Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T10:58:57.249Z Has data issue: false hasContentIssue false

2 - Link components and their small-signal electro-optic models

Published online by Cambridge University Press:  08 August 2009

Charles H. Cox, III
Affiliation:
Photonic Systems Inc, Massachusetts
Get access

Summary

Introduction

In this chapter we develop the small-signal relationships between the RF and optical parameters for the most common electro-optic devices used in intensity modulation, direct detection links. There are numerous device parameters we could use for this task; we concentrate here – as we will throughout this book – on those parameters that can be measured and selected by the link designer – as opposed to those parameters that can only be measured and controlled by the device designer.

To provide the basis for comparing these and future devices, we develop a figure of merit for optical modulators and detectors: the RF-to-optical incremental modulation efficiency for modulation devices and its converse the optical-to-RF incremental detection efficiency for photodetection devices. These efficiencies are useful in link design because they provide a single parameter for evaluating device performance in a link that represents the combined effects of a device's optical and electrical parameters. Further, by using the same parameter for both direct and external modulation devices, we begin the process – which will carry on through much of the book – of using a single set of tools for evaluating both types of links.

The most common electro-optic devices in use for links today are the in-plane diode laser, both Fabry–Perot and DFB, for direct modulation, the Mach–Zehnder modulator for external modulation and a photodiode for photodetection. Thus on a first reading, one may want to focus on these devices.

