Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T04:30:03.505Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 May 2023

Hector Zenil
Affiliation:
University of Cambridge
Narsis A. Kiani
Affiliation:
Karolinska Institutet, Stockholm
Jesper Tegnér
Affiliation:
King Abdullah University of Science and Technology, Saudi Arabia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Algorithmic Information Dynamics
A Computational Approach to Causality with Applications to Living Systems
, pp. 310 - 321
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zenil, Hector, Gershenson, Carlos, Marshall, James A. R., and Rosenblueth, David A.. Life as thermodynamic evidence of algorithmic structure in natural environments. Entropy, 14 (11):21732191, 2012.Google Scholar
Hitchcock, Christopher. Probabilistic causation. In Zalta, Edward N., ed., The Stanford Encyclopedia of Philosophy. Spring ed. Metaphysics Research Lab, Stanford University, 2021.Google Scholar
Matejka, Justin and Fitzmaurice, George. Same stats, different graphs: Generating Datasets with varied appearance and identical statistics through simulated annealing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). Association for Computing Machinery, New York, 2017, pp. 12901294.Google Scholar
Watts, Duncan J. and Strogatz, Steven H.. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440442, 1998.CrossRefGoogle ScholarPubMed
Hao, Dapeng, Ren, Cong, and Li, Chuanxing. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure. BMC Systems Biology, 6(1):34, 2012.Google Scholar
Aloy, Patrick and Russell, Robert B.. Taking the mystery out of biological networks. EMBO reports, 5(4):349350, 2004.CrossRefGoogle ScholarPubMed
Yu, Haiyuan, Greenbaum, Dov, Lu, Hao Xin, Zhu, Xiaowei, and Gerstein, Mark. Genomic analysis of essentiality within protein networks. Trends in Genetics, 20(6):227231, 2004.Google Scholar
Gursoy, Attila, Keskin, Ozlem, and Nussinov, Ruth. Topological properties of protein interaction networks from a structural perspective. Biochemical Society Transactions, 36(6):13981403, 2008.Google Scholar
Sabidussi, Gert. The centrality index of a graph. Psychometrika, 31(4):581603, 1966.Google Scholar
Freeman, Linton C.. A set of measures of centrality based on betweenness. Sociometry, 40(1):3541, 1977.Google Scholar
Freeman, Linton C.. Centrality in social networks conceptual clarification. Social Networks, 1(3):215239, 1978.Google Scholar
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U.. Network motifs: Simple building blocks of complex networks. Science, 298(5594):824827, 2002.Google Scholar
Erdős, Paul and Rényi, Alfréd. On random graphs I. Publicationes Mathematicae Debrecen, 6:290297, 1959.Google Scholar
Erdős, Paul and Rényi, Alfréd. On the evolution of random graphs. Bulletin of the International Statistical Institute, 38:343347, 1961.Google Scholar
Price, Derek J. de Solla. Networks of scientific papers. Science, 149(3683):510515, 1965.Google Scholar
Price, Derek De Solla. A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5):292306, 1976.Google Scholar
Barabási, Albert-László and Albert, Réka. Emergence of scaling in random networks. Science, 286(5439):509512, 1999.Google Scholar
Milgram, Stanley. The small world problem. Psychology Today, 1(1):6167, 1967.Google Scholar
Solomonoff, Ray and Rapoport, A.. Connectivity of random nets. Bulletin of Mathematical Biophysics, 13:10717, 1951.Google Scholar
Barabási, Albert László and Oltvai, Zoltán N.. Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2):101113, 2004.Google Scholar
Sharma, Pooja, Ahmed, Hasin A., Roy, Swarup, and Bhattacharyya, Dhruba K.. Unsupervised methods for finding protein complexes from PPI networks. Network Modeling Analysis in Health Informatics and Bioinformatics, 4(1):115, 2015.CrossRefGoogle Scholar
Poincaré, Henri. Sur le problème des trois corps et les équations de dynamique. Acta Mathematica, 13:1270, 1890.Google Scholar
Lotka, Alfred J.. Contribution to the theory of periodic reactions. Journal of Physical Chemistry, 14(3):271274, 1910.CrossRefGoogle Scholar
Volterra, Vito. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memoria della Reale Accademia Nazionale dei Lincei, 2:31113, 1926.Google Scholar
Kauffman, S. A.. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22(3):437467, 1969.CrossRefGoogle ScholarPubMed
