hereditary spherocytosis. Am J Hematol. 2011; 86(12):E73–76.CrossRefGoogle ScholarPubMed
Hayag-Barin, JE, Smith, RE, Tucker, FC Jr. Hereditary spherocytosis, thrombocytosis, and chronic pulmonary emboli: a case report and review of the literature. Am J Hematol. 1998; 57(1):8284.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Schilling, RF, Gangnon, RE, Traver, MI. Delayed adverse vascular events after splenectomy in hereditary spherocytosis. J Thromb Haemost. 2008; 6(8):12891295.Google Scholar
Casale, M, Perrotta, S. Splenectomy for hereditary spherocytosis: complete, partial or not at all? Expert Rev Hematol. 2011; 4(6):627635.Google Scholar
Schilling, RF. Risks and benefits of splenectomy versus no splenectomy for hereditary spherocytosis – a personal view. Br J Haematol. 2009; 145(6):728732.Google Scholar
Wood, JH, Partrick, DA, Hays, T, Sauaia, A, Karrer, FM, Ziegler, MM. Contemporary pediatric splenectomy: continuing controversies. Pediatr Surg Int. 2011; 27(11):11651171.Google Scholar
Rescorla, FJ, Engum, SA, West, KW, Tres Scherer, LR, 3rd, Rouse, TM, Grosfeld, JL. Laparoscopic splenectomy has become the gold standard in children. Am Surg. 2002; 68(3):297301.CrossRefGoogle ScholarPubMed
Buesing, KL, Tracy, ET, Kiernan, C, et al. Partial splenectomy for hereditary spherocytosis: a multi-institutional review. J Pediatr Surg. 2011; 46(1):178183.Google Scholar
Guizzetti, L. Total versus partial splenectomy in pediatric hereditary spherocytosis: A systematic review and meta-analysis. Pediatr Blood Cancer. 2016; 63(10):17131722.Google Scholar
Grace, RF, Mednick, RE, Neufeld, EJ. Compliance with immunizations in splenectomized individuals with hereditary spherocytosis. Pediatr Blood Cancer. 2009; 52(7):865867.Google Scholar
Dhermy, D, Garbarz, M, Lecomte, MC, et al. Hereditary elliptocytosis: clinical, morphological and biochemical studies of 38 cases. Nouv Rev Fr Hematol. 1986; 28(3):129140.Google ScholarPubMed
Gallagher, PG. Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol. 2004; 41(2):142164.Google Scholar
Dhermy, D, Schrevel, J, Lecomte, MC. Spectrin-based skeleton in red blood cells and malaria. Curr Opin Hematol. 2007; 14(3):198202.Google Scholar
Glele-Kakai, C, Garbarz, M, Lecomte, MC, et al. Epidemiological studies of spectrin mutations related to hereditary elliptocytosis and spectrin polymorphisms in Benin. Br J Haematol. 1996; 95(1):5766.Google Scholar
Morrow, JS, Rimm, DL, Kennedy, SP, Cianci, CD, Sinard, JH, Weed, SA. Of membrane stability and mosaics: the spectrin cytoskeleton. In: Hoffman, J, Jamieson, J, eds. Handbook of Physiology. London: Oxford; 1997:485540.Google Scholar
Gaetani, M, Mootien, S, Harper, S, Gallagher, PG, Speicher, DW. Structural and functional effects of hereditary hemolytic anemia-associated point mutations in the alpha spectrin tetramer site. Blood. 2008; 111(12):57125720.Google Scholar
Ipsaro, JJ, Harper, SL, Messick, TE, Marmorstein, R, Mondragon, A, Speicher, DW. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood. 2010; 115(23):48434852.Google Scholar
Coetzer, T, Lawler, J, Prchal, JT, Palek, J. Molecular determinants of clinical expression of hereditary elliptocytosis and pyropoikilocytosis. Blood. 1987; 70(3):766772.Google Scholar
Coetzer, T, Palek, J, Lawler, J, et al. Structural and functional heterogeneity of alpha spectrin mutations involving the spectrin heterodimer self-association site: relationships to hematologic expression of homozygous hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood. 1990; 75(11):22352244.Google Scholar
Gallagher, PG. Red cell membrane disorders. Hematology Am Soc Hematol Educ Program. 2005; 2005(1):1318.Google Scholar
Zarkowsky, HS, Mohandas, N, Speaker, CB, Shohet, SB. A congenital haemolytic anaemia with thermal sensitivity of the erythrocyte membrane. Br J Haematol. 1975; 29(4):537543.Google Scholar
Gallagher, PG. Disorders of red cell volume regulation. Curr Opin Hematol. 2013; 20(3):201207.Google Scholar
