Published online by Cambridge University Press: 28 July 2022
Viewing an algebraic number field as a vector space relative to a subfield, which was foreshadowed in Chapter 4, involves varying the field of "scalars" in the definition of vector space. This leads in turn to relative concepts of "basis" and "dimension" which must be taken into account in algebraic number theory. In this chapter we review linear algebra from the ground up, with an emphasis on the relative point of view. This brings some nonstandard results into the picture, such as the Dedekind product theorem and the representation of algebraic numbers by matrices.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.