Irurzun-Arana, Itziar, Pastor, José Martín, Trocóniz, Iñaki F., and Gómez-Mantilla, José David. Advanced Boolean modeling of biological networks applied to systems pharmacology. Bioinformatics, 33(7):10401048, 2017.Google Scholar
Prettejohn, Brenton, Berryman, Matthew, and McDonnell, Mark. Methods for generating complex networks with selected structural properties for simulations: A review and tutorial for neuroscientists. Frontiers in Computational Neuroscience, 5:11, 2011.Google Scholar
Gershenson, Carlos, Aerts, Diederik, and Edmonds, Bruce. Worldviews, Science and Us: Philosophy and Complexity. World Scientific, 2007.Google Scholar
Pearl, Judea. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.Google Scholar
Turing, A. M.. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42(2):230265, 1936.Google Scholar
The Experimental Algorithmic Information Project. The Shortest Universal Turing Machine Implementation Contest. www.mathrix.org/experimentalAIT/TuringMachine.html.Google Scholar
Shannon, Claude E.. A universal Turing machine with two internal states. In Shannon, C. E. and McCarthy, J. (eds.), Automata Studies, vol. 34, Princeton University Press, 1956, pp. 157165.Google Scholar
Zenil, Hector. On the dynamic qualitative behavior of universal computation. Complex Systems, 20(3):265278, 2011.CrossRefGoogle Scholar
Riedel, Jürgen and Zenil, Hector. Cross-boundary behavioural reprogrammability reveals evidence of pervasive universality. International Journal of Unconventional Computing, 13:309357, 2018.Google Scholar
Wolfram, Stephen. A New Kind of Science. Wolfram Media, 2002.Google Scholar
Rado, T.. On non-computable functions. Bell System Technical Journal, 41(3):877884, 1962.Google Scholar
RANDOM.ORG. True Random Number Service. www.random.org/.Google Scholar
Kolmogorov, A. N.. Three approaches to the quantitative definition of information. International Journal of Computer Mathematics, 2(1–4):157168, 1968.Google Scholar
Chaitin, Gregory J.. On the length of programs for computing finite binary sequences. Journal of the ACM (JACM), 13(4):547569, 1966.Google Scholar
Downey, Rodney G. and Hirschfeldt, D. R.. Algorithmic Randomness and Complexity. Springer, 2010.Google Scholar
Martin-Löf, Per. The definition of random sequences. Information and Control, 9:602619, 1966.CrossRefGoogle Scholar
Schnorr, C. P.. A unified approach to the definition of random sequences. Mathematical Systems Theory, 5(3):246258, 1971.Google Scholar
Solomonoff, Ray J.. A formal theory of inductive inference. Part I. Information and Control, 7(1):122, 1964.Google Scholar
Levin, L. A.. Laws of information conservation (non-growth) and aspects of the foundation of probability theory. Problems of Information Transmission, 10:206210, 1974.Google Scholar
Cover, Thomas M. and Thomas, Joy A.. Elements of Information Theory. Wiley-Interscience, 2nd ed., 2006.Google Scholar
Calude, Cristian S.. Information and Randomness: An Algorithmic Perspective. Springer-Verlag, 2nd ed. 2002.Google Scholar
Solomonoff, R. J.. Complexity-based induction systems: Comparisons and convergence theorems. IEEE Transactions on Information Theory, 24(4):422432, 1978.CrossRefGoogle Scholar
Solomonoff, Ray. The application of algorithmic probability to problems in artificial intelligence. In Kanal, L. N. and Lemmer, J. F. (eds.) Machine Intelligence and Pattern Recognition, Vol. 4. North-Holland, 1986, pp. 473491.Google Scholar
Solomonoff, Ray J.. A system for incremental learning based on algorithmic probability. Proceedings of the Sixth Israeli Conference on Artificial Intelligence, Computer Vision and Pattern Recognition, 1989.Google Scholar
Kirchherr, Walter, Li, Ming, and Vitányi, Paul. The miraculous universal distribution. The Mathematical Intelligencer, 19(4):715, 1997.Google Scholar
Chaitin, Gregory J.. A theory of program size formally identical to information theory. Journal of the ACM, 22(3):329340, 1975.Google Scholar
Delahaye, Jean-Paul and Zenil, Hector. Towards a stable definition of Kolmogorov–Chaitin complexity. ArXiv abs/0804.3459, 2008.Google Scholar
Calude, C. S., Calude, E., and Dinneen, M. J.. A new measure of the difficulty of problems. Journal of Multiple-Valued Logic and Soft Computing, 12(3):285307, 2006.Google Scholar