Andolfo, I, Russo, R, Gambale, A, Iolascon, A. New insights on hereditary erythrocyte membrane defects. Haematologica. 2016; 101(11):12841294.Google Scholar
Zarychanski, R, Schulz, VP, Houston, BL, et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood. 2012; 120(9):19081915.Google Scholar
Bruce, LJ, Robinson, HC, Guizouarn, H, et al. Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1. Nat Genet. 2005; 37(11):12581263.Google Scholar
Guizouarn, H, Martial, S, Gabillat, N, Borgese, F. Point mutations involved in red cell stomatocytosis convert the electroneutral anion exchanger 1 to a non-selective cation conductance. Blood. 2007; 110(6):21582165.Google Scholar

References

Murray, CJ, Rosenfeld, LC, Lim, SS, Andrews, KG, Foreman, KJ, Haring, D, Fullman, N, Naghavi, M, Lozano, R, Lopez, AD. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012; 379:413431.Google Scholar
McDevitt, M, Xie, J, Gordeuk, V, Bucala, R. The anemia of malaria infection: role of inflammatory cytokines. Curr Hematol Rep. 2004; 3:97106.Google Scholar
Haldar, K, Mohandas, N. Malaria, erythrocytic infection, and anemia. Hematology Am Soc Hematol Educ Program. 2009:87–93.Google Scholar
Jakeman, PH, Saul, A, Hogarth, WL, Collins, WE. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology. 2004; 119:127133.CrossRefGoogle Scholar
Waitumbi, J, Opollo, M, Muga, R, Misore, A, Stoute, J. Red cell surface changes and erythrophagocytosis in children with severe Plasmodium falciparum anemia. Blood. 2000;95:14811486.Google Scholar
Stoute, JA, Odindo, AO, Owuor, BO, Mibei, EK, Opollo, MO, Waitumbi, JN. Loss of red blood cell-complement regulatory proteins and increased levels of circulating immune complexes are associated with severe malarial anemia. J Infect Dis. 2003; 187:522525.Google Scholar
Weatherall, D, Kwiatkowski, D, Roberts, D. Hematologic manifestations of systemic disease in children of the developing world. In: Orkin, SH, Ginsburg, D, Nathan, DG, Look, TA, Fisher, DE, Lux, SE, editors, Nathan and Oski?s Hematology and Oncology of Infancy and Childhood, 8th edition, Amsterdam: Elsevier; 2008.Google Scholar
Wickramasinghe, S, Abdalla, S. Blood and bone marrow changes in malaria. Baillieres Best Pract Res Clin Haematol. 2003; 13:277299.CrossRefGoogle Scholar
Abdalla, SH. Hematopoiesis in human malaria. Blood Cells. 1990; 16:401416.Google Scholar
Srichaikul, T, Wasanasomsithi, M, Poshyachinda, V, Panikbutr, N, Rabieb, T. Ferrokinetic studies and erythropoiesis in malaria. Arch Intern Med. 1969; 124:623628.CrossRefGoogle ScholarPubMed
Biemba, G, Gordeuk, V, Thuma, P, Mabeza, GF, Weiss, G. Prolonged macrophage activation and persistent anemia in children with complicated malaria. Trop Med Int Health. 1998; 3:6065.Google Scholar
Das, B, Nanda, N, Rath, P, Satapathy, R, Das, D. Anaemia in acute Plasmodium falciparum malaria in children from the Orissa state, India. Ann Trop Med Parasitol. 1999; 93:109118.Google Scholar
Lamikanra, AA, Theron, M, Kooij, TW, Roberts, DJ. Hemozoin (malarial pigment) directly promotes apoptosis of erythroid precursors. PLoS One. 2009;4:e8446.CrossRefGoogle ScholarPubMed
Kremsner, PG, Valim, C, Missinou, MA, Olola, C, Krishna, S, Issifou, S, Kombila, M, Bwanaisa, L, Mithwani, S, Newton, CR, Agbenyega, T, Pnder, M, Bojang, K, Wypij, D, Taylor, T. Prognostic value of circulating pigmented cells in African children with malaria. J Infect Dis. 2009; 199:142150.Google Scholar
Stevenson, MM, Riley, EM. Innate Immunity to Malaria. Nat Revs Immunol. 2004; 4:169180.CrossRefGoogle ScholarPubMed
Yap, GS, Stevenson, MM. Inhibition of in vitro erythropoiesis by soluble mediators during Plasmodium chabaudi AS malaria: lack of a major role for interleukin-1, tumor necrosis factor-α, and γ-interferon. Infect Immun. 1994; 62:357362.CrossRefGoogle Scholar
Kwiatkowski, D, Cannon, JG, Manogue, KR, Cerami, A, Dinarello, CA, Greenwood, BM. Tumour necrosis factor production in Falciparum malaria and its association with schizont rupture. Clin Exp Immunol. 1989; 77:361366.Google Scholar
