Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T20:58:07.989Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 August 2019

Bernard F. Burke
Affiliation:
Massachusetts Institute of Technology
Francis Graham-Smith
Affiliation:
University of Manchester
Peter N. Wilkinson
Affiliation:
University of Manchester
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P., and 1103 others. 2017. GW170608: Observation of a 19 solar-mass binary black hole coalescence. ApJ, 851, L35.Google Scholar
Adam, R., and 50 others. 2017. Sub-structure and merger detection in resolved NIKA Sunyaev–Zel’dovich images of distant clusters. ArXiv e-prints.Google Scholar
Ade, P. A. R., and 277 others. 2015. Planck 2013 results. XXXII. The updated Planck catalogue of Sunyaev–Zel’dovich sources. A&A, 581, A14.Google Scholar
Ade, P. A. R., and 235 others. 2016. Planck 2015 results. XXIV. Cosmology from Sunyaev– Zel’dovich cluster counts. A&A, 594, A24.Google Scholar
Akgiray, A., and Weinreb, S. 2012. Ultrawideband square and circular quad-ridge horns with near-constant beamwidth. In: Proc. IEEE International Conf. on Ultra-Wideband, p. 518.CrossRefGoogle Scholar
Alpar, M. A., Cheng, K. S., and Pines, D. 1989. Vortex creep and the internal temperature of neutron stars – linear and nonlinear response to a glitch. ApJ, 346, 823832.Google Scholar
Alpher, R. A., Bethe, H., and Gamov, G. 1948. The origin of the chemical elements. Phys. Rev., 73, 803804.CrossRefGoogle Scholar
Altenhoff, W. J., Downes, D., Pauls, T., and Schraml, J. 1979. Survey of the galactic plane at 4.875 GHz. A&AS, 35, 2354.Google Scholar
Alves, M. I. R., and seven others. 2015. The HIPASS survey of the Galactic plane in radio recombination lines. MNRAS, 450, 20252042.Google Scholar
Allen, C. W. 2000. Allen’s Astrophysical Quantities, 4th edn. Springer.Google Scholar
Antonucci, R. R. J., and Miller, J. S. 1985. Spectropolarimetry and the nature of NGC 1068. ApJ, 297, 621632.CrossRefGoogle Scholar
Archibald, A. M., and 17 others. 2009. A radio pulsar/X-ray binary link. Science, 324, 1411.CrossRefGoogle ScholarPubMed
Avision, S., and George, S. J. 2013. A graphical tool for demonstrating the techniques of radio interferometry. Eur. J. Phys., 34, 7. arXiv:1211.0228.pdf.Google Scholar
Baade, W., and Minkowski, R. 1954. Indentification of the radio sources in Cassiopeia, Cygnus A, and Puppis A. ApJ, 119, 206214.Google Scholar
Baars, J. W. M. 2007. The Paraboloidal Reflector Antenna in Radio Astronany and Communications. Springer.Google Scholar
Baars, J. W. M., and Kärcher, H. J. 2017. Radio Telescope Reflectors. Springer.Google Scholar
Baars, J. W. M., and six others. 1973. The synthesis radio telescope at Westerbork. IEEE Proc., 61, 12581266.CrossRefGoogle Scholar
Baars, J. W. M., Genzel, R., Pauliny-Toth, I. I. K., and Witzel, A. 1977. The absolute spectrum of CAS A – an accurate flux density scale and a set of secondary calibrators. A&A, 61, 99106.Google Scholar
Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M., and Goss, W. M. 1982. A millisecond pulsar. Nature, 300, 615618.CrossRefGoogle Scholar
Bahcall, J. N., and seven others. 1995. Hubble Space Telescope and MERLIN Observations of the jet in 3C 273. ApJ, 452, L91.Google Scholar
Baldwin, J. E., and Warner, P. J. 1976. Aperture synthesis without phase measurements. MNRAS, 175, 345353.Google Scholar
Baldwin, J. E., and Warner, P. J. 1978. Phaseless aperture synthesis. MNRAS, 182, 411422.Google Scholar
Bambi, C. 2017. Astrophysical black holes: a compact pedagogical review. ArXiv e-prints.CrossRefGoogle Scholar
Bartel, N., and 23 others. 1994. The shape, expansion rate and distance of supernova 1993J from VLBI measurements. Nature, 369, 584.Google Scholar
Bassa, C. G., and 12 others. 2014. A state change in the low-mass X-ray binary XSS J12270–4859. MNRAS, 441, 18251830.Google Scholar
Bastian, T. S. 1994. Stellar flares. Space Sci. Rev., 68, 261274.CrossRefGoogle Scholar
Bastian, T. S., Benz, A. O., and Gary, D. E. 1998. Radio emission from solar flares. Ann. Rev. Astr. Ap., 36, 131188.CrossRefGoogle Scholar
Bates, S. D., Lorimer, D. R., and Verbiest, J. P. W. 2013. The pulsar spectral index distribution. MNRAS, 431, 13521358.CrossRefGoogle Scholar
Battye, R. A., Browne, I. W. A., Dickinson, C., Heron, G., Maffei, B., and Pourtsidou, A. 2013. H I intensity mapping: a single dish approach. MNRAS, 434, 12391256.Google Scholar
Baudry, A., and eight others 2018. Vibrationally excited water emission at 658 GHz from evolved stars. A&A, 609, A25.Google Scholar
Beck, R. 1996. The structure of interstellar magnetic fields as derived from polarization observations in radio continuum. In: Roberge, W. G., and Whittet, D. C. B. (eds.), Polarimetry of the Interstellar Medium, p. 475. Astronomical Society of the Pacific Conference Series, vol. 97.Google Scholar
Beck, R. 2016. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev., 24(Dec.), 4.Google Scholar
Becker, R. H., White, R. L., and Helfand, D. J. 1995. The FIRST survey: faint images of the radio sky at twenty centimeters. ApJ, 450, 559.CrossRefGoogle Scholar
Bell, A. R., Gull, S. F., and Kenderdine, S. 1975. New radio map of Cassiopeia A at 5 GHz. Nature, 257, 463465.CrossRefGoogle Scholar
Bennett, A. S. 1962. The revised 3C catalogue of radio sources. Mem. RAS, 68, 163.Google Scholar
Bennett, C. L., and nine others. 1996. Four-year COBE DMR cosmic microwave background observations: maps and basic results. ApJ, 464, L1.CrossRefGoogle Scholar
Bennett, C. L., and 20 others. 2013. Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. ApJS, 208, 20.Google Scholar
Bentz, M. C., and Katz, S. 2015. The AGN black hole mass database. PASP, 127, 67.Google Scholar
Benz, A. O., Monstein, C., and Meyer, H. 2005. Callisto, a new concept for solar radio spectrometers. Sol. Phys., 226, 143151.Google Scholar
Beswick, R. 2006. Radio supernovae. In: Proc. 8th European VLBI Network Symp., p. 51.Google Scholar
Beuermann, K., Kanbach, G., and Berkhuijsen, E. M. 1985. Radio structure of the Galaxy – thick disk and thin disk at 408 MHz. A&A, 153, 1734.Google Scholar
Bhatnagar, S., Cornwell, T. J., Golap, K., and Uson, J. M. 2008. Correcting direction-dependent gains in the deconvolution of radio interferometric images. A&A, 487, 419429.Google Scholar
Bhatnagar, S., Rau, U., and Golap, K. 2013. Wide-field wide-band interferometric imaging: the WB A-projection and hybrid algorithms. ApJ, 770, 91.Google Scholar
Bicknell, G. V., Mukherjee, D., Wagner, A. Y., Sutherland, R. S., and Nesvadba, N. P. H. 2018. Relativistic jet feedback – II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies. MNRAS, 475, 34933501.Google Scholar
Biggs, A., and Browne, I. 2017. Gravitational lens time delays using polarization monitoring. Galaxies, 5, 76.Google Scholar
Bignami, G. F., Caraveo, P. A., and Mereghetti, S. 1993 . Understanding GEMINGA: past and future observations. In: Friedlander, M., Gehrels, N., and Macomb, D. J. (eds.), Compton Gamma-Ray Observatory: St. Louis, MO 1992, pp. 233237. American Institute of Physics Conference Series, vol. 280.Google Scholar
Bilous, A. V., and 26 others. 2016. A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra. A&A, 591, A134.Google Scholar
Binney, J. 1992. WARPS. Ann. Rev. Astr. Ap., 30, 5174.Google Scholar
Binney, J., and Tremaine, S. 1987. Galactic Dynamics. Princeton University Press.Google Scholar
Binney, J., Gerhard, O. E., Stark, A. A., Bally, J., and Uchida, K. I. 1991. Understanding the kinematics of Galactic centre gas. MNRAS, 252, 210218.CrossRefGoogle Scholar
Biretta, J. A., Moore, R. L., and Cohen, M. H. 1986. The evolution of the compact radio source in 3C 345. I – VLBI observations. ApJ, 308, 93109.Google Scholar
Birkinshaw, M. 1999. The Sunyaev–Zel’dovich effect. Phys. Rep., 310, 97195.CrossRefGoogle Scholar
Blake, G. A., Masson, C. R., Phillips, T. G., and Sutton, E. C. 1986. The rotational emission-line spectrum of Orion A between 247 and 263 GHz. ApJS, 60, 357374.Google Scholar
Bland-Hanothoin, J., and Gerhard, O. 2016. The Galaxy in context: structural, kinematic and integrated properties. Ann. Rev. Astron. Astrophys., 54, 529596.Google Scholar
Blandford, R. D., and Znajek, R. L. 1977. Electromagnetic extraction of energy from Kerr black holes. MNRAS, 179, 433456.Google Scholar
Blandford, R. D., McKee, C. F., and Rees, M. J. 1977. Super-luminal expansion in extragalactic radio sources. Nature, 267, 211216.Google Scholar
Bleem, L. E., and seven others. 2015. A new reduction of the Blanco Cosmology Survey: an optically selected galaxy cluster catalog and a public release of optical data products. ApJS, 216, 20.Google Scholar
Blitz, L., Binney, J., Lo, K. Y., Bally, J., and Ho, P. T. P. 1993. The centre of the Milky Way. Nature, 361, 417424.Google Scholar
Boboltz, D. A., Diamond, P. J., and Kemball, A. J. 1997. R Aquarii: first detection of circumstellar SiO maser proper motions. ApJ, 487, L147L150.Google Scholar
Boggess, N. W., and 17 others. 1992. The cosmic background explorer (COBE): mission and science overview. Highlights of Astronomy, 9, 273.Google Scholar
Bøifot, A. M. 1991. Classification of ortho-mode transducers. European Trans. Telecom-mun., 2, 503510.Google Scholar
Bonato, M., and 14 others. 2018. ALMACAL IV: a catalogue of ALMA calibrator continuum observations. MNRAS, 478, 15121519.Google Scholar
Boorman, J. A., McLean, D. J., Sheridan, K. V., and Wild, J. P. 1961. The spectral components of 150 major solar radio events (1952–1960). MNRAS, 123, 87.Google Scholar
Booth, R. S., Norris, R. P., Porter, N. D., and Kus, A. J. 1981. Observations of a circumstellar shell around the OH/IR star OH127.8-0.0. Nature, 290, 382384.Google Scholar
Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J., and Mahesh, N. 2018. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature, 555, 6770.CrossRefGoogle ScholarPubMed
Bracewell, R. N. 1961. Interferometry and spectral sensitivity island diagram. IRE Trans. Ant. Propag., 9, 59.Google Scholar
Bracewell, R. N. 1962. Radio astronomy techniques. Handbuch der Phys., 54, 42.Google Scholar
Bracewell, R. N., and Roberts, J. A. 1954. Aerial smoothing in radio astronomy. Australian J. Phys., 7, 615.Google Scholar
Bradley, L. D., Kaiser, M. E., and Baan, W. A. 2004. Physical conditions in the narrow-line region of M51. ApJ, 603, 463.Google Scholar
Braun, R. 2013. Understanding synthesis imaging dynamic range. A&A, 551, A91.Google Scholar
Bridle, A. H., and Schwab, F. R. 1989. Wide field imaging I: bandwidth and time-average smearing. ASPC, 6, 247.Google Scholar
Bridle, A. H., Hough, D. H., Lonsdale, C. J., Burns, J. O., and Laing, R. A. 1994. Deep VLA imaging of twelve extended 3CR quasars. AJ, 108, 766820.Google Scholar
