Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T11:23:55.145Z Has data issue: false hasContentIssue false

5 - Elastic deformation of laminates

Published online by Cambridge University Press:  05 June 2012

D. Hull
Affiliation:
University of Liverpool
T. W. Clyne
Affiliation:
University of Cambridge
Get access

Summary

In the last chapter, it was shown that an aligned composite is stiff along the fibre axis, but relatively compliant in the transverse directions. Sometimes, this is all that is required. For example, in a slender beam, such as a fishing rod, the loading is often predominantly axial and transverse or shear stiffness are not important. However, there are many applications in which loading is distributed within a plane: these range from panels of various types to cylindrical pressure vessels. Equal stiffness in all directions within a plane can be produced using a planar random assembly of fibres. This is the basis of chopped-strand mat. However, demanding applications require material with higher fibre volume fractions than can readily be achieved in a planar random array. The approach adopted is to stack and bond together a sequence of thin ‘plies’ or ‘laminae’, each composed of long fibres aligned in a single direction, into a laminate. It is important to be able to predict how such a construction responds to an applied load. In this chapter, attention is concentrated on the stress distributions which are created and the elastic deformations which result. This involves consideration of how a single lamina will deform on loading at an arbitrary angle to the fibre direction. A brief summary is given first of some matrix algebra used in elasticity theory.

Elastic deformation of anisotropic materials

Hooke's law

A review of some basic points about stress and strain is appropriate.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×