Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T09:34:09.804Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2009

Wei Shyy
Affiliation:
University of Michigan, Ann Arbor
Yongsheng Lian
Affiliation:
University of Michigan, Ann Arbor
Jian Tang
Affiliation:
University of Michigan, Ann Arbor
Dragos Viieru
Affiliation:
University of Michigan, Ann Arbor
Hao Liu
Affiliation:
Chiba University, Japan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertani, R., Hubner, P., Ifju, P. G., Lind, R., and Jackowski, J. (2004). Wind tunnel testing of micro air vehicles at low Reynolds numbers, SAE Paper 2004-01-3090, presented at the SAE 2004 World Aviation Conference, Reno, NV.
Alexander, D. E. (2002). Nature's Flyers (Baltimore/London, Johns Hopkins University Press).Google Scholar
Alexander, R. M. (1976). Mechanics of bipedal locomotion, in Davies, P. S. (Ed.), Perspectives in Experimental Biology (Oxford, Pergamon Press), pp. 493–504.Google Scholar
Alexander, R. M. (1997). The U J and L of bird flight, Nature (London) 390, 13.CrossRefGoogle Scholar
Anders, J. B. (2000). Biomimetic flow control, AIAA Paper 2000–2543.
Anderson, J. D. Jr. (1989). Introduction to Flight (New York, McGraw-Hill).Google Scholar
Anderson, J. M., Streitlien, K., Barrett, D. S., and Triantafyllou, M. S. (1998). Oscillating foils of high propulsive efficiency, Journal of Fluid Mechanics 360, 41–72.CrossRefGoogle Scholar
Aono, H., Liang, F., and Liu, H. (2006). Near- and far-field aerodynamics in insect hovering flight: An integrated computational study, Journal of Experimental Biology (submitted).
Aymar, G. C. (1935). Bird Flight (New York, Dodd and Mead).Google Scholar
Azuma, A. (1983). Local Momentum and Local Circulation Methods for Fixed, Rotary and Beating Wings, Thesis, Institute of Interdisciplinary Research, Faculty of Engineering (Tokyo, University of Tokyo).
Azuma, A. (1992). The Biokinetics of Flying and Swimming (Tokyo, Springer-Verlag).CrossRefGoogle Scholar
Barut, A., Das, M., and Madenci, E. (2006). Nonlinear deformations of flapping wings on a micro air vehicle, AIAA Paper 2006-1662.
Bass, R. L., Johnson, J. E., and Unruh, J. F. (1982). Correlation of lift and boundary-layer activity on an oscillating lifting surface, AIAA Journal 20, 1051–6.CrossRefGoogle Scholar
Bechert, D. W., Bruse, M., Hage, W., and Meyer, R. (1997). Biological surfaces and their technological application–laboratory and flight experiments on drag reduction and separation control, AIAA Paper 97-1960.
Berger, M. A. M. (1999). Determining propulsive force in front crawl swimming: A comparison of two methods, Journal of Sports Sciences 17, 95–105.CrossRefGoogle ScholarPubMed
Betz, A. (1912). Ein Beitrag zur Erklarung des Segelfluges, Zeitschrift für Flugtechnik und Motorluftschiffahrt 3, 269–72.Google Scholar
Biewener, A. A. (2003). Animal Locomotion, Oxford Animal Biology Series (Oxford, Oxford University Press).Google Scholar
Birch, J. M. and Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings, Nature (London) 412, 729–33.CrossRefGoogle Scholar
Birch, J. M., Dickson, W. B., and Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers, Journal of Experimental Biology 207, 1063–72.CrossRefGoogle Scholar
Bohorquez, F., Rankins, F., Baeder, J., and Pines, D. (2003). Hover performance of rotor blades at low Reynolds numbers for rotary wing micro air vehicles. An experimental and computational fluid dynamics study, AIAA Paper 2003–3930.CrossRef
Brackenbury, J. (1990). Wing movements in the bush cricket Tettigonia viridissima and the mantis Ameles spallanziana during natural leaping, Journal of Zoology 220, 593–602.CrossRefGoogle Scholar
Bradley, R. G., Smith, C. W., and Wary, W. O. (1974). An experimental investigation of leading-edge vortex augmentation by blowing, NASA CR-132415.
Bratt, J. B. (1953). Flow patterns in the wake of an oscillating airfoil, Aeronautical Research Council Technical Report R and M 2773.
Brodsky, A. K. (1994). The Evolution of Insect Flight (New York, Oxford University Press).Google Scholar
Brown, W. C. (1939). Boston low-speed wind tunnel, and Wind tunnel: Characteristics of indoor airfoils, Journal of International Aeromodeling, 3–7.
Buckholz, R. H. (1986). The functional role of wing corrugation in living system, Journal of Fluids Engineering 108, 93–7.CrossRefGoogle Scholar
Campbell, J. F. (1976). Augmentation of vortex lift by spanwise blowing, Journal of Aircraft 13, 727–32.CrossRefGoogle Scholar
Carmichael, B. H. (1981). Low Reynolds number airfoil survey, NASA CR 1165803.