Brouw, W. N., and Spoelstra, T. A. T. 1976. Linear polarization of the galactic background at frequencies between 408 and 1411 MHz. Reductions. A&AS, 26, 129.Google Scholar
Brown, J. C., and seven others. 2007. Rotation measures of extragalactic sources behind the Southern Galactic Plane: new insights into the large-scale magnetic field of the inner Milky Way. ApJ, 663(July), 258266.Google Scholar
Browne, I. W. A., and 21 others. 2003. The Cosmic Lens All-Sky Survey – II. Gravitational lens candidate selection and follow-up. MNRAS, 341, 1332.Google Scholar
Bryerton, E. W., Morgan, M. A., and Pospieszalski, M. W. 2013. Ultra low noise cryogenic amplifiers for radio astronomy. In: Proc. 2013 IEEE Radio and Wireless Symp. (RWS).Google Scholar
Burke, B. F., and Franklin, K. L. 1955. Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res., 60, 213217.Google Scholar
Burn, B. J. 1966. On the depolarization of discrete radio sources by Faraday dispersion. MNRAS, 133, 67.Google Scholar
Burrows, A. 2000. Supernova explosions in the Universe. Nature, 403, 727733.Google Scholar
Burton, W. B. 1988. The structure of our galaxy derived from observations of neutral hydrogen. In: Verschuur, G. L., and Kellerman, K. I. (eds.), Galactic and Extragalactic Radio Astronomy, pp. 295358. Springer.Google Scholar
Cane, H. V. 1978. A 30 MHz map of the whole sky. Australian J. Phys., 31, 561.CrossRefGoogle Scholar
Cane, H. V. 1979. Spectra of the non-thermal radio radiation from the galactic polar regions. MNRAS, 189, 465478.Google Scholar
Carilli, C. L., and Walter, F. 2013. Cool gas in high-redshift galaxies. Ann. Rev. Astr. Ap., 51, 105161.Google Scholar
Carilli, C. L., and 64 others. 2018. HI 21cm cosmology and the bi-spectrum: closure diagnostics in massively redundant interferometric arrays. ArXiv e-prints.CrossRefGoogle Scholar
Carlstrom, J. E., Holder, G. P., and Reese, E. D. 2002. Cosmology with the Sunyaev– Zel’dovich effect. Ann. Rev. Astr. Ap., 40, 643680.Google Scholar
Carlstrom, J. E., and 43 others. 2011. The 10 meter South Pole Telescope. PASP, 123, 568.Google Scholar
Chael, A. A., Johnson, M. D., Bouman, K. L., Blackburn, L. L., Akiyama, K., and Narayan, R. 2018. Interferometric imaging directly with closure phases and closure amplitudes. ArXiv e-prints.CrossRefGoogle Scholar
Chapman, J. M., and Cohen, R. J. 1986. MERLIN observations of the circumstellar envelope of VX Sagittarius. MNRAS, 220, 513528.Google Scholar
Chatterjee, S., and 24 others. 2017. A direct localization of a fast radio burst and its host. Nature, 541, 5861.Google Scholar
Cherepashchuk, A. M., and 20 others. 2005. INTEGRAL observations of SS433: results of a coordinated campaign. A&A, 437, 561573.Google Scholar
Cheung, A. C., Rank, D. M., Townes, C. H., Knowles, S. H., and Sullivan, III, W. T. 1969. Distribution of ammonia density, velocity, and rotational excitation in the region of Sagittarius B2. ApJ, 157, L13.Google Scholar
Christiansen, W. N., and Hogböm, J. A. 1985. Radiotelescopes, 2nd edn. Cambridge University Press.Google Scholar
Clarricoats, P. J. B., and Olver, A. D. 1984. Corrugated Horns for Microwave Antennas. IEEE.Google Scholar
Clark, B. G. 2003. A review of the history of VLBI. In: Zensus, J. A., Cohen, M. H., and Ros, E. (eds.), Radio Astronomy at the Fringe, p. 1. Astronomical Society of the Pacific Conference Series, vol. 300.Google Scholar
Clemens, D. P. 1985. Massachusetts–Stony Brook galactic plane CO survey – the galactic disk rotation curve. ApJ, 295, 422428.Google Scholar
Cohen, M. H., and Shaffer, D. B. 1971. Positions of radio sources from long-baseline interferometry. AJ, 76, 91.Google Scholar
Cohen, M. H., and nine others. 1977. Radio sources with superluminal velocities. Nature, 268, 405409.Google Scholar
Cohen, R. J. 1989. Compact maser sources. Rep. Progr. Phys., 52, 881943.Google Scholar
Cohen, R. J., Brebner, G. C., and Potter, M. M. 1990. Magnetic field decay in the bipolar outflow source Cepheus-A. MNRAS, 246, 3P.Google Scholar
Condon, J. J. 1984. Cosmological evolution of radio sources. ApJ, 287, 461474.Google Scholar
Condon, J. J. 1988. Radio Sources and Cosmology, pp. 641678. Springer.Google Scholar
Condon, J. J. 1992. Radio emission from normal galaxies. Ann. Rev. Astr. Ap., 30, 575611.Google Scholar
Condon, J. J. 1997. Errors in elliptical Gaussian fits. PASP, 109, 166172.Google Scholar
Condon, J. J. 2007 (Dec.). Deep radio surveys. In: Afonso, J., Ferguson, H. C., Mobasher, B., and Norris, R. (eds.), Deepest Astronomical Surveys, p. 189. Astronomical Society of the Pacific Conference Series, vol. 380.Google Scholar
Condon, J. J. 2017. In Proc. Conf. on The Many Facets of Extragalactic Radio Surveys: Towards New Scientific Challenges, 20–23 October 2015, Bologna, Italy. Online at https://pos.sissa.it/267/004/pdf.Google Scholar
Condon, J. J., and Matthews, A M. 2018. ACDM cosmology for astronomers. arXiv:18404.10047v1.CrossRefGoogle Scholar
Condon, J. J., and Ransom, S. M. 2016. Essential Radio Astronomy. Princeton University Press.Google Scholar
Condon, J. J., Anderson, M. L., and Helou, G. 1991. Correlations between the far-infrared, radio, and blue luminosities of spiral galaxies. ApJ, 376, 95103.Google Scholar
Condon, J. J., Broderick, J. J., Seielstad, G. A., Douglas, K., and Gregory, P. C. 1994. A 4.85 GHz sky survey. 3: Epoch 1986 and combined (1986 + 1987) maps covering 0° to ≤ 75°. Astron. J., 107, 1829.CrossRefGoogle Scholar
Condon, J. J., and six others. 1998. The NRAO VLA Sky Survey. AJ, 115, 16931716.Google Scholar
Condon, J. J., and eight others. 2012. Resolving the radio source background: deeper understanding through confusion. ApJ, 758, 23.Google Scholar
Conway, J. E., Cornwell, T. J., and Wilkinson, P. N. 1990. Multi-frequency synthesis – a new technique in radio interferometric imaging. MNRAS, 246, 490.Google Scholar
Conway, R. G., and Kronberg, P. P. 1969. Interferometric measurement of polarization distribution in radio sources. MNRAS, 142, 11.Google Scholar
Cornwell, T. J. 1981. VLA Scientific Memorandum, 135.Google Scholar
Cornwell, T. J. 1986. Synthesis imaging: self-calibration. In: Perley, R. A., Schwab, F. R., and Bridle, A. H. (eds.), Synthesis Imaging, pp. 137147. NRAO.Google Scholar
Cornwell, T. J. 1987. Radio-interferometric imaging of weak objects in conditions of poor phase stability – the relationship between speckle masking and phase closure methods. A&A, 180, 269274.Google Scholar
Cornwell, T. J. 1988. Radio-interferometric imaging of very large objects. A&A, 202, 316321.Google Scholar
Cornwell, T. J. 2008. Multiscale CLEAN deconvolution of radio synthesis images. IEEE J. Sel. Topics Signal Process., 2, 793801.Google Scholar
Cornwell, T. J., and Perley, R. A. 1992. Radio-interferometric imaging of very large fields – the problem of non-coplanar arrays. A&A, 261, 353364.Google Scholar
Cornwell, T. J., and Wilkinson, P. N. 1981. A new method for making maps with unstable radio interferometers. MNRAS, 196, 10671086.Google Scholar
Cornwell, T. J., Golap, K., and Bhatnagar, S. 2008. The noncoplanar baselines effect in radio interferometry: the W-Projection Algorithm. IEEE J. Sel. Topics Signal Process., 2, 647657.Google Scholar
Cotton, W. D. 1995. Fringe fitting. In: Zensus, J. A., Diamond, P. J., and Napier, P. J. (eds.), Very Long Baseline Interferometry and the VLBA, p. 189. Astronomical Society of the Pacific Conference Series, vol. 82.Google Scholar
Cotton, W. D., and nine others. 1979. 3C 279 – the case for ‘superluminal’ expansion. ApJ, 229, L115L117.Google Scholar
Cox, D. P., and Reynolds, R. J. 1987. The local interstellar medium. Ann. Rev. Astr. Ap., 25, 303344.Google Scholar
Crawford, A. B., Hogg, D. C., and Hunt, L. E. 1961. A horn-reflector antenna for space communication. Bell Syst. Tech. J., 40, 10951116.Google Scholar
Crill, B. P., and 36 others. 2003. BOOMERANG: a balloon-borne millimeter-wave telescope and total power receiver for mapping anisotropy in the cosmic microwave background. ApJS, 148, 527541.Google Scholar
Damashek, M., Backus, P. R., Taylor, J. H., and Burkhardt, R. K. 1982. Northern Hemisphere pulsar survey – a third radio pulsar in a binary system. ApJ, 253, L57– L60.Google Scholar
Dame, T. M., and Thaddeus, P. 1985. A wide-latitude CO survey of molecular clouds in the northern Milky Way. ApJ, 297, 751765.Google Scholar
Dame, T. M., and eight others. 1987. A composite CO survey of the entire Milky Way. ApJ, 322, 706720.Google Scholar
Dame, T. M., Hartmann, D., and Thaddeus, P. 2001. The Milky Way in molecular clouds: a new complete CO survey. ApJ, 547, 792813.Google Scholar
Davenport, W. D., and Rost, W. L. 1958. An Introduction to the Theory of Random Signals and Noise. McGraw Hill.Google Scholar
Davies, R. D., Dickinson, C., Banday, A. J., Jaffe, T. R., Górski, K. M., and Davis, R. J. 2006. A determination of the spectra of Galactic components observed by the Wilkinson Microwave Anisotropy Probe. MNRAS, 370, 11251139.Google Scholar
Davis, R. J., Muxlow, T. W. B., and Conway, R. G. 1985. Radio emission from the jet and lobe of 3C273. Nature, 318, 343345.Google Scholar
De Young, D. S. 2002. The Physics of Extragalatic Radio Sources. University of Chicago Press.Google Scholar
de Zotti, G., Massardi, M., Negrello, M., and Wall, J. 2010. Radio and Millimeter continuum surveys and their astrophysical implications. A &AR, 18, 1.Google Scholar
Deller, A. T., and ten others. 2011 (Feb.). DiFX2: A more flexible, efficient, robust and powerful software correlator. Astrophysics Source Code Library.Google Scholar
Dermer, C. D., and Giebels, B. 2016. Active galactic nuclei at gamma-ray energies. Comptes Rendus Phys., 17, 594616.Google Scholar
Deshpande, A. A., and Rankin, J. M. 2001. The topology and polarization of sub-beams associated with the ‘drifting’ sub-pulse emission of pulsar B0943+10 – I. Analysis of Arecibo 430- and 111-MHz observations. MNRAS, 322, 438460.Google Scholar
Diamond, P. J. 1995. VLBI data reduction in practice. In: Zensus, J. A., Diamond, P. J., and Napier, P. J. (eds.), Very Long Baseline Interferometry and the VLBA, p. 227. Astronomical Society of the Pacific Conference Series, vol. 82.Google Scholar
Dickel, J. R., and Willis, A. G. 1980. The radio emission of the supernova remnants CTB1 and the Cygnus Loop. A&A, 85, 5565.Google Scholar
Dickey, J. M., and Lockman, F. J. 1990. H I in the Galaxy. Ann. Rev. Astr. Ap., 28, 215261.Google Scholar
Dickinson, C. 2016. CMB foregrounds – a brief review. ArXiv e-prints, June.Google Scholar
