Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T20:08:02.471Z Has data issue: false hasContentIssue false

5 - Positive Bounded Formulas

Published online by Cambridge University Press:  05 May 2013

C. Ward Henson
Affiliation:
University of Illinois, Urbana-Champaign
José Iovino
Affiliation:
University of Texas Health Science Center, San Antonio
Alexander S. Kechris
Affiliation:
California Institute of Technology
Edward Odell
Affiliation:
University of Texas, Austin
Get access

Summary

In this chapter we introduce the key ingredients of the logic for normed space structures that is described in this paper. These are the positive bounded formulas and the concept of approximate satisfaction of such formulas in normed space structures.

Let L be a signature for a normed space structure ℳ based on (M(s)sS). Recall that S has a distinguished element s = S for which M(s) = ℝ is the sort of real numbers.

We begin considering ℳ from the model theoretic point of view, introducing a formal language based on L and a semantics according to which this language is interpreted in ℳ. In addition to the symbols of the signature L, we also need for each element s of the sort index set S, a countable set of symbols called the variables of sort s.

We begin defining the formal language by introducing the set of terms of L, or L-terms. Each term is a finite string of symbols, each of which may be a variable or a function symbol of L, or one of the symbols (or, which are used for punctuation. In this many-sorted context, each term is associated with a unique sort which indicates its range. The formal definition is recursive.

Definition. An L-term with range of sort s is a string which can be obtained by finitely many applications of the following rules of formation:

  • If x is a variable of L of sort s, then x is a term with range of sort s.

  • […]

Type
Chapter
Information
Analysis and Logic , pp. 21 - 30
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×