Type
Chapter
Information
Analog Optical Links
Theory and Practice
, pp. 19 - 68
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. A. 1964. Handbook of Mathematical Functions, New York: Dover Publications, Section 10.4, p. 446
Ackerman, E. I. 1997. Personal communication
Agrawal, G. P. and Dutta, N. K. 1986. Long-Wavelength Semiconductor Lasers, New York: Van Nostrand Reinhold
Alferness, R. C. 1982. Waveguide electrooptic modulators, IEEE Trans. Microwave Theory Tech., 30, 1121–37CrossRefGoogle Scholar
Betts, G. E., Johnson, L. M. and Cox, C. H. III 1988. High-sensitivity bandpass RF modulator in LiNbO3, Proc. SPIE, 993, 110–16CrossRefGoogle Scholar
Bridges, W. B. and Schaffner, J. H. 1995. Distortion in linearized electrooptic modulators, IEEE Trans. Microwave Theory Tech., 43, 2184–97CrossRefGoogle Scholar
Chen, T. R., Eng, L. E., Zhao, B., Zhuanag, Y. H. and Yariv, A. 1993. Strained single quantum well InGaAs lasers with a threshold current of 0.25 mA, Appl. Phys. Lett., 63, 2621–3CrossRefGoogle Scholar
Choquette, K. and Hou, H. 1997. Vertical-cavity surface emitting lasers: moving from research to manufacturing, Proc. IEEE, 85, 1730–9CrossRefGoogle Scholar
Coldren, L. A. and Corzine, S. W. 1995. Diode Lasers and Photonic Integrated Circuits, New York: John Wiley & Sons
Cox, C. H., III, 1996. Optical transmitters. In The Electronics Handbook, J. C. Whitaker, ed., Boca Raton, FL: CRC Press, Chapter 57
Cox, C. H. III, Ackerman, E. I. and Betts, G. E. 1996. Relationship between gain and noise figure of an optical analog link, IEEE MTT -S Symp. Dig., 1551–4Google Scholar
Gradshteyn I. S. and Ryzhik I. M. 1965. Tables of Integrals, Series and Products, 4th edition, New York: Academic Press, equation 1.412.1
Graham, C. H., Bartlett, N. R., Brown, J. L., Hsia, Y., Mueller, C. G. and Riggs, L. A. 1965. Vision and Visual Perception, New York: John Wiley & Sons, 351–3
Gray, P. E. and Searle, C. L. 1969. Electronic Principles: Physics, Models and Circuits, New York: John Wiley & Sons, Section 11.4.1
Halemane, T. R. and Korotky, S. K. 1990. Distortion characteristics of optical directional coupler modulators, IEEE Trans. Microwave Theory Tech., 38, 669–73CrossRefGoogle Scholar
IEEE 1964. IEEE standard letter symbols for semiconductor devices, IEEE Trans. Electron Devices, 11, no. 8
Knupfer, B., Kiesel, P., Kneissl, M., Dankowski, S., Linder, N., Weimann, G. and Dohler, G. H. 1993. Polarization-insensitive high-contrast GaAs/AlGaAs waveguide modulator based on the Franz-Keldysh effect, IEEE Photon. Technol. Lett., 5, 1386–8CrossRefGoogle Scholar
Lee, H. 1998. Personal communication
Martin, W. E. 1975. A new waveguide switch/modulator for integrated optics, Appl. Phys. Lett., 26, 562–3CrossRefGoogle Scholar
Papuchon, M., Roy, A. M. and Ostrowsky, B. 1977. Electrically active optical bifurcation: BOA, Appl. Phys. Lett., 31, 266–7CrossRefGoogle Scholar
Thompson, G. H. B. 1980. Physics of Semiconductor Laser Devices, New York: John Wiley & Sons
Welstand, R. 1997. High linearity modulation and detection in semiconductor electroabsorption waveguides, Ph. D. dissertation, University of California, San Diego, Chapter 3, pp. 62–4
Yang, G. M., MacDougal, M. H. and Dapkus, P. D. 1995. Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation, Electron. Lett., 31, 886–8CrossRefGoogle Scholar
Yu, P. K. L. 1997. Optical receivers. In The Electronics Handbook, Florida: CRC Press, Chapter 58
M. Peters, M. Majewski and L. Coldren, Intensity modulation bandwidth limitations of vertical-cavity surface-emitting laser diodes, Proc. IEEE LEOS Summer Topical Meeting (LEOS-STM'93), March 1993, pp. 111–13
Fujitsu, Fujitsu Laser Model FLD3F7CX, 1996
Moller, B., Zeeb, E., Hackbarth, T. and Ebeling, K., High speed performance of 2-D vertical-cavity laser diode arrays, IEEE Photon. Technol. Lett., 6 (1994), 1056–8CrossRefGoogle Scholar
Chen, T., Zhuang, Y., Yariv, A., Blauvelt, H. and Bar-Chaim, N.. Combined high power and high frequency operation of InGaAsP/InP lasers at 1.3 μm, Electron. Lett., 26 (1990), 985–7CrossRefGoogle Scholar
Y. Nakano, M. Majewski, L. Coldren, H. Cao, K. Tada and H. Hosomatsu. Intrinsic modulation response of a gain-coupled MQW DFB laser with an absorptive grating, Proc. Integrated Photonics Research Conf., March 1993, pp. 23–6