Diep, P. N., and nine others. 2016. CO and HI emission from the circumstellar envelopes of some evolved stars. In: Qain, L., and Li, D. (eds.), Frontiers in Radio Astronomy and FAST Early Sciences Symp. 2015, p. 61. Astronomical Society of the Pacific Conference Series, vol. 502.Google Scholar
Doeleman, S. S., and 27 others. 2008. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic centre. Nature, 455, 7880.Google Scholar
Dougherty, S. M., Bode, M. F., Lloyd, H. M., Davis, R. J., and Eyres, S. P. 1995. High-resolution radio images of the symbiotic star R Aquarii. MNRAS, 272, 843849.Google Scholar
Dowell, J., Taylor, G. B., Schinzel, F. K., Kassim, N. E., and Stovall, K. 2017. The LWA1 Low Frequency Sky Survey. MNRAS, 469, 45374550.Google Scholar
Duin, R. M., and Strom, R. G. 1975. A multifrequency study of the radio structure of 3C10, the remnant of Tycho’s supernova. A&A, 39, 3342.Google Scholar
Duncan, R. C., and Thompson, C. 1992. Formation of very strongly magnetized neutron stars – implications for gamma-ray bursts. ApJ, 392, L9–L13.Google Scholar
Ekers, R. D. 1983. In: Kellermann, K. I., and Sheets, B. (eds.), Serendipitous Discoveries in Radio Astronomy, Proc. NRAO Workshop, p. 154.Google Scholar
Elitzur, M. 1992. Astronomical masers. Ann. Rev. Astr. Ap., 30, 75112.Google Scholar
Ellingson, S. W., Craig, J., Dowell, J., Taylor, G. B., and Helmboldt, J. F. 2013. Design and commissioning of the LWA1 radio telescope. ArXiv e-prints.Google Scholar
Emerson, D. T., Klein, U., and Haslam, C. G. T. 1979. A multiple beam technique for overcoming atmospheric limitations to single-dish observations of extended radio sources. A&A, 76, 92105.Google Scholar
Endres, C. P., Schlemmer, S., Schilke, P., Stutzki, J., and Müller, H. S. P. 2016. The Cologne database for molecular spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC. J. Molecular Spectroscopy, 327, 95104.Google Scholar
Engels, D., Etoka, S., Gérard, E., and Richards, A. 2015 (Aug.). Phase-lag distances of OH masing AGB stars. In: Kerschbaum, F., Wing, R. F., and Hron, J. (eds.), Why Galaxies Care about AGB Stars III: A Closer Look in Space and Time, p. 473. Astronomical Society of the Pacific Conference Series, vol. 497.Google Scholar
Espinoza, C., Lyne, A., Stappers, B., and Kramer, M. 2011. Glitches in the rotation of pulsars. In: Burgay, M., D’Amico, N., Esposito, P., Pellizzoni, A., and Possenti, A. (eds.), pp. 117120. American Institute of Physics Conference Series, vol. 1357.Google Scholar
Espinoza, C. M., Lyne, A. G., and Stappers, B. W. 2017. New long-term braking index measurements for glitching pulsars using a glitch-template method. MNRAS, 466, 147162.Google Scholar
Ettori, S., and six others. 2013. Mass profiles of galaxy clusters from X-ray analysis. Space Sci. Rev., 177, 119154.Google Scholar
Ewen, H. I., and Purcell, E. M. 1951. Observation of a line in the Galactic radio spectrum: radiation from Galactic hydrogen at 1,420 Mc./sec. Nature, 168, 356.Google Scholar
Eyres, S. P. S., Davis, R. J., and Bode, M. F. 1996. Nova Cygni 1992 (V1974 Cygni): MERLIN observations from 1992 to 1994. MNRAS, 279, 249256.Google Scholar
Fabian, A. C. 2012. Observational evidence of active galactic nuclei feedback. Ann. Rev. Astr. Ap., 50, 455489.CrossRefGoogle Scholar
Fabrika, S. 2004. The jets and supercritical accretion disk in SS433. Astrophys. Space Phys. Rev., 12, 1152.Google Scholar
Fan, L., Knudsen, K. K., Fogasy, J., and Drouart, G. 2017. ALMA detections of CO emission in the most luminous, heavily dust-obscured quasars at z > 3. ArXiv e-prints.+3.+ArXiv+e-prints.>Google Scholar
Fanaroff, B. L., and Riley, J. M. 1974. The morphology of extragalactic radio sources of high and low luminosity. MNRAS, 167, 31P–36P.Google Scholar
Fender, R. P., and seven others. 1999. MERLIN observations of relativistic ejections from GRS 1915+105. MNRAS, 304, 865876.Google Scholar
Fermi, E. 1949. On the origin of the cosmic radiation. Phys. Rev., 75, 11691174.Google Scholar
Fey, A. L., and 30 others. 2015. The second realization of the international celestial reference frame by very long baseline interferometry. AJ, 150, 58.Google Scholar
Fich, M., and Tremaine, S. 1991. The mass of the Galaxy. Ann. Rev. Astr. Ap., 29, 409445.Google Scholar
Fixsen, D. J., and ten others. 1996. A balloon-borne millimeter-wave telescope for cosmic microwave background anisotropy measurements. ApJ, 470, 63.Google Scholar
Frail, D. A., Vasisht, G., and Kulkarni, S. R. 1997. The changing structure of the radio nebula around the soft gamma-ray repeater SGR 1806-20. ApJ, 480, L129–L132.Google Scholar
Frater, R. H., Goss, W. M., and Wendt, H. W. 2013. Bernard Yarnton Mills AC FAA. 8 August 1920 – 25 April 2011. Biographical Memoirs of Fellows of the Royal Society, 59, 215239.Google Scholar
Garrett, M. A., Calder, R. J., Porcas, R. W., King, L. J., Walsh, D., and Wilkinson, P. N. 1994. Global VLBI observations of the gravitational lens system 0957+561A, B. MNRAS, 270, 457.Google Scholar
Garrington, S. T., Leahy, J. P., Conway, R. G., and Laing, R. A. 1988. A systematic asymmetry in the polarization properties of double radio sources with one jet. Nature, 331, 147149.Google Scholar
Gehrels, N., and Chen, W. 1993. The Geminga supernova as a possible cause of the local interstellar bubble. Nature, 361, 706.Google Scholar
Gentile, G., Salucci, P., Klein, U., and Granato, G. L. 2007. NGC 3741: the dark halo profile from the most extended rotation curve. MNRAS, 375, 199212.Google Scholar
Georgelin, Y. M., and Georgelin, Y. P. 1976. The spiral structure of our Galaxy determined from H II regions. A&A, 49, 5779.Google Scholar
Gérard, E., and Le Bertre, T. 2006. Circumstellar atomic hydrogen in evolved stars. AJ, 132, 25662583.Google Scholar
Ghez, A. M., and seven others. 2005. Stellar orbits around the Galactic Center black hole. ApJ, 620, 744757.Google Scholar
Giacconi, R., Gursky, H., Kellogg, E., Schreier, E., and Tananbaum, H. 1971. Discovery of periodic X-ray pulsations in Centaurus X-3 from UHURU. ApJ, 167, L67.Google Scholar
Gillessen, S., and six others. 2009. Monitoring stellar orbits around the massive black hole in the Galactic Center. ApJ, 692, 10751109.Google Scholar
Ginzburg, V. L., and Syrovatskii, S. I. 1969. Developments in the theory of synchrotron radiation and its reabsorption. Ann. Rev. Astr. Ap., 7, 375.Google Scholar
Girard, J. N., and 73 others. 2016. Imaging Jupiter’s radiation belts down to 127 MHz with LOFAR. A&A, 587, A3.Google Scholar
Gizani, N. A. B., and Leahy, J. P. 1999. The environment of Hercules A. New Astron. Rev., 43, 639642.Google Scholar
Goldreich, P., and Julian, W. H. 1969. Pulsar electrodynamics. ApJ, 157, 869.Google Scholar
Goldsmith, P. F., and 34 others. 2011. Herschel measurements of molecular oxygen in Orion. ApJ, 737, 96.Google Scholar
Golla, G., and Hummel, E. 1994. The intrinsic magnetic field orientation in NGC 4631. A&A, 284, 777792.Google Scholar
Gordon, M. A., and Sorochenko, R. L. 2007. Radio Recombination Lines. Springer.Google Scholar
Gray, M. 2012. Maser Sources in Astrophysics. Cambridge University Press.Google Scholar
Gray, R. O. 1998. The absolute flux calibration of Strömgren UVBY photometry. AJ, 116, 482485.Google Scholar
Gregory, P. C., and Condon, J. J. 1991. The 87GB catalog of radio sources covering delta between O and + 75 deg at 4.85 GHz. Astrophys. J. Suppl., 75, 1011.Google Scholar
Griffith, M. R., and Wright, A. E. 1993. The Parkes–MIT–NRAO (PMN) surveys. I – The 4850 MHz surveys and data reduction, Astron. J., 105, 1666.Google Scholar
Güdel, M. 2002. Stellar radio astronomy: probing stellar atmospheres from protostars to giants. Ann. Rev. Astr. Ap., 40, 217261.Google Scholar
Gugliucci, N. E., Taylor, G. B., Peck, A. B., and Giroletti, M. 2005. Dating COINS: kinematic ages for compact symmetric objects. ApJ, 622, 136148.Google Scholar
Hafez, Y. A., and 22 others. 2008. Radio source calibration for the Very Small Array and other cosmic microwave background instruments at around 30 GHz. MNRAS, 388, 17751786.Google Scholar
Hallinan, G., and nine others. 2007. Periodic bursts of coherent radio emission from an ultracool dwarf. ApJ, 663, L25L28.Google Scholar
Hamaker, J. P., Bregman, J. D., and Sault, R. J. 1996. Understanding radio polarimetry. I. Mathematical foundations. A&AS, 117, 137147.Google Scholar
Han, J. L. 2007. Magnetic fields in our Galaxy on large and small scales. In: Chapman, J. M., and Baan, W. A. (eds.), Astrophysical Masers and their Environments, Proc. IAU Symp., vol. 242, pp. 5563.Google Scholar
Han, J. L. 2017. Observing interstellar and intergalactic magnetic fields. Ann. Rev. Astr. Ap., 55, 111157.Google Scholar
Han, J. L., Manchester, R. N., and Qiao, G. J. 1999. Pulsar rotation measures and the magnetic structure of our Galaxy. MNRAS, 306, 371380.Google Scholar
Han, J. L., Manchester, R. N., van Straten, W., and Demorest, P. 2018. Pulsar rotation measures and large-scale magnetic field reversals in the Galactic disk. ApJS, 234, 11.Google Scholar
Handa, T., Sofue, Y., Nakai, N., Hirabayashi, H., and Inoue, M. 1987. A radio continuum survey of the Galactic plane at 10 GHz. PASJ, 39, 709753.Google Scholar
Hankins, T. H., Jones, G., and Eilek, J. A. 2015. The Crab Pulsar at centimeter wavelengths. I. Ensemble characteristics. ApJ, 802, 130.Google Scholar
Hankins, T. H., Eilek, J. A., and Jones, G. 2016. The Crab Pulsar at centimeter wavelengths. II. Single pulses. ApJ, 833, 47.Google Scholar
Harper, G. M., Brown, A., and Lim, J. 2001. A spatially resolved, semiempirical model for the extended atmosphere of α Orionis (M2 Iab). ApJ, 551, 10731098.Google Scholar
Harris, A. I. 2005. Spectroscopy with multichannel correlation radiometers. Rev. Scientific Instrum., 76, 054503.Google Scholar
Harris, S., and Wynn-Williams, C. G. 1976. Fine radio structure in W3. MNRAS, 174, 649659.Google Scholar
Harrison, E. R. 1970. Fluctuations at the threshold of classical cosmology. Phys. Rev. D, 1, 27262730.CrossRefGoogle Scholar
Haslam, C. G. T., Salter, C. J., Stoffel, H., and Wilson, W. E. 1982. A 408 MHz all-sky continuum survey. II – The atlas of contour maps. A&AS, 47, 1.Google Scholar
Hazard, C., and Walsh, D. 1959a. A comparison of an interferometer and total-power survey of discrete sources of radio-frequency radiation. In: Bracewell, R. N. (ed.), Proc. URSI Symp. 1: Paris Symp. on Radio Astronomy, p. 477. IAU Symposium, vol. 9.Google Scholar
Hazard, C., and Walsh, D. 1959b. An experimental investigation of the effects of confusion in a survey of localized radio sources. MNRAS, 119, 648.Google Scholar
Healy, F., O’Brien, T. J., Beswick, R., Avison, A., and Argo, M. K. 2017. Multi-epoch radio imaging of γ -ray Nova V959 Mon. MNRAS, 469, 39763983.Google Scholar