Thuma, PE, van Dijk, J, Bucala, R, Debebe, Z, Nekhai, S, Kuddo, T, Nouraie, M, Weiss, G, Gordeuk, VR. Distinct clinical and immunologic profiles in severe malarial anemia and cerebral malaria in Zambia. J Infect Dis. 2011; 203:211219.Google Scholar
Looareesuwan, S, Merry, AH, Phillips, RE, Pleehachinda, R, Wattanagoon, Y, Ho, M, Charoenlarp, P, Warrell, DA, Weatherall, DJ. Reduced erythrocyte survival following clearance of malarial parasitaemia in Thai patients. Br J Haematol. 1987; 67:473478.Google Scholar
Nicolas, G, Chauvet, C, Viatte, L, Danan, JL, Bigard, X, Devaux, I, Beaumont, C, Kahn, A, Vaulont, S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002; 110:10371044.Google Scholar
Burté, F, Brown, BJ, Orimadegun, AE, Ajetunmobi, WA, Afolabi, NK, Akinkunmi, F, Kowobari, O, Omokhodion, S, Osinusi, K, Akinbami, FO, Shokunbi, WA, Sodeinde, O, Fernandez-Reyes, D. Circulatory hepcidin is associated with the anti-inflammatory response but not with iron or anemic status in childhood malaria. Blood. 2013; 121:30163022.CrossRefGoogle ScholarPubMed
Burchard, G, Radloff, P, Philipps, J, Nkeyi, M, Knobloch, J, Kremsner, P. Increased erythropoietin production in children with severe malarial anemia. Am J Trop Med Hyg. 1995; 53:547551.Google Scholar
Burgmann, H, Looareesuwan, S, Kapiotis, S, Viravan, C, Vanijanonta, S, Hollenstein, U, Wiesinger, E, Presterl, E, Winkler, S, Graninger, W. Serum levels of erythropoietin in acute Plasmodium falciparum malaria. Am J Trop Med Hyg. 1996; 54:280283.CrossRefGoogle ScholarPubMed
Griffith, JW, Sun, T, McIntosh, MT, Bucala, R. Pure hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol. 2009; 183:52085220.Google Scholar
Dodoo, D, Omer, FM, Todd, J, Akanmori, BD, Koram, KA, Riley, EM. Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J Infect Dis. 2002; 185:971979.Google Scholar
Mohan, K, Stevenson, MM. Interleukin-12 corrects severe anemia during blood-stage Plasmodium chabaudi AS in susceptible A/J mice. Exp Hematol. 1998; 26:4552.Google ScholarPubMed
Mcguire, W, Knight, JC, Hill, AVS, Allsopp, CEM, Greenwood, BM, Kwiatkowski, D. Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J Infect Dis. 1999; 179:287290.Google Scholar
McDevitt, MA, Xie, J, Shanmugasundaram, G, Griffith, J, Liu, A, McDonald, C, Thuma, P, Gordeuk, VR, Metz, CN, Mitchell, R, Keefer, J, David, J, Leng, L, Bucala, R. A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia. J Exp Med. 2006; 203:11851196.Google Scholar
Zhong, XB, Leng, L, Beitin, A, Chen, R, McDonald, C, Hsiao, B, Jenison, RD, Kang, I, Park, SH, Lee, A, Gregersen, P, Thuma, P, Bray-Ward, P, Ward, DC, Bucala, R. Simultaneous detection of microsatellite repeats and SNPs in the macrophage migration inhibitory factor (MIF) gene by thin-film biosensor chips and application to rural field studies. Nucleic Acids Res. 2005;33:121129.CrossRefGoogle ScholarPubMed
Awandare, GA, Martinson, JJ, Were, T, Ouma, C, Davenport, GC, Ong’echa, JM, Wang, WK, Leng, L, Ferrell, RE, Bucala, R, Perkins, DJ. MIF promoter polymorphisms and susceptibility to severe malarial anemia. J Infect Dis. 2009; 15:629637.Google Scholar
Jha, AN, Sundaradival, P, Pati, SS, Patra, PK, Thandaraj, K. Variations in ncRNA gene LOC284889 and MIF-794CATT repeats are associated with malaria susceptibility in Indian populations. Malar J. 2013;12:345353.CrossRefGoogle ScholarPubMed
Published Reports of Delayed Hemolytic Anemia After Treatment with Artesunate for Severe Malaria – Worldwide, 2010–2012. Morb Mortal Wkly Rep. 2013;62(1):5–8.Google Scholar
Akinosoglou, KS, Solomou, EE, Gogos, CA. Malaria: a haematological disease. Hematology. 2012; 17:106114.Google Scholar
English, M, Ahmed, M, Ngando, C, Berkley, J, Ross, A. Blood transfusion for severe anaemia in children in a Kenyan hospital. Lancet. 2002; 359:494495.CrossRefGoogle Scholar
van Genderen, PJ, Hesselink, DA, Bezemer, JM, Wismans, PJ, Overbosch, D. efficacy and safety of exchange transfusion as adjunct therapy for severe Plasmodium falciparum malaria in nonimmune travelers: a 10 year single-center experience with a standardized treatments protocol. Transfusion. 2010; 50:787794.Google Scholar
