Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T16:00:37.988Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2016

Kazuaki Taira
Affiliation:
Waseda University, Japan
Get access

Summary

To make the book more up-to-date, additional references have been included in References.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Adams, R.A. and Fournier, J.J.F. (2003). Sobolev spaces, Pure and Applied Mathematics, second edition (Elsevier/Academic Press, Amsterdam).
[2] Agmon, S. (1965). Lectures on elliptic boundary value problems (Van Nostrand, Princeton, New Jersey).
[3] Agmon, S., Douglis, A. and Nirenberg, L. (1959). Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12, 623–727.Google Scholar
[4] Amann, H. (1978). Periodic solutions of semi-linear parabolic equations. In: Nonlinear analysis, L., Cesari, R., Kannan and H. F., Weinberger (eds.), 1–29 (Academic Press, New York San Francisco London).
[5] Aronszajn, N. and Smith, K.T. (1961). Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble) 11, 385–475.Google Scholar
[6] Banach, S. (1963). Théorie des opérations linéaires, second edition (Chelsea Publishing Company, New York).
[7] Bergh, J. and Löfström, J. (1976). Interpolation spaces, an introduction (Springer-Verlag, Berlin Heidelberg New York).
[8] Bourdaud, G. (1982). Lp-estimates for certain non-regular pseudo-differential operators, Comm. Part. Diff. Eq. 7, 1023–1033.Google Scholar
[9] Boutet de Monvel, L. (1971). Boundary problems for pseudo-differential operators, Acta Math. 126, 11–51.Google Scholar
[10] Calderón, A.P. (1963). Boundary value problems for elliptic equations. In: Outlines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963), 303–304 (Acad. Sci. USSR Siberian Branch, Moscow).
[11] Chazarain, J. et Piriou, A. (1981). Introduction à la théorie des équations aux dérivées partielles linéaires (Gauthier-Villars, Paris).
[12] Egorov, Ju.V. (1975). Subelliptic operators, Uspekhi Mat. Nauk 30:2 (182), 57–114, 30:3 (183), 57–104 (Russian); English translation: Russian Math. Surv. 30:2, 59–118, 30:3, 55–105.Google Scholar
[13] Fefferman, C. and Phong, D.H. (1978). On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. 75, 4673–4674.Google Scholar
[14] Folland, G.B. (1995). Introduction to partial differential equations, Second edition (Princeton University Press, Princeton, New Jersey).
[15] Folland, G.B. (1999). Real analysis, second edition (John Wiley & Sons, New York Chichester Weinheim Brisbane Singapore Toronto).
[16] Friedman, A. (1969). Partial differential equations (Holt, Rinehart and Winston, New York).
[17] Friedman, A. (1970). Foundations of modern analysis (Holt, Rinehart and Winston Inc., New York Montreal London).
[18] Fujita, H. and Kato, T. (1964). On the Navier–Stokes initial value problem I, Arch. Rat. Mech. and Anal. 16, 269–315.Google Scholar
[19] Fujiwara, D. (1970). On some homogeneous boundary value problems bounded below, J. Fac. Sci. Univ. Tokyo Sec. IA. 17, 123–152.Google Scholar
[20] Fujiwara, D. and Uchiyama, K. (1971). On some dissipative boundary value problems for the Laplacian, J. Math. Soc. Japan 23, 625–635.Google Scholar
[21] Gagliardo, E. (1958). Proprietà di alcune classi di funzioni in più variabili, Ric. di Mat. 7, 102–137.Google Scholar
[22] Gårding, L. (1953). Dirichlet's problem for linear elliptic partial differential equations, Math. Scand. 1, 55–72.Google Scholar
[23] Gel'fand, I.M. and Shilov, G.E. (1964). Generalized functions I, Properties and operations (Academic Press, New York London).
[24] Gilbarg, D. and Trudinger, N.S. (1998). Elliptic partial differential equations of second order, 1998 edition (Springer-Verlag, New York Berlin Heidelberg Tokyo).