Hecht, E. 1970. Note on an operational definition of the Stokes parameters. Am. J. Phys., 38, 1156.Google Scholar
Heckman, T. M., and Best, P. N. 2014. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Ann. Rev. Astr. Ap., 52, 589660.Google Scholar
Heiles, C. 1980. Is the intercloud medium pervasive? ApJ, 235, 833839.Google Scholar
Heiles, C. 1995. The galactic B-field (GBF). In: Ferrara, A., McKee, C. F., Heiles, C., and Shapiro, P. R. (eds.), The Physics of the Interstellar Medium and Intergalactic Medium, p. 507. Astronomical Society of the Pacific Conference Series, vol. 80.Google Scholar
Heiles, C. 2002. A heuristic introduction to radioastronomical polarization. In: Stan-imirovic, S., Altschuler, D., Goldsmith, P., and Salter, C. (eds.), Single-Dish Radio Astronomy: Techniques and Applications, pp. 131152. Astronomical Society of the Pacific Conference Series, vol. 278.Google Scholar
Heiles, C., Chu, Y.-H., Reynolds, R. J., Yegingil, I., and Troland, T. H. 1980. A warm magnetoactive plasma in a large volume of space. ApJ, 242, 533.Google Scholar
Heiles, C., Goodman, A. A., McKee, C. F., and Zweibel, E. G. 1993. Magnetic fields in star-forming regions – observations. In: Levy, E. H., and Lunine, J. I. (eds.), Protostars and Planets III, pp. 279–326. University of Arizedona Press.Google Scholar
Helou, G., Soifer, B. T., and Rowan-Robinson, M. 1985. Thermal infrared and nonthermal radio – remarkable correlation in disks of galaxies. ApJ, 298, L7–L11.Google Scholar
Henstock, D. R., Browne, I. W. A., Wilkinson, P. N., Taylor, G. B., Vermeulen, R. C., Pearson, T. J., and Readhead, A. C. S. 1995. The second Caltech–Jodrell Bank VLBI survey. II. Observations of 102 of 193 sources. ApJS, 100, 1.Google Scholar
Herbst, E., and van Dishoeck, E. F. 2009. Complex organic interstellar molecules. Ann. Rev. Astr. Ap., 47, 427480.Google Scholar
Herrnstein, J. R., and 8 others. 1999. A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk. Nature, 400, 539541.Google Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Collins, R. A. 1968. Observation of a rapidly pulsating radio source. Nature, 217, 709713.Google Scholar
Hey, J. S., Parsons, S. J., and Phillips, J. W. 1946. A new intense source of radio-frequency radiation in the constellation of Cassiopeia. Proc. Roy. Soc. London, A192, 425.Google Scholar
HI4PI Collaboration, Ben Bekhti, N., and 19 others. 2016. HI4PI: A full-sky H I survey based on EBHIS and GASS. A&A, 594, A116.Google Scholar
Hill, R. J., and Clifford, S. F. 1981. Radio Sci., 16, 77.Google Scholar
Hinshaw, G., and 20 others. 2013. Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. ApJS, 208, 19.Google Scholar
Hirabayashi, H. 2005 (Dec.). VSOP mission results and space VLBI mission studies. In: Romney, J., and Reid, M. (eds.), Future Directions in High Resolution Astronomy, p. 561. Astronomical Society of the Pacific Conference Series, vol. 340.Google Scholar
Hirabayashi, H., and 56 others. 2000. The VLBI Space Observatory Programme and the radio-astronomical satellite HALCA. PASJ, 52, L955L965.CrossRefGoogle Scholar
Hobbs, G. B., and Dai, S. 2017. A review of pulsar timing array gravitational wave research. ArXiv e-prints.Google Scholar
Hobbs, G. B., Edwards, R. T., and Manchester, R. N. 2006. TEMPO2, a new pulsar-timing package – I. An overview. MNRAS, 369, 655672.Google Scholar
Högbom, J. A. 1974. Aperture synthesis with a non-regular distribution of interferometer baselines. A&AS, 15, 417.Google Scholar
Hoglund, B., and Mezger, P. G. 1965. Hydrogen emission line n110 → n109: detection at 5009 megahertz in Galactic H II regions. Science, 150, 339340.Google Scholar
Holdaway, M. A. 1999. Mosaicing with interferometric arrays. In: Taylor, G. B., Carilli, C. L., and Perley, R. A. (eds.), Synthesis Imaging in Radio Astronomy II, p. 401. Astronomical Society of the Pacific Conference Series, vol. 180.Google Scholar
Honma, M., and 22 others. 2018. In: Proc. IAU Symp., vol. 336, p. 162.Google Scholar
Hovatta, T., Nieppola, E., Tornikoski, M., Valtaoja, E., Aller, M. F., and Aller, H. D. 2008. Long-term radio variability of AGN: flare characteristics. A&A, 485, 5161.Google Scholar
Hu, W., and Dodelson, S. 2002. Cosmic microwave background anisotropies. Ann. Rev. Astr. Ap., 40, 171216.Google Scholar
Hu, W., and White, M. 1997. A CMB polarization primer, New Astronomy, 2, 323.Google Scholar
Hubble, E. 1929. A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci., 15, 168173.Google Scholar
Humphreys, E. M. L., Reid, M. J., Moran, J. M., Greenhill, L. J., and Argon, A. L. 2013. Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant. ApJ, 775, 13.Google Scholar
Imai, M., and nine others. 2016. The beaming structures of Jupiter’s decametric common S-bursts observed from the LWA1, NDA, and URAN2 radio telescopes. ApJ, 826, 176.Google Scholar
Isliker, H., and Benz, A. O. 1994. Non-linear properties of the dynamics of bursts and flares in the solar and stellar coronae. A&A, 285, 663.Google Scholar
Jackson, N. 2015. The Hubble constant. Living Rev. Relativity, 18, 2.Google Scholar
Jackson, N., and 78 others. 2016. LBCS: the LOFAR long-baseline calibrator survey. A&A, 595, A86.Google Scholar
Jahoda, K., Lockman, F. J., and McCammon, D. 1990. Galactic H I and the interstellar medium in Ursa Major. ApJ, 354, 184189.Google Scholar
Jarvis, M., and 12 others. 2015. The star-formation history of the Universe with the SKA. In: Proc. Conf. on Advancing Astrophysics with the Square Kilometre Array (AASKA’14), vol. 68.Google Scholar
Jauncey, D. L. 1967. Re-examination of the source counts for the 3C revised catalogue. Nature, 216, 877878.Google Scholar
Jeffrey, R. M., Blundell, K. M., Trushkin, S. A., and Mioduszewski, A. J. 2016. Fast launch speeds in radio flares, from a new determination of the intrinsic motions of SS 433’s jet bolides. MNRAS, 461, 312320.Google Scholar
Jennison, R. C. 1958. A phase sensitive interferometer technique for the measurement of the Fourier transforms of spatial brightness distributions of small angular extent. MNRAS, 118, 276.Google Scholar
Johnston, S. 2002. Single dish polarisation calibration. PASA, 19, 277281.Google Scholar
Johnston, S., and Karastergiou, A. 2017. Pulsar braking and the P diagram. MNRAS, 467, 34933499.Google Scholar
Johnston, S., and Kerr, M. 2017. MNRAS, 474, 4029.Google Scholar
Kalberla, P. M. W., and Kerp, J. 2009. The H I distribution of the Milky Way. Ann. Rev. Astr. Ap., 47, 2761.Google Scholar
Kantharia, N. G., and six others. 2007. Giant metrewave radio telescope observations of the 2006 outburst of the nova RS Ophiuchi: first detection of emission at radio frequencies. ApJ, 667, L171L174.Google Scholar
Karako-Argaman, C., and 19 others. 2015. Discovery and follow-up of rotating radio transients with the Green Bank and LOFAR telescopes. ApJ, 809, 67.Google Scholar
Kaspi, V. M., and Beloborodov, A. M. 2017. Magnetars. Ann. Rev. Astr. Ap., 55, 261301.Google Scholar
Kassim, N. E., and nine others. 2007. The 74 MHz system on the Very Large Array. ApJS, 172, 686719.Google Scholar
Kauffmann, J. 2016. Central molecular zone of the Milky Way: star formation in an extreme environment. In: Jablonka, P., André, P., and van der Tak, F. (eds.), From Interstellar Clouds to Star-Forming Galaxies: Universal Processes?, pp. 163166. IAU Symposium, vol. 315.Google Scholar
Keane, E. F., and 41 others. 2016. The host galaxy of a fast radio burst. Nature, 530, 453456.Google Scholar
Keane, E. F., and Petroff, E. 2015. Fast radio bursts: search sensitivities and completeness. MNRAS, 447, 28522856.Google Scholar
Kellermann, K. I., and Owen, F. N. 1988. Radio galaxies and quasars. In: Verschuur, G. L., and Kellerman, K. I. (eds.), Galactic and Extragalactic Radio Astronomy, pp. 563–602. Springer.Google Scholar
Kellermann, K. I., and Pauliny-Toth, I. I. K. 1969. The spectra of opaque radio sources. ApJ, 155, L71.Google Scholar
Kellermann, K. I., and Wall, J. V. 1987. Radio source counts and their interpretation. In: Hewitt, A., Burbidge, G., and Fang, L. Z. (eds.), Observational Cosmology, pp. 545– 562. IAU Symposium, vol. 124.Google Scholar
Kellermann, K. I., Condon, J. J., Kimball, A. E., Perley, R. A., and Ivezić, Ž. 2016. Radio-loud and radio-quiet QSOs. ApJ, 831, 168.Google Scholar
Kim, J.-Y., and eight others. 2018. The limb-brightened jet of M87 down to 7 Schwarzschild radii scale. ArXiv e-prints.Google Scholar
Kitayama, T. 2014 . Cosmological and astrophysical implications of the Sunyaev– Zel’dovich effect. Prog. Theor. Exp. Phys., 2014(6), 06B111.Google Scholar
Komissarov, S. S., and Gubanov, A. G. 1994. Relic radio galaxies: evolution of synchrotron spectrum. A&A, 285, 2743.Google Scholar
Konovalenko, A., and 71 others. 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42, 1148.Google Scholar
Kormendy, J., and Ho, L. C. 2013. Coevolution (or not) of supermassive black holes and host galaxies. Ann. Rev. Astr. Ap., 51, 511653.Google Scholar
Kormendy, J., and Norman, C. A. 1979. Observational constraints on driving mechanisms for spiral density waves. ApJ, 233, 539552.Google Scholar
Korngut, P. M., and eight others. 2011. MUSTANG high angular resolution Sunyaev– Zel’dovich effect imaging of substructure in four galaxy clusters. ApJ, 734, 10.Google Scholar
Kovalev, Y. Y., and 19 others. 2016. RadioAstron observations of the quasar 3C273: a challenge to the brightness temperature limit. ApJ, 820, L9.Google Scholar
Kovetz, E. D., and 47 others. 2017. Line-intensity mapping: 2017 status report. ArXiv e-prints.Google Scholar
Kramer, M. 2017. George Darwin Lecture, 2016. Astron. & Geophys., 58, 3.31.Google Scholar
Kramer, M., and 14 others. 2006. Tests of general relativity from timing the double pulsar. Science, 314, 97102.Google Scholar
Kramer, M., and six others. 1999. The characteristics of millisecond pulsar emission. III. From low to high frequencies. ApJ, 526, 957975.Google Scholar
Kronberg, P. P. 1994. Extragalactic magnetic fields. Rep. Progr. Phys., 57, 325382.Google Scholar
Kulkarni, S. R., and Heiles, C. 1988. Neutral hydrogen and the diffuse interstellar medium. In: Galactic and Extragalactic Radio Astronomy, pp. 95153. Springer.Google Scholar
Kuo, C. Y., and eight others. 2015. The Megamaser Cosmology Project. VI. Observations of NGC 6323. ApJ, 800, 26.Google Scholar
Ladd, E. F., Deane, J. R., Sanders, D. B., and Wynn-Williams, C. G. 1993. Luminous radio-quiet sources in W3(main). ApJ, 419, 186.Google Scholar
Lamarre, J.-M., and 94 others. 2010. Planck pre-launch status: the HFI instrument, from specification to actual performance. A&A, 520, A9.Google Scholar
