Book contents
- Frontmatter
- Contents
- The scope of this text
- Preface to the second edition
- Acknowledgments
- 1 How the theory of relativity came into being (a brief historical sketch)
- Part I Elements of differential geometry
- 2 A short sketch of 2-dimensional differential geometry
- 3 Tensors, tensor densities
- 4 Covariant derivatives
- 5 Parallel transport and geodesic lines
- 6 The curvature of a manifold; at manifolds
- 7 Riemannian geometry
- 8 Symmetries of Riemann spaces, invariance of tensors
- 9 Methods to calculate the curvature quickly: differential forms and algebraic computer programs
- 10 The spatially homogeneous Bianchi-type spacetimes
- 11 * The Petrov classication by the spinor method
- Part II The theory of gravitation
- References
- Index
10 - The spatially homogeneous Bianchi-type spacetimes
from Part I - Elements of differential geometry
Published online by Cambridge University Press: 30 May 2024
- Frontmatter
- Contents
- The scope of this text
- Preface to the second edition
- Acknowledgments
- 1 How the theory of relativity came into being (a brief historical sketch)
- Part I Elements of differential geometry
- 2 A short sketch of 2-dimensional differential geometry
- 3 Tensors, tensor densities
- 4 Covariant derivatives
- 5 Parallel transport and geodesic lines
- 6 The curvature of a manifold; at manifolds
- 7 Riemannian geometry
- 8 Symmetries of Riemann spaces, invariance of tensors
- 9 Methods to calculate the curvature quickly: differential forms and algebraic computer programs
- 10 The spatially homogeneous Bianchi-type spacetimes
- 11 * The Petrov classication by the spinor method
- Part II The theory of gravitation
- References
- Index
Summary
The Bianchi classification of 3-dimensional Lie algebras is introduced by the Schucking method: mapping the structure constants of the algebras into the set of 3×3 matrices, and then considering all the inequivalent combinations of eigenvalues and eigenvectors. A general 4-dimensional metric with a symmetry algebra of Bianchi type is derived. The general metric of a spatially homogeneous and isotropic (= Robertson–Walker, R–W) spacetime is derived. The possible Bianchi types of R–W spacetimes are demonstrated.
- Type
- Chapter
- Information
- An Introduction to General Relativity and Cosmology , pp. 94 - 107Publisher: Cambridge University PressPrint publication year: 2024