Nieuwenhuis, JA, Meertens, JH, Zijlstra, JG, Ligtenberg, JJ, Tulleken, JE, van der Werf, TS. Automated erythrocytapheresis in severe falciparum malaria: a critical appraisal. Acta Trop. 2006; 98:201206.Google Scholar

References

Zini, G, d’Onofrio, G, Briggs, C, Erber, W, Jou, JM, Lee, SH, et al. ICSH recommendations for identification, diagnostic value, and quantitation of schistocytes. Int J Labor Hematol. 2012; 34(2):107116.Google Scholar
Furlan, M, Robles, R, Galbusera, M, Remuzzi, G, Kyrle, PA, Brenner, B, et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998; 339(22):15781584.Google Scholar
Kremer Hovinga, JA, Vesely, SK, Terrell, DR, Lammle, B, George, JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010; 115(8):15001511.Google Scholar
Coppo, P, Bengoufa, D, Veyradier, A, Wolf, M, Bussel, A, Millot, GA, et al. Severe ADAMTS13 deficiency in adult idiopathic thrombotic microangiopathies defines a subset of patients characterized by various autoimmune manifestations, lower platelet count, and mild renal involvement. Medicine (Baltimore). 2004; 83(4):233244.CrossRefGoogle ScholarPubMed
Terrell, DR, Vesely, SK, Kremer Hovinga, JA, Lammle, B, George, JN. Different disparities of gender and race among the thrombotic thrombocytopenic purpura and hemolytic-uremic syndromes. Am J Hematol. 2010; 85(11):844847.Google Scholar
Terrell, DR, Williams, LA, Vesely, SK, Lammle, B, Hovinga, JA, George, JN. The incidence of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: all patients, idiopathic patients, and patients with severe ADAMTS-13 deficiency. J Thromb Haemost. 2005; 3(7):14321436.Google Scholar
Miller, DP, Kaye, JA, Shea, K, Ziyadeh, N, Cali, C, Black, C, et al. Incidence of thrombotic thrombocytopenic purpura/hemolytic uremic syndrome. Epidemiology. 2004; 15(2):208215.Google Scholar
Miyata, T, Kokame, K, Matsumoto, M, Fujimura, Y. ADAMTS13 activity and genetic mutations in Japan. Hamostaseologie. 2013; 33(2):131137.Google Scholar
Tarr, PI, Gordon, CA, Chandler, WL. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet. 2005; 365(9464):10731086.Google Scholar
Frank, C, Werber, D, Cramer, JP, Askar, M, Faber, M, an der Heiden, M, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med. 2011; 365(19):17711780.CrossRefGoogle Scholar
Lemaire, M, Fremeaux-Bacchi, V, Schaefer, F, Choi, M, Tang, WH, Le Quintrec, M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013; 45(5):531536.Google Scholar
Taylor, CM, Machin, S, Wigmore, SJ, Goodship, TH, working party from the Renal Association tBCfSiH, the British Transplantation S. Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom. Br J Haematol. 2010; 148(1):3747.Google Scholar
Lotta, LA, Garagiola, I, Palla, R, Cairo, A, Peyvandi, F. ADAMTS13 mutations and polymorphisms in congenital thrombotic thrombocytopenic purpura. Hum Mutat. 2010; 31(1):1119.Google Scholar
Inward, CD, Howie, AJ, Fitzpatrick, MM, Rafaat, F, Milford, DV, Taylor, CM. Renal histopathology in fatal cases of diarrhoea-associated haemolytic uraemic syndrome. British Association for Paediatric Nephrology. Pediatr Nephrol. 1997; 11(5):556559.Google Scholar
Taylor, CM, Chua, C, Howie, AJ, Risdon, RA, British Association for Paediatric N. Clinico-pathological findings in diarrhoea-negative haemolytic uraemic syndrome. Pediatr Nephrol. 2004; 19(4):419425.Google Scholar
Scully, M, Hunt, BJ, Benjamin, S, Liesner, R, Rose, P, Peyvandi, F, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012; 158(3):323335.Google Scholar
Loirat, C, Fremeaux-Bacchi, V. Atypical hemolytic uremic syndrome. Orphanet J Rare Dis. 2011; 6:60.Google Scholar
Noris, M, Caprioli, J, Bresin, E, Mossali, C, Pianetti, G, Gamba, S, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010; 5(10):18441859.Google Scholar