Landecker, T. L., and eight others. 2006 (June). The Canadian Galactic Plane Survey: Arcminute imaging of polarization structure at 1.4 GHz. In: American Astronomical Society Meeting Abstracts, no. 208 p. 125. Bulletin of the American Astronomical Society, vol. 38.Google Scholar
Landon, J., and eight others. 2010. Phased array feed calibration, beamforming, and imaging. AJ, 139, 11541167.Google Scholar
Lattimer, J. M., and Prakash, M. 2001. Neutron star structure and the equation of state. ApJ, 550, 426442.Google Scholar
Law, C. J., Yusef-Zadeh, F., and Cotton, W. D. 2008. A wide-area VLA continuum survey near the Galactic Center at 6 and 20 cm wavelengths. ApJS, 177, 515545.Google Scholar
Leahy, J. P., and Perley, R. A. 1995. The jets and hotspots of 3C 390.3. MNRAS, 277, 10971114.Google Scholar
Leipski, C., Falcke, H., Bennert, N., and Hüttemeister, S. 2006. The radio structure of radio-quiet quasars. A&A, 455, 161172.Google Scholar
Levy, G. S., and nine others. 1986. Very long baseline interferometric observations made with an orbiting radio telescope. Science, 234, 187189.Google Scholar
Lewin, W., and van der Klis, M. 2010. Compact Stellar X-ray Sources. Cambridge University Press.Google Scholar
Liao, S., Qi, Z., Bucciarelli, B., Guo, S., Cao, Z., and Tang, Z. 2018. The properties of the quasars astrometric solution in Gaia DR2. ArXiv e-prints.Google Scholar
Linfield, R. P., and 14 others. 1989. VLBI using a telescope in Earth orbit. II – brightness temperatures exceeding the inverse Compton limit. ApJ, 336, 11051112.Google Scholar
Lister, M. L., and seven others. 2018. MOJAVE XV. VLBA 15 GHz total intensity and polarization maps of 437 parsec-scale AGN jets from 1996 to 2017. ApJS, 234, 12.Google Scholar
Lockman, F. J. 1989. A survey of radio H II regions in the northern sky. ApJS, 71, 469479.Google Scholar
Longair, M. S. 1966. On the interpretation of radio source counts. MNRAS, 133, 421.Google Scholar
Longair, M. S. 1994. High Energy Astrophysics, 2nd edn. Cambridge University Press.Google Scholar
Longair, M. S. 2006. The Cosmic Century. Cambridge University Press.Google Scholar
Longmore, S. N., Burton, M. G., Barnes, P. J., Wong, T., Purcell, C. R., and Ott, J. 2007. Multiwavelength observations of southern hot molecular cores traced by methanol masers – I. Ammonia and 24-GHz continuum data. MNRAS, 379, 535572.Google Scholar
Lonsdale, C. J. 2005. Configuration considerations for low frequency arrays. In: Kassim, N., Perez, M., Junor, W., and Henning, P. (eds.), From Clark Lake to the Long Wavelength Array: Bill Erickson’s Radio Science, p. 399. Astronomical Society of the Pacific Conference Series, vol. 345.Google Scholar
Lonsdale, C. J., Diamond, P. J., Thrall, H., and Smith, H. E. 2006. VLBI images of 49 radio supernovae in Arp 220. ApJ, 647, 185193.Google Scholar
Lorimer, D. R. 2008. Binary and millisecond pulsars. Living Rev. Relativity, 11.Google Scholar
Lorimer, D. R., and Kramer, M. 2005. Handbook of Pulsar Astronomy. Cambridge University Press.Google Scholar
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., and Crawford, F. 2007. A bright millisecond radio burst of extragalactic origin. Science, 318, 777.Google Scholar
Lowe, S. R., and seven others. 2007. 30 GHz flux density measurements of the Caltech– Jodrell flat-spectrum sources with OCRA-p. A&A, 474, 10931100.Google Scholar
Lynden-Bell, D. 1969. Galactic nuclei as collapsed old quasars. Nature, 223, 690694.Google Scholar
Lynden-Bell, D., and Rees, M. J. 1971. On quasars, dust and the galactic centre. MNRAS, 152, 461.Google Scholar
Lyne, A. G., and Manchester, R. N. 1988. The shape of pulsar radio beams. MNRAS, 234, 477508.Google Scholar
Lyne, A. G., and McKenna, J. 1989. PSR 1820-11 – a binary pulsar in a wide and highly eccentric orbit. Nature, 340, 367369.Google Scholar
Lyne, A. G., Pritchard, R. S., Graham-Smith, F., and Camilo, F. 1996. Very low braking index for the Vela pulsar. Nature, 381, 497498.Google Scholar
Lyne, A. G., and 11 others. 2004. A double-pulsar system: a rare laboratory for relativistic gravity and plasma physics. Science, 303, 11531157.Google Scholar
Lyne, A. G., Hobbs, G., Kramer, M., Stairs, I., and Stappers, B. 2010. Switched magnetospheric regulation of pulsar spin-down. Science, 329, 408.Google Scholar
Lyne, A. G., Jordan, C. A., Graham-Smith, F., Espinoza, C. M., Stappers, B. W., and Weltevrede, P. 2015a. 45 years of rotation of the Crab pulsar. MNRAS, 446, 857– 864.Google Scholar
Lyne, A. G., Stappers, B. W., Keith, M. J., Ray, P. S., Kerr, M., Camilo, F., and Johnson, T. J. 2015b. The binary nature of PSR J2032+4127. MNRAS, 451, 581587.Google Scholar
Lyne, A. G., and 40 others. 2017. Two long-term intermittent pulsars discovered in the PALFA survey. ApJ, 834, 72.Google Scholar
Lyons, R. G. 2011. Understanding Digital Signal Processing, 3rd edn. Prentice Hall.Google Scholar
Madau, P., and Dickinson, M. 2014. Cosmic star-formation history. Ann. Rev. Astr. Ap., 52, 415486.Google Scholar
Mäkinen, K., Lehto, H. J., Vainio, R., and Johnson, D. R. H. 2004. Proper motion analysis of the jet of R Aquarii. A&A, 424, 157164.Google Scholar
Manchester, R. N., and eight others. 1996. The Parkes Southern Pulsar Survey. I. Observing and data analysis systems and initial results. MNRAS, 279, 12351250.Google Scholar
Mancuso, C., Lapi, A., Prandoni, I., Obi, I., Gonzalez-Nuevo, J., Perrotta, F., Bressan, A., Celotti, A., and Danese, L. 2017. Galaxy evolution in the radio band: the role of star-forming galaxies and active galactic nuclei. ApJ, 842, 95.Google Scholar
Mann, G., Jansen, F., MacDowall, R. J., Kaiser, M. L., and Stone, R. G. 1999. A heliospheric density model and type III radio bursts. A&A, 348, 614620.Google Scholar
Marcaide, J. M., and 17 others. 2009. A decade of SN 1993J: discovery of radio wavelength effects in the expansion rate. A&A, 505, 927945.Google Scholar
Marscher, A. P. 2006. Probing the compact jets of blazars with light curves, images, and polarization. In: Miller, H. R., Marshall, K., Webb, J. R., and Aller, M. F. (eds.), Blazar Variability Workshop II: Entering the GLAST Era, p. 155. Astronomical Society of the Pacific Conference Series, vol. 350.Google Scholar
Marti, J., Paredes, J. M., and Estalella, R. 1992. Modelling Cygnus X-3 radio outbursts – particle injection into twin jets. A&A, 258, 309315.Google Scholar
Marti, J., Rodriguez, L. F., and Reipurth, B. 1995. Large proper motions and ejection of new condensations in the HH 80-81 thermal radio jet. ApJ, 449, 184.Google Scholar
Marven, C., and Ewers, G. 1996 A Simple Approach to Digital Signal Processing. Wiley.Google Scholar
Massi, M., and six others. 1997. Baseline errors in European VLBI network measurements. III. The dominant effect of instrumental polarization. A&A, 318, L32L34.Google Scholar
Mather, J. C., and 22 others. 1994. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. ApJ, 420, 439444.Google Scholar
Matsushita, S., and 11 others. 2017. ALMA long baseline campaigns: phase characteristics of atmosphere at long baselines in the millimeter and submillimeter wavelengths. PASP, 129, 035004.Google Scholar
Max-Moerbeck, W., Richards, J. L., Hovatta, T., Pavlidou, V., Pearson, T. J., and Readhead, A. C. S. 2014. A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series. MNRAS, 445, 437459.Google Scholar
May, T., Zakosarenko, V., Kraysa, E., Esch, W., Solveig, A., Gremuend, H.-P., and Heinz, E. 2012. Rev. Sci. Instruments, 83, 114502.CrossRefGoogle Scholar
Mazets, E. P., and eight others. 1979. Venera 11 and 12 observations of gamma-ray bursts – the Cone experiment. Soviet Astron. Letters, 5, 163167.Google Scholar
McCready, L. L., Pawsey, J. L., and Payne-Scott, R. 1947. Solar radiation at radio frequencies and its relation to sunspots. Proc. Roy. Soc. London Series A, 190, 357– 375.Google Scholar
McKee, J. W., and 19 others. 2016. A glitch in the millisecond pulsar J0613–0200. MNRAS, 461, 28092817.Google Scholar
McLaughlin, M., and 12 others. 2013. Transient radio neutron stars. ATNF proposal.Google Scholar
McLean, D. J., and Labrum, N. R. (eds.) 1985. Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths. Cambridge University Press.Google Scholar
McLean, D. J., and Sheridan, K. V. 1985. The quiet sun at metre wavelengths. In: Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths, pp. 443466. Cambridge University Press.Google Scholar
Melia, F., and Falcke, H. 2001. The supermassive black hole at the Galactic Center. Ann. Rev. Astr. Ap., 39, 309352.Google Scholar
Mellier, Y. 1999. Probing the universe with weak lensing. Ann. Rev. Astr. Ap., 37, 127189.Google Scholar
Melrose, D. B. 2017. Coherent emission mechanisms in astrophysical plasmas. ArXiv e-prints.Google Scholar
Menn, W., and 63 others. 2013. The PAMELA space experiment. Adv. Space Res., 51, 209218.Google Scholar
Mennella, A., and 85 others. 2010. Planck pre-launch status: low frequency instrument calibration and expected scientific performance. A&A, 520, A5.Google Scholar
Mennella, A., and 160 others. 2011. Planck early results. III. First assessment of the low frequency instrument in-flight performance. A&A, 536, A3.Google Scholar
Menten, K. M., and Young, K. 1995. Discovery of strong vibrationally excited water masers at 658 GHz toward evolved stars. ApJ, 450, L67.Google Scholar
Mevius, M., and 26 others. 2016. Probing ionospheric structures using the LOFAR radio telescope. Radio Sci., 51, 927941.Google Scholar
Mezger, P. G., and Henderson, A. P. 1967. Galactic H II regions. I. Observations of their continuum radiation at the frequency 5 GHz. ApJ, 147, 471.Google Scholar
Michilli, D., and 19 others. 2018. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature, 553, 182185.Google Scholar
Miley, G. 1980. The structure of extended extragalactic radio sources. Ann. Rev. Astr. Ap., 18, 165218.Google Scholar
Miller-Jones, J. C. A., Blundell, K. M., Rupen, M. P., Mioduszewski, A. J., Duffy, P., and Beasley, A. J. 2004. Time-sequenced multi-radio frequency observations of Cygnus X-3 in flare. ApJ, 600, 368389.Google Scholar
Minier, V., Booth, R. S., and Conway, J. E. 1999. Observations of methanol masers in star-forming regions. New Astron. Rev., 43, 569573.Google Scholar
Mirabel, I. F., and Rodríguez, L. F. 1994. A superluminal source in the Galaxy. Nature, 371, 4648.Google Scholar
Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P., and Inoue, M. 1995. Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258. Nature, 373, 127129.Google Scholar
Moffett, D. A., and Hankins, T. H. 1996. Multifrequency radio observations of the Crab Pulsar. ApJ, 468, 779.Google Scholar
Moran, J. M. 1989. Introduction to VLBI. In: Felli, M., and Spencer, R. E. (eds.), pp. 2745. NATO Advanced Science Institutes (ASI) Series C, vol. 283.Google Scholar