Chaitin, G. J.. Algorithmic information theory. IBM Journal of Research and Development, 21(4):350359, 1977.Google Scholar
Bennett, C. H.. Logical depth and physical complexity. In Herken, R. (ed.) The Universal Turing Machine: A Half-Century Survey. Oxford University Press, 1988, pp. 227257.Google Scholar
Ziv, Jacob and Lempel, Abraham. Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, 24(5):530536, 1978.Google Scholar
Delahaye, Jean-Paul and Zenil, Hector. Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness. Applied Mathematics and Computation, 219(1):6377, 2012.Google Scholar
Soler-Toscano, Fernando, Zenil, Hector, Delahaye, Jean-Paul, and Gauvrit, Nicolas. Calculating Kolmogorov complexity from the output frequency distributions of small turing machines. PLoS ONE, 9(5):e96223, 2014.Google Scholar
Zenil, Hector, Badillo, Liliana, Hernández-Orozco, Santiago, and Hernández-Quiroz, Francisco. Coding-theorem like behaviour and emergence of the universal distribution from resource-bounded algorithmic probability. International Journal of Parallel, Emergent and Distributed Systems, 34(2):161180, 2019.Google Scholar
Zenil, Hector. Algorithmic data analytics, small data matters and correlation versus causation. In Pietsch, Wolfgang, Wernecke, Jörg, and Ott, Maximilian, eds., Berechenbarkeit der Welt? Philosophie und Wissenschaft im Zeitalter von Big Data. Springer Fachmedien, 2017, pp. 453475.Google Scholar
Calude, C. S. and Stay, M. A.. Most programs stop quickly or never halt. Advances in Applied Mathematics, 40:295308, 2008.Google Scholar
Zenil, H.. From computer runtimes to the length of proofs: With an algorithmic probabilistic application to waiting times in automatic theorem proving. In Dinneen, B. Khousainov and Nies, A., eds., Computation, Physics and Beyond. Springer, 2012, pp. 223240.Google Scholar
Brady, A. H.. The determination of the value of Rado’s noncomputable function ∑(k) for four-state Turing machines. Mathematics of Computation, 40(162):647665, 1983.Google Scholar
Soler-Toscano, Fernando, Zenil, Hector, Delahaye, Jean-Paul, and Gauvrit, Nicolas. Correspondence and independence of numerical evaluations of algorithmic information measures. Computability, 2(2):125140, 2013.Google Scholar
Zenil, Hector, Soler-Toscano, Fernando, Delahaye, Jean Paul, and Gauvrit, Nicolas. Two-dimensional Kolmogorov complexity and an empirical validation of the Coding theorem method by compressibility. PeerJ Computer Science, 1:e23, 2015.CrossRefGoogle Scholar
Zenil, Hector, Kiani, Narsis A., and Tegnér, Jesper. Low-algorithmic-complexity entropy-deceiving graphs. Physical Review E, 96(1):12308, 2017.Google Scholar
Levin, L. A.. Universal sequential search problems. Rossiiskaya Akademiya Nauk. Problemy Peredachi Informatsii, 9(3):115116, 1973.Google Scholar
Daley, Robert P.. An example of information and computation resource trade-off. Journal of the ACM, 20(4):687695, 1973.Google Scholar
Daley, R. P.. Minimal-program complexity of sequences with restricted resources. Information and Control, 23(4):301312, 1973.CrossRefGoogle Scholar
Schmidhuber, Jürgen. The speed prior: A new simplicity measure yielding near-optimal computable predictions. In Kivinen, J. and Sloan, R. H. (eds.), Computational Learning Theory. COLT 2002. Lecture Notes in Computer Science, Vol. 2375, Springer, 2002.Google Scholar
Li, M. and Vitányi, P.. An Introduction to Kolmogorov Complexity and Its Applications. Springer Verlag, 2008.Google Scholar
Cilibrasi, R. and Vitanyi, P.. Clustering by compression. IEEE Transactions on Information Theory, 51(4):15231545, 2005.Google Scholar
Gauvrit, Nicolas, Soler-Toscano, Fernando, and Zenil, Hector. Natural scene statistics mediate the perception of image complexity. Visual Cognition, 22(8):10841091, 2014.Google Scholar
Gauvrit, Nicolas, Singmann, Henrik, Soler-Toscano, Fernando, and Zenil, Hector. Algorithmic complexity for psychology: A user-friendly implementation of the coding theorem method. Behavior Research Methods, 48(1):314329, 2016.Google Scholar
Kempe, Vera, Gauvrit, Nicolas, and Forsyth, Douglas. Structure emerges faster during cultural transmission in children than in adults. Cognition, 136:247254, 2015.Google Scholar