Rieger, M, Mannucci, PM, Kremer Hovinga, JA, Herzog, A, Gerstenbauer, G, Konetschny, C, et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood. 2005; 106(4):12621267.Google Scholar
Schwartz, J, Winters, JL, Padmanabhan, A, Balogun, RA, Delaney, M, Linenberger, ML, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J Clin Apher. 2013; 28(3):145284.Google Scholar
O’Brien, KL, Price, TH, Howell, C, Delaney, M. The use of 50% albumin/plasma replacement fluid in therapeutic plasma exchange for thrombotic thrombocytopenic purpura. J Clin Apher. 2013; 28(6):416421.Google Scholar
Zhan, H, Streiff, MB, King, KE, Segal, JB. Thrombotic thrombocytopenic purpura at the Johns Hopkins Hospital from 1992 to 2008: clinical outcomes and risk factors for relapse. Transfusion. 2010; 50(4):868874.Google Scholar
Westwood, JP, Webster, H, McGuckin, S, McDonald, V, Machin, SJ, Scully, M. Rituximab for thrombotic thrombocytopenic purpura: benefit of early administration during acute episodes and use of prophylaxis to prevent relapse. J Thromb Haemost. 2013; 11(3):481490.Google Scholar
Hie, M, Gay, J, Galicier, L, Provot, F, Presne, C, Poullin, P, et al. Preemptive rituximab infusions after remission efficiently prevent relapses in acquired thrombotic thrombocytopenic purpura: experience of the French Thrombotic Microangiopathies Reference Center. Blood. 2014; 124(2):204210.Google Scholar
Bharat, A, Xie, F, Baddley, JW, Beukelman, T, Chen, L, Calabrese, L, et al. Incidence and risk factors for progressive multifocal leukoencephalopathy among patients with selected rheumatic diseases. Arthr Care Res. 2012; 64(4):612615.Google Scholar
Lunel-Fabiani, F, Masson, C, Ducancelle, A. Systemic diseases and biotherapies: understanding, evaluating, and preventing the risk of hepatitis B reactivation. Joint, bone, spine: revue du rhumatisme. Joint Bone Spine. 2014; 81(6):478484.Google Scholar
Shortt, J, Oh, DH, Opat, SS. ADAMTS13 antibody depletion by bortezomib in thrombotic thrombocytopenic purpura. N Engl J Med. 2013; 368(1):9092.CrossRefGoogle ScholarPubMed
Ahmad, HN, Thomas-Dewing, RR, Hunt, BJ. Mycophenolate mofetil in a case of relapsed, refractory thrombotic thrombocytopenic purpura. Eur J Haematol. 2007; 78(5):449452.Google Scholar
Li, GW, Rambally, S, Kamboj, J, Reilly, S, Moake, JL, Udden, MM, et al. Treatment of refractory thrombotic thrombocytopenic purpura with N-acetylcysteine: a case report. Transfusion. 2014; 54(5):12211224.Google Scholar
Cataland, SR, Peyvandi, F, Mannucci, PM, Lammle, B, Kremer Hovinga, JA, Machin, SJ, et al. Initial experience from a double-blind, placebo-controlled, clinical outcome study of ARC1779 in patients with thrombotic thrombocytopenic purpura. Am J Hematol. 2012; 87(4):430432.Google Scholar
Callewaert, F, Roodt, J, Ulrichts, H, Stohr, T, van Rensburg, WJ, Lamprecht, S, et al. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood. 2012; 120(17):36033610.Google Scholar
Scully, M, Thomas, M, Underwood, M, Watson, H, Langley, K, Camilleri, RS, et al. Congenital and acquired thrombotic thrombocytopenic purpura and pregnancy: presentation, management and outcome of subsequent pregnancies. Blood. 2014; 124(2):211219.Google Scholar
Menne, J, Nitschke, M, Stingele, R, Abu-Tair, M, Beneke, J, Bramstedt, J, et al. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: case-control study. BMJ. 2012; 345:e4565.Google Scholar
Braune, SA, Wichmann, D, von Heinz, MC, Nierhaus, A, Becker, H, Meyer, TN, et al. Clinical features of critically ill patients with Shiga toxin-induced hemolytic uremic syndrome. Crit Care Med. 2013; 41(7):17021710.Google Scholar
Wong, CS, Mooney, JC, Brandt, JR, Staples, AO, Jelacic, S, Boster, DR, et al. Risk factors for the hemolytic uremic syndrome in children infected with Escherichia coli O157:H7: a multivariable analysis. Clin Infect Dis. 2012; 55(1):3341.CrossRefGoogle ScholarPubMed
Legendre, CM, Licht, C, Muus, P, Greenbaum, LA, Babu, S, Bedrosian, C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013; 368(23):21692181.Google Scholar