[25] Gohberg, I.C. and Kreĭn, M.G. (1957/1960). The basic propositions on defect numbers, root numbers and indices of linear operatorsUspehi Mat. Nauk. 12 (1957), 43–118 (Russian); English translation: Amer. Math. Soc. Transl. 13 (1960), 185–264.Google Scholar
[26] Henry, D. (1981). Geometric theory of semilinear parabolic equations, Lecture Notes in Math. No. 840 (Springer-Verlag, Berlin).
[27] Hille, E. and Phillips, R.S. (1957). Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, 1957 edition (Amer. Math. Soc., Providence, Rhode Island).
[28] Hopf, E. (1952). A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc. 3, 791–793.Google Scholar
[29] Hörmander, L. (1966). Pseudo-Differential operators and non-elliptic boundary problems, Ann. of Math. 83, 129–209.Google Scholar
[30] Hörmander, L. (1967). Pseudo-differential operators and hypoelliptic equations. In: Proc. Sym. Pure Math., X, Singular integrals, A.P., Calderón (ed.), 138–183 (Amer. Math. Soc., Providence, Rhode Island).
[31] Hörmander, L. (1979). Subelliptic operators. In: Seminar on singularities of solutions of linear partial differential equations, Annals of Mathematics Studies, No. 91, 127–208 (Princeton Univ. Press, Princeton).
[32] Hörmander, L. (1994). The analysis of linear partial differential operators III, 1994 edition (Springer-Verlag, Berlin Heidelberg New York Tokyo).
[33] Kannai, Y. (1976). Hypoellipticity of certain degenerate elliptic boundary value problems, Trans. Amer. Math. Soc. 217, 311–328.Google Scholar
[34] Kreĭn, S.G. (1967/1971/1972). Linear differential equations in Banach space (Nauka, Moscow, 1967) (Russian); English translation: (Amer. Math. Soc., Providence, Rhode Island, 1971); Japanese translation: (Yoshioka Shoten, Kyoto, 1972).
[35] Kumano-go, H. (1981). Pseudo-Differential operators (MIT Press, Cambridge, Massachusetts).
[36] Lang, S. (2002). Introduction to differentiable manifolds, Universitext, second edition (Springer-Verlag, New York).
[37] Lax, P.D. (1957). Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24, 627–646.Google Scholar
[38] Lions, J.-L. et Magenes., E. (1968/1972). Problèmes aux limites non homogènes et applications 1, 2 (Dunod, Paris, 1968); English translation: Non-homogeneous boundary value problems and applications 1, 2 (Springer-Verlag, Berlin Heidelberg New York, 1972).
[39] Masuda, K. (1975). Evolution equations (Japanese) (Kinokuniya-Shoten, Tokyo).
[40] McLean, W. (2000). Strongly elliptic systems and boundary integral equations (Cambridge University Press, Cambridge).
[41] Melin, A. (1971). Lower bounds for pseudo-differential operators, Ark. Mat. 9, 117–140.Google Scholar
[42] Melin, A and Sjöstrand, J. (1976). Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Comm. Partial Differential Equations 1, 313–400.Google Scholar
[43] Mizohata, S. (1973). The theory of partial differential equations (Cambridge University Press, London, New York).
[44] Munkres, J.R. (1966). Elementary differential topology, Annals of Mathematics Studies, No. 54 (Princeton University Press, Princeton, New Jersey).
[45] Pazy, A. (1983). Semigroups of linear operators and applications to partial differential equations (Springer-Verlag, Berlin).
[46] Peetre, J. (1961). Another approach to elliptic boundary problems, Comm. Pure Appl. Math. 14, 711–731.Google Scholar
[47] Protter, M.H. and Weinberger, H.F. (1967). Maximum principles in differential equations (Prentice-Hall, Englewood Cliffs, New Jersey).
[48] Rempel, S. and Schulze, B.-W. (1982). Index theory of elliptic boundary problems (Akademie-Verlag, Berlin).
[49] Schwarz, G. (1995). Hodge decomposition – A method for solving boundary value problems, Lecture Notes in Mathematics, Vol. 1607. (Springer- Verlag, Berlin Heidelberg New York Tokyo).