Holzinger, Andreas, Ofner, Bernhard, Stocker, Christof, et al. On graph entropy measures for knowledge discovery from publication network data. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8127 LNCS, pages 354362. Springer, 2013.Google Scholar
Emmert-Streib, Frank and Dehmer, Matthias. Exploring statistical and population aspects of network complexity. PLoS ONE, 7(5):e34523, 2012.Google Scholar
Dehmer, Matthias. A novel method for measuring the structural information content of networks. Cybernetics and Systems, 39(8):825842, 2008.Google Scholar
Dehmer, Matthias and Mowshowitz, Abbe. A history of graph entropy measures. Information Sciences, 181(1):5778, 2011.Google Scholar
Mowshowitz, Abbe and Dehmer, Matthias. Entropy and the complexity of graphs revisited. Entropy, 14(3):559570, 2012.Google Scholar
Zenil, H., Soler-Toscano, F., Dingle, K., and Louis, A. A.. Correlation of automorphism group size and topological properties with program-size complexity evaluations of graphs and complex networks. Physica A: Statistical Mechanics and its Applications, 404:341358, 2014.Google Scholar
Zenil, Hector, Kiani, Narsis A., and Tegnér, Jesper. Methods of information theory and algorithmic complexity for network biology. Seminars in Cell and Developmental Biology, 51:3243, 2016.Google Scholar
Calude, Cristian S., Salomaa, Kai, and Roblot, Tania K.. Finite state complexity. Theoretical Computer Science, 412(41):56685677, 2011.Google Scholar
Langton, Christopher G.. Studying artificial life with cellular automata. Physica D: Nonlinear Phenomena, 22(1):120149, 1986.Google Scholar
Hedlund, Gustav A. and Morse, Marston. Unending chess, symbolic dynamics and a problem in semigroups. Duke Mathematical Journal, 11(1):17, 1944.Google Scholar
Bailey, David, Borwein, Peter, and Plouffe, Simon. On the rapid computation of various polylogarithmic constants. Mathematics of Computation, 66(218):903913, 1997.Google Scholar
Wolfram. GraphData–Wolfram Language Documentation. https://reference.wolfram.com/language/ref/GraphData.html?view=all.Google Scholar
Ziv, Jacob and Lempel, Abraham. A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, 23(3):337343, 1977.Google Scholar
Babai, Laszlo and Luks, Eugene M.. Canonical labeling of graphs. In Conference Proceedings of the Annual ACM Symposium on Theory of Computing (STOC ’83). Association for Computing Machinery, New York, 1983, pp. 171183.Google Scholar
Gilbert, E. N.. Random graphs. The Annals of Mathematical Statistics, 30(4):11411144, 1959.Google Scholar
Boccaletti, S., Bianconi, G., Criado, R., et al. The structure and dynamics of multilayer networks. Physics Reports, 544(1):1122, 2014.Google Scholar
Chen, Zengqiang, Dehmer, Matthias, Emmert-Streib, Frank, and Shi, Yongtang. Entropy bounds for dendrimers. Applied Mathematics and Computation, 242:462472, 2014.Google Scholar
Orsini, Chiara, Dankulov, Marija M, Colomer-De-Simon, Pol, et al. Quantifying randomness in real networks. Nature Communications, 6(1):110, 2015.Google Scholar
Zenil, Hector, Kiani, Narsis A., and Tegnér, Jesper. The thermodynamics of network coding, and an algorithmic refinement of the principle of maximum entropy. Entropy, 21(6):560, 2019.Google Scholar
Bianconi, Ginestra. The entropy of randomized network ensembles. Europhysics Letters, 81(2):28005, 2008.CrossRefGoogle Scholar
Shang, Yilun. Bounding extremal degrees of edge-independent random graphs using relative entropy. Entropy, 18(2):53, 2016.Google Scholar
Estrada, Ernesto, de la Peña, José A., and Hatano, Naomichi. Walk entropies in graphs. Linear Algebra and Its Applications, 443:235244, 2014.Google Scholar
Sengupta, Dipendra C. and Sengupta, Jharna D.. Application of graph entropy in CRISPR and repeats detection in DNA sequences. Computational Molecular Bioscience, 06(03):4151, 2016.Google Scholar
Shang, Yilun. The Estrada index of evolving graphs. Applied Mathematics and Computation, 250:415423, 2015.Google Scholar
Korner, J. and Marton, K.. Random access communication and graph entropy. IEEE Transactions on Information Theory, 34(2):312314, 1988.Google Scholar
Dehmer, Matthias, Borgert, Stephan, and Emmert-Streib, Frank. Entropy bounds for hierarchical molecular networks. PLoS ONE, 3(8):e3079, 2008.Google Scholar
