Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T21:49:26.131Z Has data issue: false hasContentIssue false

2 - A Basic Description Logic

Published online by Cambridge University Press:  13 June 2017

Franz Baader
Affiliation:
Technische Universität, Dresden
Ian Horrocks
Affiliation:
University of Oxford
Carsten Lutz
Affiliation:
Universität Bremen
Uli Sattler
Affiliation:
University of Manchester
Get access

Summary

In this chapter, we introduce and explain the basic notions of Description Logic, including syntax, semantics and reasoning services, and we explain how the latter are used in applications.

The concept language of the DLALC

In this section, we will describe the central notions of Description Logic first on an intuitive level and then on a more precise level. As a running example, we use the domain of university courses and teaching, and we will use a conceptualisation given informally, in graphical form, in Figure 2.1. Please note that this is one way of viewing university teaching – which might be very different from the reader's way of viewing it. Also, as it is an informal representation, different readers may interpret arrows in different ways; that is, our representation does not come with a well-defined semantics that would inform us in an unambiguous way how to interpret the different arrows. In the next sections, we will describe our way of viewing university teaching in a DL knowledge base, thereby establishing some constraints on the meaning of terms like “Professor” and “teaches” used in Figure 2.1 and throughout this section.

In Description Logic, we assume that we want to describe some abstraction of some domain of interest, and that this abstraction is populated by elements. We use three main building blocks to describe these elements:

  1. Concepts represent sets of elements and can be viewed as unary predicates. Concepts are built from concept names and role names (see below) using the constructors provided by the DL used. The set a concept represents is called its extension. For example, Person and Course are concept names, and m is an element in the extension of Person and c6 is in the extension of Course. To make our life a bit easier, we often use “is a” as an abbreviation for “is in the extension of” as, for example, in “m is a Person”.

  2. Role names stand for binary relations on elements and can be viewed as binary predicates. If a role r relates one element with another element, then we call the latter one an r-filler of the former one. For example, if m teaches c6, then we call c6 a teaches-filler of m.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×