W. Cheng, K. Buehring, R. Huang, A. Appelbaum, D. Renner and C. Su. The effect of active layer doping on static and dynamic performance of 1.3 μm InGaAsP lasers with semi-insulating current blocking layers, Proc. SPIE, 1219 (1990)
Chen, T., Chen, P., Ungar, J. and Bar-Chaim, N.. High speed complex-coupled DFB laser at 1.3 μm, Electron. Lett., 30 (1994), 1055–7CrossRefGoogle Scholar
Lipsanen, H., Coblentz, D., Logan, R., Yadvish, R., Moreton, P. and Temkin, H.. High-speed InGaAsP/InP multiple-quantum-well laser, IEEEPhoton. Technol. Lett., 4 (1992), 673–5CrossRefGoogle Scholar
Chen, T., Ungar, J., Yeh, X. and Bar-Chaim, N.. Very large bandwidth strained MQW DFB laser at 1.3 μm, IEEEPhoton. Technol. Lett., 7 (1995), 458–60CrossRefGoogle Scholar
10. Huang, R., Wolf, D., Cheng, W., Jiang, C., Agarwal, R., Renner, D., Mar, A. and Bowers, J.. High-speed, low-threshold InGaAsP semi-insulating buried crescent lasers with 22 GHz bandwidth, IEEEPhoton. Technol. Lett., 4 (1992), 293–5CrossRefGoogle Scholar
Lester, L., O'Keefe, S., Schaff, W. and Eastman, L.. Multiquantum well strained layer lasers with improved low frequency response and very low damping, Electron. Lett., 28 (1991), 383–5CrossRefGoogle Scholar
Matsui, Y., Murai, H., Arahira, S., Kutsuzawa, S. and Ogawa, Y.. 30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser, IEEEPhoton. Technol. Lett., 9 (1997), 25–7CrossRefGoogle Scholar
Ralston, J., Weisser, S., Eisele, K., Sah, R., Larkins, E., Rosenzweig, J., Fleissner, J. and Bender, K.. Low-bias-current direct modulation up to 33 GHz in InGaAs/GaAs/AlGaAs pseudomorphic MQW ridge-waveguide devices, IEEEPhoton. Technol. Lett., 6 (1994), 1076–9CrossRefGoogle Scholar
Weisser, S., Larkis, E., Czotscher, K., Benz, W., Daleiden, J., Esquivias, I., Fleissner, J., Ralston, J., Romero, B., Sah, R., Schonfelder, A. and Rosenzweig, J.. Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity multiple-quantum-well lasers, IEEEPhoton. Technol. Lett., 8 (1996), 608–10CrossRefGoogle Scholar
Gee, C., Thurmond, G. and Yen, H.. 17-GHz bandwidth electro-optic modulator, Appl. Phys. Lett., 43 (1993), 998–1000CrossRefGoogle Scholar
Cox, C., Ackerman, E. and Betts, G.. Relationship between gain and noise figure of an optical analog link, IEEE MTT -S Digest (1996), 1551–4Google Scholar
Betts, G., Johnson, L. and Cox, C.. High-sensitivity lumped-element bandpass modulators in LiNbO3, IEEEJ. Lightwave Technol. (1989), 2078–83CrossRefGoogle Scholar
Jungerman, R. and Dolfi, D.. Lithium niobate traveling-wave optical modulators to 50 GHz, Proc. IEEE LEOS Summer Topical Meeting (LEOS-STM'92), August (1992), 27–8Google Scholar
Wey, A., Bristow, J., Sriram, S. and Ott, D.. Electrode optimization of high speed Mach–Zender interferometer, Proc. SPIE, 835 (1987), 238–45CrossRefGoogle Scholar
Kawano, K., Kitoh, T., Jumonji, H., Nozawa, T., Yanagibashi, M and Suzuki, T.. Spectral-domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach–Zehnder optical modulators, IEEE Trans. Microwave Theory Tech., 39 (1991), 1595–601CrossRefGoogle Scholar
Madabhushi, R.. Wide-band Ti: LiNbO3 optical modulator with low driving voltage, Proc. Optical Fiber Communications Conf. (OFC '96), 206–7
Noguchi, K., Mitomi, O., Kawano, K and Yanagibashi, M.. Highly efficient 40-GHz bandwidth Ti:LiNbO3 optical modulator employing ridge structure, IEEEPhoton. Technol. Lett., 5 (1993), 52–4CrossRefGoogle Scholar
Kawano, K., Kitoh, T., Jumonji, H., Nozawa, T. and Yanagibashi, M.. New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength, Electron. Lett., 25 (1989), 1382–3CrossRefGoogle Scholar
Rangaraj, M., Hosoi, T. and Kondo, M.. A wide-band Ti:LiNbO3 optical modulator with a conventional coplanar waveguide type electrode, IEEEPhoton. Technol. Lett., 4 (1992), 1020–2CrossRefGoogle Scholar
Noguchi, K., Kawano, K., Nozawa, T. and Suzuki, T.. A Ti:LiNbO3 optical intensity modulator with more than 20 GHz bandwidth and 5.2 V driving voltage, IEEEPhoton. Technol. Lett., 3 (1991), 333–5CrossRefGoogle Scholar
Noguchi, K., Miyazawa, H. and Mitomi, O.. 75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure, Electron. Lett., 30 (1994), 949–51CrossRefGoogle Scholar