Morzy, Mikołaj, Kajdanowicz, Tomasz, and Kazienko, Przemysław. On measuring the complexity of networks: Kolmogorov complexity versus entropy. Complexity, 2017(1):112, 2017.Google Scholar
Zenil, Hector, Soler-Toscano, Fernando, Kiani, Narsis A., Hernández-Orozco, Santiago, and Rueda-Toicen, Antonio. A decomposition method for global evaluation of Shannon entropy and local estimations of algorithmic complexity. Entropy, 20(8):605, 2018.Google Scholar
Albert, Réka and Barabási, Albert-László. Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1):47, 2002.Google Scholar
Buhrman, Harry, Li, Ming, Tromp, John, and Vitányi, Paul. Kolmogorov random graphs and the incompressibility method. SIAM Journal on Computing, 29(2):590599, 1999.Google Scholar
Alon, Uri. Network motifs: Theory and experimental approaches. Nature Reviews Genetics, 8(6):450461, 2007.Google Scholar
Zenil, Hector, Kiani, Narsis A., and Tegnér, Jesper. Algorithmic complexity of motifs clusters superfamilies of networks. In Proceedings of the 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM ’13). IEEE, 2013.Google Scholar
Zenil, Hector, Kiani, Narsis A., Marabita, Francesco, et al. An algorithmic information calculus for causal discovery and reprogramming systems. iScience, 19:11601172, 2019.Google Scholar
Pearl, Judea and Mackenzie, Dana. The Book of Why: The New Science of Cause and Effect. Basic Books, 2018.Google Scholar
Gauvrit, Nicolas, Zenil, Hector, Soler-Toscano, Fernando, Delahaye, Jean-Paul, and Brugger, Peter. Human behavioral complexity peaks at age 25. PLoS Computational Biology, 13(4):e1005408, 2017.Google Scholar
Zenil, Hector, Kiani, Narsis A., Abrahão, Felipe S., Rueda-Toicen, Antonio, Zea, Allan A., and Tegnér, Jesper. Minimal algorithmic information loss methods for dimension reduction, feature selection and network sparsification. ArXiv:1802.05843 [physics], 2020.Google Scholar
Zenil, Hector. A review of methods for estimating algorithmic complexity: Options, challenges, and new directions. Entropy, 22(6):612, 2020.Google Scholar
Zenil, Hector, Kiani, Narsis A., Zea, Allan A., and Tegnér, Jesper. Causal deconvolution by algorithmic generative models. Nature Machine Intelligence, 1(1):5866, 2019.Google Scholar
Durand, Bruno and Róka, Zsuzsanna. The game of life: Universality revisited. Technical report, Ecole Normale Supérieure de Lyon, Laboratoire de l’Informatique du Parallélisme, 1998.Google Scholar
Gardner, Martin. Mathematical Games: The fantastic combinations of John Conway’s new solitaire game ‘life’. Scientific American, 223:120123, 1970.Google Scholar
Martínez, Genaro J., Adamatzky, Andrew, and McIntosh, Harold V.. A computation in a cellular automaton collider rule 110. In Adamatzky, A. (ed.) Advances in Unconventional Computing. Springer, 2016, pp. 391428.Google Scholar
Mitchell, Melanie. Computation in cellular automata: A selected review. In Non-Standard Computation. John Wiley & Sons, Ltd, 1998, pp. 95140.Google Scholar
Benci, V., Bonanno, C., Galatolo, S., Menconi, G., and Virgilio, M.. Dynamical systems and computable information. Discrete and Continuous Dynamical Systems - Series B, 4(4):935, 2004.Google Scholar
Spelke, Elizabeth S. and Kinzler, Katherine D.. Core knowledge. Developmental science, 10(1):8996, 2007.Google Scholar
Izard, Vé Ronique, Sann, Coralie, Spelke, Elizabeth S., and Streri, Arlette. Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25):1038210385, 2009.Google Scholar
Rugani, Rosa, Vallortigara, Giorgio, Priftis, Konstantinos, and Regolin, Lucia. Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347(6221):534536, 2015.Google Scholar
Halberda, Justin, Ly, Ryan, Wilmer, Jeremy B., Naiman, Daniel Q., and Germine, Laura. Number sense across the lifespan as revealed by a massive internet-based sample. Proceedings of the National Academy of Sciences, 109(28):1111611120, 2012.Google Scholar
Dehaene, Stanislas. The Number Sense: How the Mind Creates Mathematics, rev. ed. Oxford University Press, 2011.Google Scholar
Fontanari, Laura, Gonzalez, Michel, Vallortigara, Giorgio, and Girotto, Vittorio. Probabilistic cognition in two indigenous Mayan groups. Proceedings of the National Academy of Sciences, 111(48):1707517080, 2014.Google Scholar
Téglás, Edward, Vul, Ernand, Girotto, Vittorio, Gonzalez, Michel, Tenenbaum, Joshua B., and Bonatti, Luca L.. Pure reasoning in 12-month-old infants as probabilistic inference. Science, 332(6033):10541059, 2011.Google Scholar