Morganti, R. 2017. The many routes to AGN feedback. ArXiv e-prints.Google Scholar
Morris, M., and Serabyn, E. 1996. The Galactic Center environment. Ann. Rev. Astr. Ap., 34, 645702.Google Scholar
Moskalenko, I. V., and Strong, A. W. 1998. Production and propagation of cosmic-ray positrons and electrons. ApJ, 493, 694707.Google Scholar
Müller, H. S. P., Schlöder, F., Stutzki, J., and Winnewisser, G. 2005 . The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Molecular Structure, 742, 215227.Google Scholar
Muxlow, T. W. B., Pedlar, A., Wilkinson, P. N., Axon, D. J., Sanders, E. M., and de Bruyn, A. G. 1994. The Structure of Young Supernova Remnants in M82. MNRAS, 266, 455.Google Scholar
Muxlow, T. W. B., and ten others. 2005. High-resolution studies of radio sources in the Hubble Deep and Flanking Fields. MNRAS, 358, 11591194.Google Scholar
Muxlow, T. W. B., Beswick, R. J., Richards, A. M. S., and Thrall, H. J. 2006. Starburst galaxies. In: Proc. 8th European VLBI Network Symp., p. 31.Google Scholar
Myers, S. T., and ten others. 2003. A fast gridded method for the estimation of the power spectrum of the cosmic microwave background from interferometer data with application to the cosmic background imager. ApJ, 591, 575598.Google Scholar
Nagar, N. M., Wilson, A. S., Mulchaey, I. S., and Gallimore, J. F. 1999. Radio structures of Seyfert galaxies. ApJS, 120, 209.Google Scholar
Neininger, N. 1992. The magnetic field structure of M 51. A&A, 263, 3036.Google Scholar
Netterfield, C. B., Jarosik, N., Page, L., Wilkinson, D., and Wollack, E. 1995. The anisotropy in the cosmic microwave background at degree angular scales. ApJ, 445, L69–L72.Google Scholar
Newburgh, L. B., and 34 others. 2014. Calibrating CHIME: a new radio interferometer to probe dark energy. In: Ground-Based and Airborne Telescopes V, p. 91454V. Proceedings of SPIE, vol. 9145.Google Scholar
Nikolic, B., Bolton, R. C., Graves, S. F., Hills, R. E., and Richer, J. S. 2013. Phase correction for ALMA with 183 GHz water vapour radiometers. A&A, 552, A104.Google Scholar
Norris, R. P. 2017a. Discovering the unexpected in astronomical survey data. PASA, 34, e007.Google Scholar
Norris, R. P. 2017b. Extragalactic radio continuum surveys and the transformation of radio astronomy. Nature Astron., 1, 671678.Google Scholar
O’Brien, T. J., and eight others. 2006. An asymmetric shock wave in the 2006 outburst of the recurrent nova RS Ophiuchi. Nature, 442, 279281.Google Scholar
O’Dea, C. P. 1998. The compact steep-spectrum and gigahertz peaked-spectrum radio sources. PASP, 110, 493532.Google Scholar
Offringa, A. R., and 52 others. 2014. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. MNRAS, 444, 606619.Google Scholar
O’Gorman, E., and six others. 2015. Temporal evolution of the size and temperature of Betelgeuse’s extended atmosphere. A&A, 580, A101.Google Scholar
O’Gorman, E., and six others. 2017. The inhomogeneous submillimeter atmosphere of Betelgeuse. A&A, 602, L10.Google Scholar
Ohm, E. A. 1961. Bell Syst. Techn. J., 40, 1065.Google Scholar
Olausen, S. A., and Kaspi, V. M. 2014. The McGill Magnetar Catalog. ApJS, 212, 6.Google Scholar
Oort, J. H., Kerr, F. J., and Westerhout, G. 1958. The galactic system as a spiral nebula (Council Note). MNRAS, 118, 379.Google Scholar
Oppenheimer, A. V., and Lim, J. S. 1981. Proc. IEEE, 69, 529.Google Scholar
Oswianik, I., Conway, J. E., and Polatidis, A. G. 1999. The youngest lobe-dominated radio sources. New Astron. Rev., 43, 669673.Google Scholar
Owen, F. N., O’Dea, C. P., Inoue, M., and Eilek, J. A. 1985. VLA observations of the multiple jet galaxy 3C 75. ApJ, 294, L85–L88.Google Scholar
Ozel, F., and Freire, P. 2016. Masses, radii, and the equation of state of neutron stars. Ann. Rev. Astr. Ap., 54, 401440.Google Scholar
Padovani, P. 2016. The faint radio sky; radio astronomy becomes mainstream. Astron. Astrophys. Rev., 24, 13.Google Scholar
Padovani, P., and ten others. 2017. Active galactic nuclei: what’s in a name? Astron. Astrophys. Rev., 25, 2.Google Scholar
Pardo, J. R., Cernicharo, J., and Serabyn, E. 2001. Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications. IEE Trans. Antennas and Propagation, 49, 1983.Google Scholar
Paresce, F. 1984. On the distribution of interstellar matter around the sun. AJ, 89, 1022– 1037.Google Scholar
Partridge, R. B. 1995. 3 K: The Cosmic Microwave Background Radiation. Cambridge University Press.Google Scholar
Patruno, A., and nine others. 2014. A new accretion disk around the missing link binary system PSR J1023+0038. ApJ, 781, L3.Google Scholar
Pavelin, P. E., Davis, R. J., Morrison, L. V., Bode, M. F., and Ivison, R. J. 1993. Radio observations of the classical nova Cygni 92 eighty days after outburst. Nature, 363, 424426.Google Scholar
Pearson, T. J., and Readhead, A. C. S. 1984. Image formation by self-calibration in radio astronomy. Ann. Rev. Astr. Ap., 22, 97130.Google Scholar
Pearson, T. J., and seven others. 1981. Superluminal expansion of quasar 3C273. Nature, 290, 365368.Google Scholar
Pedlar, A., and six others. 1999. VLBI observations of supernova remnants in Messier 82. MNRAS, 307, 761768.Google Scholar
Peel, M. W., Dickinson, C., Davies, R. D., Clements, D. L., and Beswick, R. J. 2011. Radio to infrared spectra of late-type galaxies with Planck and Wilkinson Microwave Anisotropy Probe data. MNRAS, 416, L99L103.Google Scholar
Penzias, A. A., and Wilson, R. W. 1965. A measurement of excess antenna temperature at 4080 Mc/s. ApJ, 142, 419421.Google Scholar
Perley, R. A. 1999. Imaging with non-coplanar arrays. In: Taylor, G. B., Carilli, C. L., and Perley, R. A. (eds.), Synthesis Imaging in Radio Astronomy II, p. 383. Astronomical Society of the Pacific Conference Series, vol. 180.Google Scholar
Perley, R. A., and Butler, B. J. 2013. An accurate flux density scale from 1 to 50 GHz. ApJS, 204, 19.Google Scholar
Perley, R. A., and Meisenheimer, K. 2017. High-fidelity VLA imaging of the radio structure of 3C 273. A&A, 601, A35.Google Scholar
Perley, R. A., Willis, A. G., and Scott, J. S. 1979. The structure of the radio jets in 3C449. Nature, 281, 437442.Google Scholar
Perley, R. A., Dreher, J. W., and Cowan, J. J. 1984. The jet and filaments in Cygnus A. ApJ, 285, L35–L38.Google Scholar
Peterson, W. M., Mutel, R. L., Lestrade, J.-F., Güdel, M., and Goss, W. M. 2011. Radio astrometry of the triple systems Algol and UX Arietis. ApJ, 737, 104.Google Scholar
Phillips, N., Hills, R., Bastian, T., Hudson, H., Marson, R., and Wedemeyer, S. 2015. Fast single-dish scans of the Sun using ALMA. In: Iono, D., Tatematsu, K., Wootten, A., and Testi, L. (eds.), Revolution in Astronomy with ALMA: The Third Year, p. 347. Astronomical Society of the Pacific Conference Series, vol. 499.Google Scholar
Phillips, R. B., Straughn, A. H., Doeleman, S. S., and Lonsdale, C. J. 2003. R Cassiopeiae: relative strengths of SiO masers at 43 and 86 GHz. ApJ, 588, L105–L108.Google Scholar
Planck Collaboration, Adam, R., and 369 others. 2016a. Planck 2015 results. I. Overview of products and scientific results. A&A, 594, A1.Google Scholar
Planck Collaboration. 2016b. Planck 2015 results. X. Diffuse component separation: foreground maps. A&A, 594, A10.Google Scholar
Planck Collaboration. 2016c. Cosmological parameters. A&A, 594, A13.Google Scholar
Polatidis, A., and six others. 1999. Compact symmetric objects in a complete flux density limited sample. New Astron. Rev., 43, 657661.Google Scholar
Popov, M. V., and 15 others. 2017. PSR B0329+54: substructure in the scatter-broadened image discovered with RadioAstron on baselines up to 330 000 km. MNRAS, 465, 978985.Google Scholar
Pospieszalski, M. W. 1989. Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence. IEEE Trans. Microwave Theory Techniques, 37, 13401350.Google Scholar
Punsly, B., and Rodriguez, J. 2016. A temporal analysis indicates a mildly relativistic compact jet in GRS 1915+105. ApJ, 823, 54.Google Scholar
Quireza, C., Rood, R. T., Balser, D. S., and Bania, T. M. 2006. Radio recombination lines in Galactic H II regions. ApJS, 165, 338359.Google Scholar
Radhakrishnan, V., and Cooke, D. J. 1969. Magnetic poles and the polarization structure of pulsar radiation. ApJ, 3, 225.Google Scholar
Rand, R. J., and Kulkarni, S. R. 1990. M51 – molecular spiral arms, giant molecular associations, and superclouds. ApJ, 349, L43L46.Google Scholar
Rand, R. J., and Lyne, A. G. 1994. New rotation measures of distant pulsars in the inner Galaxy and magnetic field reversals. MNRAS, 268, 497.Google Scholar
Rau, U., and Cornwell, T. J. 2011. A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry. A&A, 532, A71.Google Scholar
Raymond, J. C. 1984. Observations of supernova remnants. Ann. Rev. Astr. Ap., 22, 75.Google Scholar
Readhead, A. C. S., and Wilkinson, P. N. 1978. The mapping of compact radio sources from VLBI data. ApJ, 223, 2536.Google Scholar
Readhead, A. C. S., Walker, R. C., Pearson, T. J., and Cohen, M. H. 1980. Mapping radio sources with uncalibrated visibility data. Nature, 285, 137140.Google Scholar
Readhead, A. C. S., Lawrence, C. R., Myers, S. T., Sargent, W. L. W., Hardebeck, H. E., and Moffet, A. T. 1989. A limit of the anisotropy of the microwave background radiation on arc minute scales. ApJ, 346, 566587.Google Scholar
Readhead, A. C. S., Taylor, G. B., Pearson, T. J., and Wilkinson, P. N. 1996. Compact symmetric objects and the evolution of powerful extragalactic radio sources. ApJ, 460, 634.Google Scholar
Reber, G. 1944. Cosmic static. ApJ, 100, 279.Google Scholar
Rees, M. J. 1966. Appearance of relativistically expanding radio sources. Nature, 211, 468470.Google Scholar
Reich, P., and Reich, W. 1988. A map of spectral indices of the Galactic radio continuum emission between 408 MHz and 1420 MHz for the entire northern sky. A&AS, 74, 723.Google Scholar
Reid, H. A. S., and Ratcliffe, H. 2014. A review of solar type III radio bursts. Res. Astron. Astrophys., 14, 773804.Google Scholar
Reiner, M. J., Jackson, B. V., Webb, D. F., Kaiser, M. L., Cliver, E. W., and Bougeret, J. L. 2004. Wind/WAVES and SMEI observations of ICMEs. In: AGU Fall Meeting Abstracts.Google Scholar
Remazeilles, M., Dickinson, C., Banday, A. J., Bigot-Sazy, M.-A., and Ghosh, T. 2015. An improved source-subtracted and destriped 408-MHz all-sky map. MNRAS, 451, 43114327.Google Scholar
Reynolds, S. P., and Chevalier, R. A. 1984. A new type of extended nonthermal radio emitter – detection of the old nova GK Persei. ApJ, 281, L33L35.Google Scholar
Reynolds, S. P., and Gilmore, D. M. 1986. Radio observations of the remnant of the supernova of A.D. 1006. I – Total intensity observations. AJ, 92, 11381144.Google Scholar