Mikami, O., Noda, J. and Fukuma, M. (NTT, Musashino, Japan). Directional coupler type light modulator using LiNbO3 waveguides, Trans. IECE Japan, E-61 (1978), 144–7Google Scholar
Rolland, C., Mak, G., Prosyk, K., Maritan, C. and Puetz, N.. High speed and low loss, bulk electroabsorption waveguide modulators at 1.3 μm, IEEEPhoton. Technol. Lett., 3 (1991), 894–6CrossRefGoogle Scholar
Liu, Y., Chen, J., Pappert, S., Orazi, R., Williams, A., Kellner, A., Jiang, X. and Yu, P.. Semiconductor electroabsorption waveguide modulator for shipboard analog link applications, Proc. SPIE, 2155 (1994), 98–106CrossRefGoogle Scholar
Ido, T., Sano, H., Moss, D. J., Tanaka, S. and Takai, A.. Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage, IEEEPhoton. Technol. Lett., 6 (1994), 1207–9CrossRefGoogle Scholar
Kotaka, I., Wakita, K., Kawano, K., Asai, M. and Naganuma, M.. High speed and low-driving voltage InGaAs/InAlAs multiquantum well optical modulators, Electron. Lett., 27 (1991), 2162–3CrossRefGoogle Scholar
Ido, T., Sano, H., Suzuki, M., Tanaka, S and Inoue, H.. High-speed MQW electroabsorption optical modulators integrated with low-loss waveguides, IEEEPhoton. Technol. Lett., 7 (1995), 170–2CrossRefGoogle Scholar
Devaux, F., Bordes, P., Ougazzaden, A., Carre, M. and Huet, F.. Experimental optimization of MQW electroabsorption modulators with up to 40 GHz bandwidths, Electron. Lett., 30 (1994), 1347–8CrossRefGoogle Scholar
Bowers, J. and Burrus, C.. Ultrawide-band long-wavelength p-i-n photodetectors, J. Lightwave Technol., 15 (1987), 1339–50CrossRefGoogle Scholar
Ortel Corporation. Microwave FP Laser Transmitters, 1530B, Microwaves on Fibers Catalog, 1995
Williams, A., Kellner, A. and Yu., P.High frequency saturation measurements of an InGaAs/InP waveguide photodetector, Electron. Lett., 29 (1993), 1298–9CrossRefGoogle Scholar
Bowers, J. and Burrus, C.. Heterojunction waveguide photodetectors, Proc. SPIE, 716 (1986), 109–13CrossRefGoogle Scholar
Makiuchi, M., Hamaguchi, H., Mikawa, T. and Wada, O.. Easily manufactured high-speed back-illuminated GaInAs/InP p-i-n photodiode, IEEEPhoton. Technol. Lett., 3 (1991), 530–1CrossRefGoogle Scholar
Bowers, J. and Burrus, C.. Ultrawide-band long-wavelength p-i-n photodetectors, J. Lightwave Technol., 15 (1987), 1339–50CrossRefGoogle Scholar
Kato, K., Hata, S., Kozen, A., Yoshida, J. and Kawano, K.. High-efficiency waveguide InGaAs pin photodiode with bandwidth of over 40 GHz, IEEEPhoton. Technol. Lett., 3 (1991), 473–5CrossRefGoogle Scholar
Lin, L., Wu, M., Itoh, T., Vang, T., Muller, R., Sivco, D. and Cho, A.. Velocity-matched distributed photodetectors with high-saturation power and large bandwidth, IEEEPhoton. Technol. Lett., 8 (1996), 1376–8CrossRefGoogle Scholar
Kato, K., Hata, S., Kawano, K., Yoshida, H. and Kozen, A.. A high-efficiency 50 GHz InGaAs multimode waveguide photodetector, IEEEJ. Quantum Electron., 28 (1992), 2728–35CrossRefGoogle Scholar
Wake, D., Spooner, T., Perrin, S. and Henning, I.. 50 GHz InGaAs edge-coupled pin photodetector, Electron. Lett., 27 (1991), 1073–5CrossRefGoogle Scholar
Kato, K., Kozen, A., Maramoto, Y., Nagatsuma, T. and Yaita, M.. 110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a l.55-μm wavelength, IEEEPhoton. Technol. Lett., 6 (1994), 719–21CrossRefGoogle Scholar
Wey, Y., Giboney, K., Bowers, J., Rodwell, M., Silvestre, P., Thiagarajan, P. and Robinson, G.. 108-GHz GaInAs/InP p-i-n photodiodes with integrated bias tees and matched resistors, IEEEPhoton. Technol. Lett., 5 (1993), 1310–12Google Scholar
Ozbay, E., Li, K. and Bloom, D.. 2.0 ps, 150 GHz GaAs monolithic photodiode and all-electronic sampler, IEEEPhoton. Technol. Lett., 3 (1991), 570–2CrossRefGoogle Scholar
Giboney, K., Nagarajan, R., Reynolds, T., Allen, S., Mirin, R., Rodwell, M. and Bowers, J.. Travelling-wave photodetectors with 172-GHz bandwidth-efficiency product, IEEEPhoton. Technol. Lett., 7 (1995), 412–14CrossRefGoogle Scholar
Chen, Y., Williamson, S., Brock, T., Smith, R. and Calawa, A.. 375-GHz-bandwidth photoconductive detector, Appl. Phys. Lett., 59 (1991), 1984–6CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×