Xu, Fei and Garcia, Vashti. Intuitive statistics by 8-month-old infants. Proceedings of the National Academy of Sciences, 105(13):50125015, 2008.Google Scholar
Williams, Joseph J. and Griffiths, Thomas L.. Why are people bad at detecting randomness? A statistical argument. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(5):1473, 2013.Google Scholar
Gauvrit, Nicolas, Zenil, Hector, Delahaye, Jean-Paul, and Soler-Toscano, Fernando. Algorithmic complexity for short binary strings applied to psychology: A primer. Behavior Research Methods, 46(3):732744, 2014.Google Scholar
Ma, Lili and Xu, Fei. Preverbal infants infer intentional agents from the perception of regularity. Developmental Psychology, 49(7):1330, 2013.Google Scholar
Jahanshahi, Marjan, Saleem, T., Ho, Aileen K., Dirnberger, Georg, and Fuller, R.. Random number generation as an index of controlled processing. Neuropsychology, 20(4):391399, 2006.Google Scholar
Mittenecker, E.. Die Analyse zuflliger Reaktionsfolgen [The analysis of ‘random’ action sequences]. Zeitschrift fŗ Experimentelle und Angewandte Psychologie, 5:4560, 1958.Google Scholar
Loetscher, T., Bockisch, C. J., and Brugger, P.. Looking for the answer: The mind’s eye in number space. Neuroscience, 151(3):725729, 2008.Google Scholar
Heuer, H., Janczyk, M., and Kunde, W.. Random noun generation in younger and older adults. The Quarterly Journal of Experimental Psychology, 63(3):465478, 2010.Google Scholar
Wiegersma, S. and Van Den Brink, W. A. J. M.. Repetition of tones in vocal music. Perceptual and Motor Skills, 55(1):167170, 1982.Google Scholar
Hahn, U. and Warren, P.. Perceptions of randomness: Why three heads are better than four. Psychological Review, 116(2):454461, 2009.Google Scholar
Schulter, Günter, Mittenecker, Erich, and Papousek, Ilona. A computer program for testing and analyzing random generation behavior in normal and clinical samples: The Mittenecker Pointing Test. Behavior Research Methods, 42(1):333341, 2010.Google Scholar
Maes, Joseph H. R., Eling, Paul A. T. M., Reelick, Miriam F., and Kessels, Roy P. C.. Assessing executive functioning: On the validity, reliability, and sensitivity of a click/point random number generation task in healthy adults and patients with cognitive decline. Journal of Clinical and Experimental Neuropsychology, 33(3):366378, 2011.Google Scholar
Towse, J. N.. On random generation and the central executive of working memory. British Journal of Psychology, 89(1):77101, 1998.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., and Wager, T. D.. The unity and diversity of executive functions and their contributions to complex ‘Frontal Lobe’ tasks: A latent variable analysis. Cognitive psychology, 41(1):49100, 2000.Google Scholar
Van der Linden, Martial, Beerten, Annick, and Pesenti, Mauro. Age-related differences in random generation. Brain and Cognition, 38(1):116, 1998.Google Scholar
Brown, R. G., Soliveri, P., and Jahanshahi, M.. Executive processes in Parkinson’s disease–Random number generation and response suppression. Neuropsychologia, 36(12):13551362, 1998.Google Scholar
Brugger, Peter. Variables that influence the generation of random sequences: An update. Perceptual and Motor Skills, 84(2):627661, 1997.Google Scholar
Nickerson, Raymond S.. The production and perception of randomness. Psychological Review, 109(2):330, 2002.Google Scholar
Baddeley, Alan, Emslie, Hazel, Kolodny, Jonathan, and Duncan, John. Random generation and the executive control of working memory. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 51A(4):819852, 1998.Google Scholar
Peters, Maarten, Giesbrecht, Timo, Jelicic, Marko, and Merckelbach, Harald. The random number generation task: Psychometric properties and normative data of an executive function task in a mixed sample. Journal of the International Neuropsychological Society, 13(4):626634, 2007.Google Scholar
Sagaspe, Patricia, Charles, André, Taillard, Jacques, Bioulac, Bernard, and Philip, Pierre. Inhibition et mémoire de travail: Effet d’une privation aiguë de sommeil sur une tâche de génération aléatoire. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 57(4):265273, 2003.Google Scholar
