Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Notation
- 1 Introduction
- 2 Simple examples
- 3 Embedded geometry: first order
- 4 First-order optimization algorithms
- 5 Embedded geometry: second order
- 6 Second-order optimization algorithms
- 7 Embedded submanifolds: examples
- 8 General manifolds
- 9 Quotient manifolds
- 10 Additional tools
- 11 Geodesic convexity
- References
- Index
7 - Embedded submanifolds: examples
Published online by Cambridge University Press: 09 March 2023
- Frontmatter
- Dedication
- Contents
- Preface
- Notation
- 1 Introduction
- 2 Simple examples
- 3 Embedded geometry: first order
- 4 First-order optimization algorithms
- 5 Embedded geometry: second order
- 6 Second-order optimization algorithms
- 7 Embedded submanifolds: examples
- 8 General manifolds
- 9 Quotient manifolds
- 10 Additional tools
- 11 Geodesic convexity
- References
- Index
Summary
This chapter details how to work on several manifolds of practical interest, focusing on embedded submanifolds of linear spaces. It provides two tables which point to Manopt implementations of those manifolds, and to the various places in the book where it is explained how to work with products of manifolds. The manifolds detailed in this chapter include Euclidean spaces, unit spheres, the Stiefel manifold (orthonormal matrices), the orthogonal group and associated group of rotations, the manifold of matrices with a given size and rank and hyperbolic space in the hyperboloid model. It further discusses geometric tools for optimization on a manifold defined by (regular) constraints $h(x) = 0$ in general. That last section notably makes it possible to connect concepts from Riemannian optimization with classical concepts from constrained optimization in linear spaces, namely, Lagrange multipliers and KKT conditions under linear independence constraint qualifications (LICQ).
- Type
- Chapter
- Information
- An Introduction to Optimization on Smooth Manifolds , pp. 149 - 175Publisher: Cambridge University PressPrint publication year: 2023