Richards, E. A., 2000, The nature of radio emission from distant galaxies: the 1.4 GHZ observations. Astrophys. J., 533, 611.Google Scholar
Richards, E. A., Kellermann, K. I., Fomalont, E. B., Windhorst, R.A., and Partridge, R. B, 1998. Radio emission from galaxies in the Hubble Deep Field. Astron. J., 116, 1039.Google Scholar
Richards, A. M. S., and ten others. 2013. e-MERLIN resolves Betelgeuse at λ 5 cm: hotspots at 5 R. MNRAS, 432, L61L65.Google Scholar
Richards, J. L., Hovatta, T., Max-Moerbeck, W., Pavlidou, V., Pearson, T. J., and Readhead, A. C. S. 2014. Connecting radio variability to the characteristics of gamma-ray blazars. MNRAS, 438, 30583069.Google Scholar
Rickett, B. J. 1990. Radio propagation through the turbulent interstellar plasma. Ann. Rev. Astr. Ap., 28, 561605.Google Scholar
Roger, R. S., Costain, C. H., Landecker, T. L., and Swerdlyk, C. M. 1999. The radio emission from the Galaxy at 22 MHz. A&AS, 137, 719.Google Scholar
Rogers, A. E. E. 1970. Very long baseline interferometry with large effective bandwidth for phase-delay measurements. Radio Sci., 5, 12391247.Google Scholar
Rogers, A. E. E. 1983. VLB Array Memo., 253.Google Scholar
Rogers, A. E. E., and nine others. 1974. The structure of radio sources 3C 273B and 3C 84 deduced from the ‘closure’ phases and visibility amplitudes observed with three-element interferometers. ApJ, 193, 293301.Google Scholar
Rogers, A. E. E., Dudevoir, K. A., and Bania, T. M. 2007. Observations of the 327 MHz deuterium hyperfine transition. AJ, 133, 16251632.Google Scholar
Romero, G. E., Boettcher, M., Markoff, S., and Tavecchio, F. 2017. Relativistic jets in active galactic nuclei and microquasars. Space Sci. Rev., 207, 561.Google Scholar
Romney, J. D. 1999. Cross correlators. In: Taylor, G. B., Carilli, C. L., and Perley, R. A. (eds.), Synthesis Imaging in Radio Astronomy II, p. 57. Astronomical Society of the Pacific Conference Series, vol. 180.Google Scholar
Rood, R. T., Bania, T. M., and Wilson, T. L. 1984. The 8.7 GHz hyperfine line of He-3(+) in galactic H II regions. ApJ, 280, 629647.Google Scholar
Rookyard, S. C., Weltevrede, P., Johnston, S., and Kerr, M. 2017. On the difference between γ -ray-detected and non-γ-ray-detected pulsars. MNRAS, 464, 20182026.Google Scholar
Rowan-Robinson, M. 1968. The determination of the evolutionary properties of quasars by means of the luminosity–volume test. MNRAS, 138, 445.Google Scholar
Rowson, B. 1963. High resolution observations with a tracking radio interferometer. MNRAS, 125, 177.Google Scholar
Rubin, V. C., Burstein, D., Ford, W. K., Jr., and Thonnard, N. 1985. Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and Sc rotation properties. ApJ, 289, 8198.Google Scholar
Rumsey, V. H. 1966. Frequency Independent Antennas. Academic Press.Google Scholar
Ruze, J. 1966. Antenna tolerance theory – a review. Proc. IEEE, 54, 633.Google Scholar
Ryden, B. 2017. Introduction to Cosmology, 2nd edn. Cambridge University Press.Google Scholar
Ryle, M. 1962. The new Cambridge radio telescope. Nature, 194, 517518.Google Scholar
Ryle, M. 1972. The 5-km radio telescope at Cambridge. Nature, 239, 435438.Google Scholar
Ryle, M., and Neville, A. C. 1962. A radio survey of the North Polar region with a 4.5 minute of arc pencil-beam system. MNRAS, 125, 39.Google Scholar
Ryle, M., Smith, F. G., and Elsmore, B. 1950. A preliminary survey of the radio stars in the Northern Hemisphere. MNRAS, 110, 508.Google Scholar
Sanna, A., Reid, M. J., Dame, T. M., Menten, K. M., and Brunthaler, A. 2017. Mapping spiral structure on the far side of the Milky Way. Science, 358, 227230.Google Scholar
Santos-Costa, D., Bolton, S. J., and Sault, R. J. 2009. Evidence for short-term variability of Jupiter’s decimetric emission from VLA observations. A&A, 508, 10011010.Google Scholar
Saripalli, L., Subrahmanyan, R., and Udaya Shankar, N. 2002. A case for renewed activity in the giant radio galaxy J0116–473. ApJ, 565, 256264.Google Scholar
Saripalli, L., Subrahmanyan, R., and Udaya Shankar, N. 2003. Renewed activity in the radio galaxy PKS B1545–321: twin edge-brightened beams within diffuse radio lobes. ApJ, 590, 181191.Google Scholar
Sault, R. J., and Wieringa, M. H. 1994. Multi-frequency synthesis techniques in radio interferometric imaging. A&AS, 108, 585594.Google Scholar
Scheuer, P. A. G. 1957. A statistical method for analysing observations of faint radio stars. Proc. Cambridge Phil. Soc., 53, 764773.Google Scholar
Scheuer, P. A. G. 1968. Amplitude variations in pulsed radio sources. Nature, 218, 920– 922.Google Scholar
Scheuer, P. A. G. 1974. Models of extragalactic radio sources with a continuous energy supply from a central object. MNRAS, 166, 513528.Google Scholar
Schilizzi, R. T., Burke, B. F., Jordan, J. F., and Hawkyard, A. 1984 (Sept.). The QUASAT mission: an overview. In: Burke, W. R. (ed.), QUASAT: A VLBI Observatory in Space. ESA Special Publications, vol. 213.Google Scholar
Schmidt, M. 1968. Space distribution and luminosity functions of quasi-stellar radio sources. ApJ, 151, 393.Google Scholar
Schneider, P., Ehlers, J., and Falco, E. E. 1992. Gravitational Lenses. Springer.Google Scholar
Schödel, R., and 22 others. 2002. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 419, 694696.Google Scholar
Scholz, P., and 33 others. 2015. Timing of five millisecond pulsars discovered in the PALFA survey. ApJ, 800, 123.Google Scholar
Schuk, H., and Behrend, D. 2012. VLBI: a fascinating technique for geodesy and astronomy. J. Geophys., 61, 68.Google Scholar
Schuk, H., and Bohm, J. 2013. Very long baseline interferometry for geodesy and astronomy. In: Xu, G. (ed.), Sciences of Geodesy, volume II, p. 339. Springer.Google Scholar
Schwab, F. R. 1980 (Jan.). Adaptive calibration of radio interferometer data. In: Rhodes, W. T. (ed.), Proc. 1980 Int. Optical Computing Conf. I, pp. 1825. Proc. SPIE, vol. 231.Google Scholar
Schwab, F. R. 1984. Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry. AJ, 89, 10761081.Google Scholar
Schwab, F. R., and Cotton, W. D. 1983. Global fringe search techniques for VLBI. AJ, 88, 688694.Google Scholar
Schwarz, U. J. 1978. Mathematical–statistical description of the iterative beam removing technique (method CLEAN). A&A, 65, 345.Google Scholar
Seaquist, E. R. 1989. Radio emission from novae. In: Bode, M. F., and Evans, A. (eds.), Classical Novae, pp. 143161. Cambridge University Press.Google Scholar
Seaquist, E. R., Bode, M. F., Frail, D. A., Roberts, J. A., Evans, A., and Albinson, J. S. 1989. A detailed study of the remnant of nova GK Persei and its environs. ApJ, 344, 805825.Google Scholar
Shemar, S. L., and Lyne, A. G. 1996. Observations of pulsar glitches. MNRAS, 282, 677– 690.Google Scholar
Shklovskii, I. S. 1960. Cosmic Radio Waves. Harvard University Press.Google Scholar
Simpson, C. 2017. Extragalactic radio surveys in the pre-Square Kilometre Array era. Royal Soc. Open Sci., 4, 170522.Google Scholar
Sironi, G., and six others. 1990. The absolute temperature of the sky and the temperature of the cosmic background radiation at 600 MHz. ApJ, 357, 301308.Google Scholar
Smirnov, O. M. 2011a. Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism. A&A, 527, A106.Google Scholar
Smirnov, O. M. 2011b. Revisiting the radio interferometer measurement equation. II. Calibration and direction-dependent effects. A&A, 527, A107.Google Scholar
Smith, D. A., Guillemot, L., Kerr, M., Ng, C., and Barr, E. 2017. Gamma-ray pulsars with Fermi. ArXiv e-prints.Google Scholar
Smith, E. K. 1982. Radio Sci., 17, 455.Google Scholar
Smith, E. K., and Weintraub, S. 1953. The constants in the equation of atmospheric refractive index at radio frequencies. Proc. IRE, 41, 1035.Google Scholar
Smith, F. G. 1952. The determination of the position of a radio star. MNRAS, 112, 497.Google Scholar
Smoot, G. F., Gorenstein, M. V., and Muller, R. A. 1977. Detection of anisotropy in the cosmic blackbody radiation. Phys. Rev. Lett., 39, 898901.Google Scholar
Snellen, I., and Schilizzi, R. 2002. On the lives of extra-galactic radio sources: the first 100 000 years. New Astron. Rev., 46, 6165.Google Scholar
Sokoloff, D. D., Bykov, A. A., Shukurov, A., Berkhuijsen, E. M., Beck, R., and Poezd, A. D. 1998. Depolarization and Faraday effects in galaxies. MNRAS, 299, 189206.Google Scholar
Sovers, O. J., Fanselow, J. L., and Jacobs, C. S. 1998. Astrometry and geodesy with radio interferometry: experiments, models, results. Rev. Mod. Phys., 70, 13931454.Google Scholar
Sparke, L. S., and Gallagher, J. S., III. 2007. Galaxies in the Universe: An Introduction, 2nd edn., Chapter 9. Cambridge University Press.Google Scholar
Spencer, R. E. 1996. Energetics of radio emitting X-ray binary stars. In: Taylor, A. R., and Paredes, J. M. (eds.), Radio Emission from the Stars and the Sun, p. 252. Astronomical Society of the Pacific Conference Series, vol. 93.Google Scholar
Spencer, R. E., Vermeulen, R. C., and Schilizzi, R. T. 1993. VLBI and MERLIN Observations of the moving knots in SS 433. In: Errico, L., and Vittone, A. A. (eds.), Stellar Jets and Bipolar Outflows, p. 203. Astrophysics and Space Science Library, vol. 186.Google Scholar
Spitler, L. G., and 23 others. 2016. A repeating fast radio burst. Nature, 531, 202205.Google Scholar
Staveley-Smith, L., and ten others. 1996. The Parkes 21 cm multibeam receiver. PASA, 13, 243248.Google Scholar
Sturrock, P. A. 1971. A model of pulsars. ApJ, 164, 529.Google Scholar
Sullivan, W. T. 2009. Cosmic Noise: A History of Early Radio Astronomy. Cambridge University Press.Google Scholar
Sunyaev, R. A., and Zel’dovich, I. B. 1980. Microwave background radiation as a probe of the contemporary structure and history of the universe. Ann. Rev. Astr. Ap., 18, 537560.Google Scholar
Tadhunter, C. 2016. Radio AGN in the local universe: unification, triggering and evolution. Astron. Astrophys. Rev., 24, 10.Google Scholar
Taylor, G. B., and six others. 1994. The second Caltech–Jodrell Bank VLBI survey. 1: Observations of 91 of 193 sources. ApJS, 95, 345369.Google Scholar
Taylor, J. H., and Cordes, J. M. 1993. Pulsar distances and the galactic distribution of free electrons. ApJ, 411, 674684.Google Scholar
Taylor, J. H., and Huguenin, G. R. 1971. Observations of rapid fluctuations of intensity and phase in pulsar emissions. ApJ, 167, 273.Google Scholar
Taylor, J. H., and Weisberg, J. M. 1989. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16. ApJ, 345, 434450.Google Scholar
Terzian, Y., and Parrish, A. 1970. Observations of the Orion Nebula at low radio frequencies. Astrophys. Lett., 5, 261.Google Scholar