Brugger, P., Monsch, A. U., Salmon, D. P., and Butters, N.. Random number generation in dementia of the Alzheimer type: A test of frontal executive functions. Neuropsychologia, 34(2):97103, 1996.Google Scholar
Chan, Kevin Ka-Shing, Hui, Christy Lai-Ming, Tang, Jennifer Yee-Man, et al. Random number generation deficit in early schizophrenia. Perceptual and Motor Skills, 112(1):91103, 2011.Google Scholar
Rinehart, Nicole J., Bradshaw, John L., Moss, Simon A., Brereton, Avril V., and Tonge, Bruce J.. Pseudo-random number generation in children with high-functioning autism and Asperger’s disorder: Further evidence for a dissociation in executive functioning? Autism, 10(1):7085, 2006.Google Scholar
Proios, H., Asaridou, S. S., and Brugger, P.. Random number generation in patients with aphasia: A test of executive functions. Acta Neuropsychologica, 6:157168, 2008.Google Scholar
Brockmole, James R. and Logie, Robert H.. Age-related change in visual working memory: A study of 55,753 participants aged 8–75. Frontiers in Psychology, 4:12, 2013.Google Scholar
Craik, Fergus I. M. and Bialystok, Ellen. Cognition through the lifespan: Mechanisms of change. Trends in Cognitive Sciences, 10(3):131138, 2006.Google Scholar
Goldberger, Ary L., Peng, C. K., and Lipsitz, Lewis A.. What is physiologic complexity and how does it change with aging and disease? Neurobiology of Aging, 23(1):2326, 2002.Google Scholar
Manor, Brad and Lipsitz, Lewis A.. Physiologic complexity and aging: Implications for physical function and rehabilitation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 45:287293, 2013.Google Scholar
Lipsitz, Lewis A. and Goldberger, Ary L.. Loss of ‘complexity’ and aging: Potential applications of fractals and chaos theory to senescence. JAMA: The Journal of the American Medical Association, 267(13):18061809, 1992.Google Scholar
Chater, Nick and Vitányi, Paul. Simplicity: A unifying principle in cognitive science? Trends in Cognitive Sciences, 7(1):1922, 2003.Google Scholar
Tamariz, Mónica and Kirby, Simon. Culture: Copying, compression, and conventionality. Cognitive Science, 39(1):171183, 2015.Google Scholar
Storm, Lance, Tressoldi, Patrizio E., and Risio, Lorenzo Di. Meta-analysis of ESP studies, 1987–2010:Assessing the success of the forced-choice design in parapsychology. Journal of Parapsychology, 76(2):243273, 2012.Google Scholar
McGraw, Kenneth O., Tew, Mark D., and Williams, John E.. The integrity of web-delivered experiments: Can you trust the data? Psychological Science, 11(6):502506, 2000.Google Scholar
Crump, Matthew J. C., McDonnell, John V., and Gureckis, Todd M.. Evaluating Amazon’s mechanical turk as a tool for experimental behavioral research. PLoS ONE, 8(3):e57410, 2013.Google Scholar
Chetverikov, Andrey and Upravitelev, Philipp. Online versus offline: The Web as a medium for response time data collection. Behavior Research Methods, 48(3):10861099, 2016.Google Scholar
Germine, Laura T., Duchaine, Bradley, and Nakayama, Ken. Where cognitive development and aging meet: Face learning ability peaks after age 30. Cognition, 118(2):201210, 2011.Google Scholar
Garaizar, Pablo and Reips, Ulf Dietrich. Visual DMDX: A web-based authoring tool for DMDX, a Windows display program with millisecond accuracy. Behavior Research Methods, 47(3):620631, 2015.Google Scholar
Brugger, Peter, Regard, Marianne, Landis, Theodor, Cook, Norman, Krebs, Denise, and Niederberger, Joseph. ‘Meaningful’ patterns in visual noise: Effects of lateral stimulation and the observer’s belief in ESP. Psychopathology, 26(5–6):261265, 1993.Google Scholar
Brugger, P., Landis, T., and Regard, M.. A ‘sheep-goat effect’ in repetition avoidance: Extra-sensory perception as an effect of subjective probability? British Journal of Psychology, 81:455468, 1990.Google Scholar
Wiseman, Richard and Watt, Caroline. Belief in psychic ability and the misattribution hypothesis: A qualitative review. British Journal of Psychology, 97(3):323338, 2006.Google Scholar
Der, Geoff and Deary, Ian J.. Age and sex differences in reaction time in adulthood: Results from the United Kingdom health and lifestyle survey. Psychology and Aging, 21(1):6273, 2006.Google Scholar
Musch, Jochen and Ehrenberg, Katja. Probability misjudgment, cognitive ability, and belief in the paranormal. British Journal of Psychology, 93(2):169177, 2002.Google Scholar