Fremeaux-Bacchi, V, Fakhouri, F, Garnier, A, Bienaime, F, Dragon-Durey, MA, Ngo, S, et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol. 2013; 8(4):554562.Google Scholar
Noris, M, Remuzzi, G. Managing and preventing atypical hemolytic uremic syndrome recurrence after kidney transplantation. Curr Opin Nephrol Hypertens. 2013; 22(6):704712.Google Scholar

References

Rodgers, , et al. Hemolytic anemia following prosthetic valve replacement. Circulation. 1969; 39:155161.Google Scholar
Eyster, E, et al. Chronic intravascular hemolysis after aortic valve replacement. Circulation. 1971; 44:657665.CrossRefGoogle ScholarPubMed
Skoularigis, J, et al. Frequency and severity of intravascular hemolysis after left-sided cardiac valve replacement with Medtronic Hall and St. Jude Medical prostheses, and influence of prosthetic type, position, size and number. Am J Cardiol. 1993; 71:587591 .Google Scholar
Skoularigis, J, et al. Frequency and severity of intravascular hemolysis after left-sided cardiac valve replacement with Medtronic Hall and St. Jude Medical prostheses, and influence of prosthetic type, position, size and number. Am J Cardiol. 1993; 71:587591.Google Scholar
Chang, H, et al. Chronic intravascular hemolysis after valvular surgery. J. Formos Med Assoc. 1990; 89:880.Google Scholar
Shapira, Y, et al. Hemolysis associated with prosthetic heart valves. Cardiology in Review. 2009; 17:121124.Google Scholar
Mecozzi, G, et al. Intravascular hemolysis in patients with new-generation prosthetic heart valves: a prospective study. J Thorac Cardiovasc Surg. 2002; 123:550556.Google Scholar
Shapira, Y, et al. Hemolysis associated with prosthetic heart valves. Cardiol Rev. 2009; 17:121124.Google Scholar
Demirsoy, E, et al. Hemolysis after mitral valve repair: a report of five cases and literature review. J Heart Valve Dis. 2008; 17:2430.Google ScholarPubMed
Nevaril, CG, et al. Erythrocyte damage and destruction induced by shearing stress. J Lab Clin Med. 1968; 71:784.Google Scholar
Linde, T, et al. Aortic root compliance influences hemolysis in mechanical heart valve prostheses: an in-vitro study. Int J Artif Organs. 2012; 35:495502.Google Scholar
Sears, DA, et al. Intravascular hemolysis due to intracardiac prosthetic devices: diurnal variations related to activity. Am J Med. 1965; 39:341354.Google Scholar
Mecozzi, G, et al. Intravascular hemolysis in patients with new-generation prosthetic heart valves: a prospective study. J Thorac Cardiovasc Surg. 2002; 123:550556.Google Scholar
Shapira, Y, et al. Hemolysis associated with prosthetic heart valves. Cardiol Rev. 2009; 17:121124 .Google Scholar
Maraj, R, et al. Evaluation of hemolysis in patients with prosthetic heart valves. Clin Cardiol 1998; 21:387392.CrossRefGoogle ScholarPubMed
Shapira, Y, et al. Hemolysis associated with prosthetic heart valves. Cardiol Rev. 2009; 17:121124.Google Scholar
Rodgers, , et al. Hemolytic anemia following prosthetic valve replacement. Circulation. 1969; 39:155161.Google Scholar
Shapira, Y, et al. Hemolysis associated with prosthetic heart valves. Cardiol Rev. 2009; 17:121124.Google Scholar
Shapira, Y, et al. Erythropoietin can obviate the need for repeated heart valve replacement in high-risk patients with severe mechanical hemolytic anemia: case reports and literature review. J Heart Valve Dis. 2001; 10:431435.Google Scholar
Golbasi, I, et al. The effect of pentoxifylline on haemolysis in patients with double cardiac prosthetic valves. Acta Cardiol. 2003; 58:379383.Google Scholar
Fleischer, R. Uber eine neue Form von Hämoglobinurie beim Menschen. Klin Wochenschr. 1881; 18:691.Google Scholar
Davidson, RJL. Exertional hemoglobinuria: a report on three cases with studies on the haemolytic mechanism. J Clin Pathol. 1964; 17:536540.Google Scholar
Gilligan, DR, et al. March hemoglobinuria in a woman. N Engl J Med. 1950; 243:944948.Google Scholar
Streeton, JA. Traumatic haemoglobinuria caused by karate exercises. Lancet. 1967; 2(7508):191192.Google Scholar