Thompson, A. R., and Bracewell, R. N. 1974. Interpolation and Fourier transformation of fringe visibilities. AJ, 79, 1124.Google Scholar
(TMS) Thompson, A. R., Moran, J. M., and Swenson, G. W. Jr. 2017. Interferometry and Synthesis in Radio Astronomy, 3rd edn. Wiley.Google Scholar
Thorne, K, S., and Blandford, D. 2018. Modern Classical Physics, Chapter 8. Princeton University Press.Google Scholar
Tillman, R. H., Ellingson, S. W., and Brendler, J. 2016. Practical limits in the sensitivity– linearity trade-off for radio telescope front ends in the HF and VHF-low bands. J. Astronom. Instrum., 5, 1650004.Google Scholar
Tingay, S. J., and 60 others. 2013. The Murchison Widefield Array: the Square Kilometre Array precursor at low radio frequencies. PASA, 30, e007.Google Scholar
Townes, C. H. 1957. Microwave and radio-frequency resonance lines of interest to radio astronomy. In: van de Hulst, H. C. (ed.), Radio Astronomy, p. 92. IAU Symposium, vol. 4.Google Scholar
Townes, C. H., and Schawlow, A. L. 1955. Microwave Spectroscopy. Dover.Google Scholar
Tudose, V., and ten others. 2010. Probing the behaviour of the X-ray binary Cygnus X-3 with very long baseline radio interferometry. MNRAS, 401, 890900.Google Scholar
Turner, E. L., Ostriker, J. P., and Gott, III, J. R. 1984. The statistics of gravitational lenses – the distributions of image angular separations and lens redshifts. ApJ, 284, 122.Google Scholar
Twiss, R. Q., Carter, A. W. L., and Little, A. G. 1960. Brightness distribution over some strong radio sources at 1427 Mc/s. The Observatory, 80, 153.Google Scholar
Uchida, K. I., Morris, M. R., Serabyn, E., and Bally, J. 1994. AFGL 5376: a strong, large-scale shock near the Galactic center. ApJ, 421, 505516.Google Scholar
Urry, C. M., and Padovani, P. 1995. Unified schemes for radio-loud active galactic nuclei. PASP, 107, 803.Google Scholar
Uyaniker, B., Fürst, E., Reich, W., Reich, P., and Wielebinski, R. 1999. A 1.4 GHz radio continuum and polarization survey at medium Galactic latitudes. II. First section. A&AS, 138, 3145.Google Scholar
van der Hulst, J. M., Punzo, D., and Roerdink, J. B. T. M. 2017 (June). 3-D interactive visualisation tools for H I spectral line imaging. In: Proc. IAU Symposium, pp. 305310. IAU Symposium Series, vol. 325.Google Scholar
van der Tak, F., de Pater, I., Silva, A., and Millan, R. 1999. Time variability in the radio brightness distribution of Saturn. Icarus, 142, 125147.Google Scholar
van Dishoeck, E. F., Jansen, D. J., and Phillips, T. G. 1993. Submillimeter observations of the shocked molecular gas associated with the supernova remnant IC 443. A&A, 279, 541566.Google Scholar
van Dyk, S. D., Weiler, K. W., Sramek, R. A., Rupen, M. P., and Panagia, N. 1994. SN 1993J: the early radio emission and evidence for a changing presupernova mass-loss rate. ApJ, 432, L115–L118.Google Scholar
van Haarlem, M. P., and 200 others. 2013. LOFAR: The LOw-Frequency ARray. A&A, 556, A2.Google Scholar
van Straten, W., and Bailes, M. 2010. DSPSR: digital signal processing for pulsar astronomy. arXiv: 1008.393.Google Scholar
van Straten, W., Manchester, R. N., Johnston, S., and Reynolds, J. E. 2010. PSRCHIVE and PSRFITS: definition of the Stokes parameters and instrumental basis conventions. PASA, 27, 104119.Google Scholar
Vernstrom, T., Scott, D., Wall, J. V., Condon, J. J., Cotton, W. D., and Perley, R. A. 2016a. Deep 3-GHz observations of the Lockman Hole North with the Very Large Array – I. Source extraction and uncertainty analysis. MNRAS, 461, 28792895.Google Scholar
Vernstrom, T., Scott, D., Wall, J. V., Condon, J. J., Cotton, W. D., Kellermann, K. I., and Perley, R. A. 2016b. Deep 3-GHz observations of the Lockman Hole North with the Very Large Array – II. Catalogue and μJy source properties. MNRAS, 462, 29342949.Google Scholar
Verschuur, G. L. 1989. Measurements of the 21 centimeter Zeeman effect in high-latitude directions. ApJ, 339, 163170.Google Scholar
Vlemmings, W. H. T., Harvey-Smith, L., and Cohen, R. J. 2006. Methanol maser polarization in W3(OH). MNRAS, 371, L26–L30.Google Scholar
von Hoerner, H. 1967. Design of large steerable antennas. Astron. J., 72, 35.Google Scholar
Walker, R. C. 1989. Calibration methods. In: Felli, M., and Spencer, R. E. (eds.), NATO Advanced Science Institutes (ASI) Series C, pp. 141162. NATO Advanced Science Institutes (ASI) Series C, vol. 283.Google Scholar
Walker, R. C., Hardee, P. E., Davies, F. B., Ly, C., and Junor, W. 2018. The structure and dynamics of the subparsec jet in M87 based on 50 VLBA observations over 17 years at 43 GHz. ApJ, 855, 128.Google Scholar
Wall, J. V. 1994. Populations of extragalactic radio sources. Australian J. Phys., 47, 625655.Google Scholar
Wall, J. V., and Jenkins, C. R. 2012. Practical Statistics for Astronomers. Cambridge University Press.Google Scholar
Walsh, C. 2017. Organic molecules in protoplanetary disks: new insights and directions with ALMA. In: American Astronomical Society Meeting Abstracts, p. 208.02. American Astronomical Society Meeting Abstracts Series, vol. 230.Google Scholar
Walsh, D., Carswell, R. F., and Weymann, R. J. 1979. 0957+561 A, B – twin quasistellar objects or gravitational lens. Nature, 279, 381384.Google Scholar
Wang, Y., and Mohanty, S. D. 2017. Pulsar timing array based search for supermassive black hole binaries in the Square Kilometer Array era. Phys. Rev. Lett., 118, 151104.Google Scholar
Weinberg, D. H. 2017. On the deuterium-to-hydrogen ratio of the interstellar medium. Ap. J., 851, 25.Google Scholar
Weinreb, S., Barrett, A. H., Meeks, M. L., and Henry, J. C. 1963. Radio observations of OH in the interstellar medium. Nature, 200, 829831.Google Scholar
Welch, W. J., and six others. 2017. New cooled feeds for the Allen Telescope Array. PASP, 129, 045002.Google Scholar
Wevers, B. M. H. R., van der Kruit, P. C., and Allen, R. J. 1986. The Palomar–Westerbork survey of northern spiral galaxies. A&AS, 66, 505662.Google Scholar
White, R. L., Becker, R. H., and Gregg, M. D. et al. 2000, The FIRST bright quasar survey. II. 60 nights and 1200 spectra later. Astrophys. J. Suppl., 126, 133.Google Scholar
White, S. D. M., Efstathiou, G., and Frenk, C. S. 1993. The amplitude of mass fluctuations in the universe. MNRAS, 262, 10231028.Google Scholar
Wielebinski, R., and Beck, R. (eds.). 2005. Cosmic Magnetic Fields. Lecture Notes in Physics, vol. 664. Springer.Google Scholar
Wielebinski, R., and Krause, F. 1993. Magnetic fields in galaxies. Astron. Astrophys. Rev., 4, 449485.Google Scholar
Wild, J. P., Smerd, S. F., and Weiss, A. A. 1963. Solar bursts. Ann. Rev. Astr. Ap., 1, 291.Google Scholar
Wilkins, D. R., and Gallo, L. C. 2015. The Comptonization of accretion disk X-ray emission: consequences for X-ray reflection and the geometry of AGN coronae. MNRAS, 448, 703712.Google Scholar
Wilkinson, P. N. 1989a. An introduction to closure phase and self-calibration. In: Felli, M., and Spencer, R. E. (eds.), Very Long Baseline Interferometry, Techniques and Applications, pp. 6993. NATO Advanced Science Institutes (ASI) Series C, vol. 283.Google Scholar
Wilkinson, P. N. 1989b. An introduction to deconvolution in VLBI. In: Felli, M., and Spencer, R. E. (eds.), Very Long Baseline Interferometry, Techniques and Applications, pp. 183197. NATO Advanced Science Institutes (ASI) Series C, vol. 283.Google Scholar
Wilkinson, P. N. 1991. The hydrogen array. In: Cornwell, T. J., and Perley, R. A. (eds.), Proc. IAU Colloq. 131: Radio Interferometry. Theory, Techniques, and Applications, pp. 428432. Astronomical Society of the Pacific Conference Series, vol. 19.Google Scholar
Wilkinson, P. N., and Woodall, P. 1991. Numerical experiments with low SNR data in radio interferometry. In: Cornwell, T. J., and Perley, R. A. (eds.), IAU Colloq. 131: Radio Interferometry. Theory, Techniques, and Applications, pp. 272275. Astronomical Society of the Pacific Conference Series, vol. 19.Google Scholar
Wilkinson, P. N., Polatidis, A. G., Readhead, A. C. S., Xu, W., and Pearson, T. J. 1994. Two-sided ejection in powerful radio sources: The compact symmetric objects. ApJ, 432, L87L90.Google Scholar
Wilkinson, P. N., Kellermann, K. I., Ekers, R. D., Cordes, J. M., and Lazio, W., T. J. 2004. The exploration of the unknown. New Astron. Rev., 48, 15511563.Google Scholar
Wilman, R. J., and ten others. 2008. A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. MNRAS, 388, 13351348.Google Scholar
Wilner, D. J., and Welch, W. J. 1994. The S140 core: aperture synthesis HCO(+) and SO observations. ApJ, 427, 898913.Google Scholar
Wilson, T. L., Mezger, P. G., Gardner, F. F., and Milne, D. K. 1970. A survey of H 109 α recombination line emission in Galactic H II regions of the southern sky. A&A, 6, 364384.Google Scholar
Wilson, T. L., Rohlfs, K., and Hüttemeister, S. 2013. Tools of Radio Astronomy, 6th edn. Springer.Google Scholar
Wolleben, M., Landecker, T. L., Reich, W., and Wielebinski, R. 2006. An absolutely calibrated survey of polarized emission from the northern sky at 1.4 GHz. Observations and data reduction. A&A, 448, 411424.Google Scholar
Wright, A. E., and Barlow, M. J. 1975. The radio and infrared spectrum of early-type stars undergoing mass loss. MNRAS, 170, 4151.Google Scholar
Wynn-Williams, C. G., Becklin, E. E., and Neugebauer, G. 1972. Infra-red sources in the H II region W3. MNRAS, 160, 114.Google Scholar
Yao, J. M., Manchester, R. N., and Wang, N. 2017. A new electron-density model for estimation of pulsar and FRB distances. ApJ, 835, 29.Google Scholar
Yin, J., Yang, J., and Pantaleev, M. 2013. The circular eleven antenna: a new decade bandwidth feed for reflector antennas with high aperture efficiency. IEEE Trans. Ant. Propag., 61, 3976.Google Scholar
Young, M. D., Manchester, R. N., and Johnston, S. 1999. A radio pulsar with an 8.5-second period that challenges emission models. Nature, 400, 848849.Google Scholar
Zel’dovich, Y. B., Rakhmatulina, A. K., and Sunyaev, R. A. 1972. The observation of fluctuations of relict radio emission as a method of distinguishing adiabatic perturbations from other forms of perturbations of material density in the universe which lead to galaxy formation. Radiophys. Quantum Electron., 15, 121128.Google Scholar
Zensus, J. A. 1997. Parsec-scale jets in extragalactic radio sources. Ann. Rev. Astr. Ap., 35, 607636.Google Scholar
Zirin, H., Baumert, B. M., and Hurford, G. J. 1991. The microwave brightness temperature spectrum of the quiet sun. ApJ, 370, 779783.Google Scholar
Zucca, P., Carley, E. P., Bloomfield, D. S., and Gallagher, P. T. 2014. The formation heights of coronal shocks from 2D density and Alfvén speed maps. A&A, 564, A47.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×