Geisseler, Olivia, Pflugshaupt, Tobias, Buchmann, Andreas, et al. Random number generation deficits in patients with multiple sclerosis: Characteristics and neural correlates. Cortex, 82:237243, 2016.Google Scholar
Hartl, Daniel L., and Clark, Andrew G.. Principles of Population Genetics, 3rd ed. Sinauer Associates, 1997.Google Scholar
Hernández-Orozco, S., Kiani, N., and Zenil, H.. Algorithmically probable mutations reproduce aspects of evolution, such as convergence rate, genetic memory, and modularity. Royal Society Open Science, 5:180399, 2018.Google Scholar
Chaitin, Gregory J.. Evolution of mutating software. Bulletin of the EATCS, 97:157164, 2009.Google Scholar
Chaitin, Gregory J.. Proving Darwin: Making Biology Mathematical. Vintage, 2013.Google Scholar
Chaitin, Gregory J.. Life as evolving software. In Zenil, Hector (ed.), A Computable Universe: Understanding and Exploring Nature as Computation. World Scientific Publishing Company, 2012, pp. 277302.Google Scholar
Solomonoff, Ray J.. The Kolmogorov lecture: The universal distribution and machine learning. Computer Journal, 46(6):598601, 2003.CrossRefGoogle Scholar
Hernández-Orozco, Santiago, Hernández-Quiroz, Francisco, and Zenil, Hector. Undecidability and irreducibility conditions for open-ended evolution and emergence. Artificial Life, 24(1):5670, 2018.Google Scholar
Bedau, Mark A.. Four puzzles about life. The Nature of Life: Classical and Contemporary Perspectives from Philosophy and Science, 4:392404, 2010.Google Scholar
Chaitin, Gregory J.. Information-theoretic limitations of formal systems. Journal of the ACM, 21(3):403424, 1974.Google Scholar
Calude, Cristian S., Dinneen, Michael J., Shu, Chi-Kou, et al. Computing a glimpse of randomness. Experimental Mathematics, 11(3):361370, 2002.Google Scholar
Zenil, Hector, Gershenson, Carlos, Marshall, James A. R., and Rosenblueth, David A.. Life as thermodynamic evidence of algorithmic structure in natural environments. Entropy, 14(11):21732191, 2012.Google Scholar
Schaffer, J. D. and Eshelman, L. J.. On crossover as an evolutionary viable strategy. In Belew, R. K. and Booker, L. B. (eds), Proceedings of the 4th International Conference on Genetic Algorithms. Morgan Kaufmann, 1991, pp. 6168.Google Scholar
Kiani, Narsis A. and Kaderali, Lars. Dynamic probabilistic threshold networks to infer signaling pathways from time-course perturbation data. BMC Bioinformatics, 15(1):250, 2014.Google Scholar
Yarden, Y. and Sliwkowski, M.. Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2(2):127137, 2001.Google Scholar
Olayioye, M. A.. The ErbB signaling network: Receptor heterodimerization in development and cancer. The EMBO Journal, 19(13):31593167, 2000.Google Scholar
Mitra, Koyel, Carvunis, Anne-Ruxandra, Ramesh, Sanath Kumar, and Ideker, Trey. Integrative approaches for finding modular structure in biological networks. Nature Reviews. Genetics, 14(10):719732, 2013.Google Scholar
Hernández-Orozco, S., Zenil, H., Riedel, J., Uccello, A., Kiani, N. A., and Tegnér, J.. Algorithmic probability-guided machine learning on non-differentiable spaces. Frontiers in Artificial Intelligence, 25(3):567356, 2021.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Hector Zenil, University of Cambridge, Narsis A. Kiani, Karolinska Institutet, Stockholm, Jesper Tegnér, King Abdullah University of Science and Technology, Saudi Arabia
  • Book: Algorithmic Information Dynamics
  • Online publication: 11 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781108596619.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Hector Zenil, University of Cambridge, Narsis A. Kiani, Karolinska Institutet, Stockholm, Jesper Tegnér, King Abdullah University of Science and Technology, Saudi Arabia
  • Book: Algorithmic Information Dynamics
  • Online publication: 11 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781108596619.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Hector Zenil, University of Cambridge, Narsis A. Kiani, Karolinska Institutet, Stockholm, Jesper Tegnér, King Abdullah University of Science and Technology, Saudi Arabia
  • Book: Algorithmic Information Dynamics
  • Online publication: 11 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781108596619.021
Available formats
×