Schwartz, KA. March hemoglobinuria: report of a case after basketball and congo drum playing. Ohio State Med J. 1973; 69:448–49.Google Scholar
Ham, TH, et al. Studies on the destruction of red blood cells. Blood. 1948; 3:373403.Google Scholar
Endoh, Y, et al. Causes and time course of acute hemolysis after burn injury in the rat. J Burn Care Rehab. 1992; 13:203209.Google Scholar
Ham, TH, et al. Studies on the destruction of red blood cells. Blood. 1948; 3:373403.Google Scholar
Endoh, Y, et al. Causes and time course of acute hemolysis after burn injury in the rat. J Burn Care Rehab. 1992; 13:203209.Google Scholar
Loebl, EC, et al. The mechanism of erythrocyte destruction in the early post-burn period. Ann Surg. 1973; 178:681686.Google Scholar
Hatherill, JR, et al. Thermal injury, intravascular hemolysis and toxic oxygen products. J Clin Invest. 1986; 78:629636.Google Scholar
Wilson, RJM, et al. Invasion and growth of Plasmodium falciparum in different types of human erythrocyte. Bull WHO. 1977; 55:179185.Google Scholar
Weatherall, DJ, et al. Malaria and the red cell. Hematology(ASH Education Program). 2002; 35:3557.Google Scholar
Yuthavong, Y, et al. The relationship of phosphorylation of membrane proteins with osmotic fragility and filterability of Plasmodium berghei-infected mouse erythrocytes. Biochim Biophys Acta. 1987; 929:278287.Google Scholar
George, JN, et al. Erythrocytic abnormalities in experimental malaria. 1967; 124:1086–1090.Google Scholar
Overman, RR. Reversible cellular permeability alterations in disease. In vivo studies on sodium, potassium, and chloride concentrations in erythrocytes of the malarious monkey. 1948; 152:113–121.Google Scholar
Ricketts, WE. Bartonella bacilliformis anemia (Oroya fever). A study of thirty cases. Blood. 1948; 3:10251049.Google Scholar
Xu, YH, et al. Purification of deformin, an extracellular protein synthesized by Bartonella bacilliformis which causes deformation of erythrocyte membranes. Biochim Biophys Acta. 1995; 1234:173183.Google Scholar
Reynafarje, C, et al. The hemolytic anemia of human bartonellosis. Blood. 1961; 17:562578.Google Scholar
Van Bunderen, CC, et al. Clostridium perfringens septicaemia with massive intravascular haemolysis: a case report and review of the literature. Neth J Med. 2010; 68:343346.Google Scholar
Terebelo, H, et al. Implication of plasma free hemoglobin in massive clostridial hemolysis. JAMA. 1982 248:20282029.Google Scholar
Bätge, B, et al. Clostridial sepsis with massive intravascular hemolysis: rapid diagnosis and successful treatment. Intensive Care Med. 1992; 18:488490.Google Scholar
Paulino, C, et al. Clostridium perfringens sepsis with massive intravascular haemolysis: a rare presentation. J Med Cases. 2012; 3:207210.Google Scholar
Bätge, B, et al. Clostridial sepsis with massive intravascular hemolysis: rapid diagnosis and successful treatment. Intensive Care Med. 1992; 18:488490.Google Scholar
Klein, RL, et al. T-cryptantigen exposure in neonatal necrotizing enterocolitis. J. Pediatric Surg. 1986; 21:11551158.Google Scholar
Placzek, MM, et al. T activation haemolysis and death after blood transfusion. Arch Dis Child. 1987; 62:743744.Google Scholar
McPharlane, RG, et al. Hemolysis and production of opalescence in serum and lecitho-vitillin by a toxin of Clostridium welchii. J Pathol Bacteriol. 1941; 522:99103.Google Scholar
Bennett, JM, et al. Spherocytic hemolytic anemia and acute cholecystitis caused by Clostridium welchii. N Engl J Med. 1968; 268:10701072.Google Scholar
Hübel, W, et al. Investigation of the pathogenesis of massive hemolysis in a case of Clostridium perfringens septicemia. Ann Hematol. 1993; 67:145147.Google Scholar
Bätge, B, et al. Clostridial sepsis with massive intravascular hemolysis: rapid diagnosis and successful treatment. Intensive Care Med. 1992; 18:488490.Google Scholar
Paulino, C, et al. Clostridium Perfringens sepsis with massive intravascular haemolysis: a rare presentation. J Med Cases. 2012; 3:207210.Google Scholar
