Published online by Cambridge University Press: 23 May 2010
The next two pieces constitute an introduction to spectral sequences, which today form an almost indispensable part of the topologistTs tool kit. For applications of spectral sequences, see §§5–8, 10, 12 of the introduction. The only prerequisite for reading the exposé by Eilenberg is a familiarity with the axiomatic approach to homology theory (see §1 of the introduction). In the extract by Massey the possible applications are more varied; some familiarity with elementary homotopy theory would be useful.
Fondations
Nous considérerons un ensemble muni dTune relation d'ordre (partielle), notée A < B, qui est réflexive (A < A) et transitive (A < B et B < C entraînent A < C). On suppos era que V ensemble contient un plus petit élément, noté 0, et un plus grand élément, noté 1; on a done 0 < A < 1 pour tout A. Nous considérerons des paires (A, B) oú B < A, et nous ecrirons (A, B) < lorsque A < et B <. De méme, nous considérerons des triples (A, B, C) où C < B < A, et nous écrirons (A, B, C) < lorsque A < A B < B et C < C Le triple (A, B, 0) sera identifié à la paire (A, B), et la paire (A, 0) sera identifiée à l'élément A.
Nous supposerons quTa toute paire (A, B) l'on ait associe un groupe abélien (ou un module sur un anneau), noté H(A, B), qu'à toute inégalité (A, B) < (A, B) I'on ait associé un homomorphisme H(A, B) → H(A, B), et qu'à tout triple (A, B, C) l'on ait associe un homomorphisme d: H(A, B) → H(B, C).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.