[50] Seeley, R.T. (1964). Extension of C8 functions defined in a half-space, Proc. Amer. Math. Soc. 15, 625–626.Google Scholar
[51] Seeley, R.T. (1965). Refinement of the functional calculus of Calderón and Zygmund, Proc. Nederl. Akad. Wetensch., Ser. A 68, 521–531.Google Scholar
[52] Seeley, R.T. (1966). Singular integrals and boundary value problems, Amer. J. Math. 88, 781–809.Google Scholar
[53] Stein, E.M. (1962) The characterization of functions arising as potentials II, Bull. Amer. Math. Soc. 68, 577–582.Google Scholar
[54] Stein, E.M. (1970). Singular integrals and differentiability properties of functions (Princeton Univ. Press, Princeton).
[55] Suzuki, H. (1969/1970) Improving estimates for differential operators in two independent variables, Publ. RIMS, Kyoto Univ. 5, 287–299.Google Scholar
[56] Taibleson, M.H. (1964). On the theory of Lipschitz spaces of distributions on Euclidean n-space I, J. Math. Mech. 13, 407–479.Google Scholar
[57] Taira, K. (1976). On some degenerate oblique derivative problems, J. Fac. Sci. Univ. Tokyo Sec.IA 23, 259–287.Google Scholar
[58] Taira, K. (1978). Sur le problème de la dérivée oblique I, J. Math. Pures Appl. 57, 379–395.Google Scholar
[59] Taira, K. (1979). Sur le problème de la dérivée oblique II, Ark. för Mat. 17, 177–191.Google Scholar
[60] Taira, K. (1981). Un théorème d'existence et d'unicité des solutions pour des problèmes aux limites non-elliptiques, J. Functional Analysis, 43, 166–192.Google Scholar
[61] Taira, K. (1988). Diffusion processes and partial differential equations (Academic Press, San Diego New York London Tokyo).
[62] Taira, K. (1989). The theory of semigroups with weak singularity and its applications to partial differential equations, Tsukuba J. Math. 13, 513– 562.Google Scholar
[63] Taira, K. (1996). Boundary value problems for elliptic integro-differential operators, Math. Z. 222, 305–327.Google Scholar
[64] Taira, K. (2009). Boundary value problems and Markov processes, Lecture Notes in Mathematics, No. 1499, second edition (Springer-Verlag, Berlin Heidelberg New York).
[65] Taira, K. (2014). Semigroups, boundary value problems and Markov processes, Springer Monographs in Mathematics, second edition (Springer- Verlag, Berlin Heidelberg New York).
[66] Tanabe, H. (1975/1979). Equations of evolution (Iwanami-Shoten, Tokyo, 1975) (Japanese); English translation: (Pitman, London, 1979).
[67] Tanabe, H. (1997). Functional analytic methods for partial differential equations (Marcel Dekker, New York Basel).
[68] Taylor, M. (1981). Pseudo-Differential operators, Princeton Mathematical Series, No. 34 (Princeton Univ. Press, Princeton, New Jersey).
[69] Treves, F. (1971). A new method of the subelliptic estimates, Comm. Pure Appl. Math. 24, 71–115.Google Scholar
[70] Triebel, H. (1978). Interpolation theory, function spaces, differential operators (North-Holland, Amsterdam).
[71] Watson, G.N. (1944). A treatise on the theory of Bessel functions, second edition (Cambridge University Press, Cambridge).
[72] Wells, R.O. Jr. (2008). Differential analysis on complex manifolds, Graduate Texts in Mathematics, Vol. 65, third edition (Springer-Verlag, New York).
[73] Winzell, B. (1981). A boundary value problem with an oblique derivative, Comm. Partial Differential Equations 6, 305–328.Google Scholar
[74] Wloka, J. (1987). Partial differential equations (Cambridge University Press, Cambridge).
[75] Yosida, K. (1980). Functional analysis, sixth edition (Springer-Verlag, Berlin Heidelberg New York).

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kazuaki Taira, Waseda University, Japan
  • Book: Analytic Semigroups and Semilinear Initial Boundary Value Problems
  • Online publication: 05 April 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316729755.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kazuaki Taira, Waseda University, Japan
  • Book: Analytic Semigroups and Semilinear Initial Boundary Value Problems
  • Online publication: 05 April 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316729755.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kazuaki Taira, Waseda University, Japan
  • Book: Analytic Semigroups and Semilinear Initial Boundary Value Problems
  • Online publication: 05 April 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316729755.015
Available formats
×