Bätge, B, et al. Clostridial sepsis with massive intravascular hemolysis: rapid diagnosis and successful treatment. Intensive Care Med. 1992; 18:488490.Google Scholar
Fairbanks, VF, et al. Copper sulfate-induced hemolytic anemia. Arch Intern Med. 1967; 120:428432.Google Scholar
Robitaille, GA, et al. Hemolytic anemia in Wilson’s Disease. JAMA. 1977; 237:24022403.Google Scholar
Valsami, S, et al. Acute copper sulphate poisoning: a forgotten cause of severe intravascular haemolysis. BJH. 2011; 156:294.Google Scholar
Fairbanks, VF, et al. Copper sulfate-induced hemolytic anemia. Arch Intern Med. 1967; 120:428432.Google Scholar
Boulard, M, et al. The effect of copper on red cell enzyme activities. J Clin Invest. 1972; 51:459461.Google Scholar
Robitaille, GA, et al. Hemolytic anemia in Wilson’s Disease. JAMA. 1977; 237:24022403.Google Scholar
Kiss, JE, et al. Effective removal of copper by plasma exchange in fulminant Wilson’s disease. Transfusion. 1998; 38:327331.Google Scholar
Asfaha, S, et al. Plasmapheresis for hemolytic crisis and impending acute liver failure in Wilson disease. J Clin Apher. 2007; 22:295298.Google Scholar
Matsumura, K, et al. Plasma exchange for hemolytic crisis in Wilson disease. Ann of Int Med. 1999; 131:866.Google Scholar
Vallee, BL, et al. Biochemical effects of mercury, cadmium, and lead. Ann Rev Biochem. 1972; 41:91128.Google Scholar
Champe, PC, Harvey, RA, eds. Biochemistry, 4th ed. Baltimore: Lippincott Williams and Wilkins; 2008:279.Google Scholar
Lachant, NA, et al. Inhibition of the pentose phosphate shunt by lead: a potential mechanism of hemolysis in lead poisoning. Blood. 1984; 63:518524.Google Scholar
Lachant, NA, et al. Inhibition of the pentose phosphate shunt by lead: a potential mechanism of hemolysis in lead poisoning. Blood. 1984; 63:518524.Google Scholar
Osband, M, et al. The hemolytic effect of lead on glucose-6-phosphate dehydrogenase deficient erythrocytes. Ped Res. 1981; 15:583.Google Scholar
Aly, MH, et al. Hemolytic anemia associated with lead poisoning from shotgun pellets and the response to Succimer treatment. Am J Hematol. 1993; 44:280283.Google Scholar
Gelfand, EW, et al. Intravenous immune globulin in autoimmune and inflammatory diseases. NEJM. 2012; 367:20152025.Google Scholar
Simon, TL, et al. eds. Rossi’s Principles of Transfusion Medicine. Oxford: Blackwell Publishing, Ltd; 2009:262.Google Scholar
Kahwaji, J, et al. Acute hemolysis after high-dose intravenous immunoglobulin therapy in highly HLA sensitized patients. Clin J Am Soc Nephrol. 2009; 4:19931997.Google Scholar
Pintova, S, et al. IVIG—A hemolytic culprit. NEJM. 2012; 367:974976.Google Scholar
Thomas, MJ, et al. Hemolysis after high-dose intravenous Ig. Blood. 1993; 82:3789.Google Scholar
Pintova, S, et al. IVIG—A hemolytic culprit. NEJM. 2012; 367:974976.Google Scholar
Pintova, S, et al. IVIG—A hemolytic culprit. NEJM. 2012; 367:974976.Google Scholar
Crosby, WH. Normal functions of the spleen relative to red blood cells: a review. Blood. 1959; 14:399408.Google Scholar
Cooper, RA, et al. An analysis of lipoproteins, bile acids, and red cell membranes associated with target cells and spur cells in patients with liver disease. J Clin Invest. 1972; 51:3182.CrossRefGoogle ScholarPubMed
Morse, EE. Mechanisms of hemolysis in liver disease. Ann Clin Lab Sci. 1990; 20:169174.Google Scholar
Cooper, RA. Anemia with spur cells: a red cell defect acquired in serum and modified in the circulation. J Clin Invest. 1969; 48:18201831.Google Scholar
Cooper, RA, et al. Role of the spleen in membrane conditioning and hemolysis of spur cells in liver disease. NEJM. 1974; 290:12791284.Google Scholar
Morse, EE. Mechanisms of hemolysis in liver disease. Ann Clin Lab Sci. 1990; 20:169174.Google Scholar
Hilgard, P, et al. Asialoglycoprotein receptor facilitates hemolysis in patients with alcoholic liver cirrhosis. Hepatology. 2004; 39:13981407.Google Scholar
Ricard, MP. Spur cell hemolytic anemia of severe liver disease. Haematologica. 84:654 1999.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×