Cebeci, T. (1988). Essential ingredients of a method for low Reynolds-number airfoils, AIAA Journal 27, 1680–8.CrossRefGoogle Scholar
Chai, P. and Dudley, R. (1996). Limits to flight energetics of hummingbirds hovering in hypodense and hypoxic gas mixtures, Journal of Experimental Biology 199, 2285–95.Google ScholarPubMed
Chai, P. and Millard, D. (1997). Flight and size constraints: Hovering performance of large hummingbirds under maximal loading, Journal of Experimental Biology 200, 2757–63.Google ScholarPubMed
Chambers, L. L. G. (1966). A variational formulation of the Thwaites sail equation, Quarterly Journal of Mechanics and Applied Mathematics 19, 221–31.CrossRefGoogle Scholar
Chasman, D. and Chakravarthy, S. (2001). Computational and experimental studies of asymmetric pitch/plunge flapping – The secret of biological flyers, AIAA Paper 2001-0859.
Chen, K. K. and Thyson, N. A. (1971). Extension of Emmons’ spot theory to flows on blunt bodies, AIAA Journal 9, 821–5.CrossRefGoogle Scholar
Childress, S. (1981). Mechanics of Swimming and Flying (New York, Cambridge University Press).CrossRefGoogle Scholar
Cloupeau, M. (1979). Direct measurements of instantaneous lift in desert locust; Comparison with Jensen's experiments on detached wings, Journal of Experimental Biology 80, 1–15.Google Scholar
Collins, P. Q. and Graham, J. M. R. (1994). Human flapping – Wing flight under reduced gravity, Aeronautical Journal 98, 177–84.CrossRefGoogle Scholar
Combes, S. A. and Daniel, T. L. (2003). Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmothManduca sexta, Journal of Experimental Biology 206, 2999–3006.CrossRefGoogle Scholar
Cooter, R. J. and Baker, P. S. (1977). Weis-Fogh clap and fling mechanism in locusta, Nature (London) 269, 53–4.CrossRefGoogle Scholar
Cox, J. (1973). The revolutionary Kasper wing, Soaring, December, 20.
Crabtree, L. F. (1957). Effect of leading edge separation on thin wings in two-dimensional incompressible flow, Journal of Aeronautical Sciences 24, 597–604.CrossRefGoogle Scholar
Cummings, R. M., Morton, S. A., Siegel, S. G., and Bosscher, S. (2003). Numerical prediction and wind tunnel experiment for pitching unmanned combat air vehicles, AIAA Paper 2003-0417.
Davis, R. L., Carter, J. E., and Reshotko, E. (1987). Analysis of transitional separation bubbles on infinite swept wings, AIAA Journal 25, 421–8.CrossRefGoogle Scholar
Davis, W. R., Kosicki, B. B., Boroson, D. M., and Kostishack, D. F. (1996). Micro air vehicles for optical surveillance, Lincoln Laboratory Journal 9, 197–214.Google Scholar
DeLaurier, J. D. (1993). An aerodynamic model for flapping wing flight, Aeronautical Journal 97, 125–130.Google Scholar
Matteis, G. and Socio, L. (1986). Nonlinear aerodynamics of a two-dimensional membrane airfoil with separation, Journal of Aircraft 23, 831–6.CrossRefGoogle Scholar
Devin, S. I., Zavyalov, V. M., and Korovich, B. K. (1972). On the question of unsteady aerodynamic forces acting upon a wing of finite aspect ratio at large amplitudes of oscillation and large Strouhal numbers, Voprosy Sudostroeniya Ser.: Proektirovanie Sudov, Vyp. 1, 34–41.Google Scholar
Vries, O. (1983). On the theory of the horizontal-axis wind turbine, Annual Review of Fluid Mechanics 15, 77–96.CrossRefGoogle Scholar
Dhawan, S. (1991). Bird flight, Sadhana – Academy Proceedings in Engineering Sciences 16, 275–352.Google Scholar
Dial, K. P. (1994). An inside look at how birds fly: Experimental studies of the internal and external processes controlling flight, 1994 Report to the Aerospace Profession, 38th Symposium Proceedings, Beverly Hills, CA.
Dick, E. and Steelant, J. (1996). Modeling of bypass transition with conditioned Navier–Stokes equations coupled to an intermittency transport equation, International Journal for Numerical Methods in Fluids 23, 193–220.Google Scholar
Dick, E. and Steelant, J. (1997). Coupled solution of the steady compressible Navier–Stokes equations and the k–∊ turbulence equations with a multigrid method, Applied Numerical Mathematics 23, 49–61.CrossRefGoogle Scholar
Dickinson, M. H. and Gotz, K. G. (1993). Unsteady aerodynamic perfornamce of model wings at low Reynolds numbers, Journal of Experimental Biology 174, 45–64.Google Scholar
Dickinson, M. H., Lehmann, F.-O., and Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight, Science 284, 1954–60.CrossRefGoogle ScholarPubMed
Ding, H., Yang, B., Lou, M., and Fang, H. (2003). New numerical method for two-dimensional partially wrinkled membranes, AIAA Journal 41, 125–32.CrossRefGoogle Scholar
Dong, H., Mittal, R., and Najjar, F. M. (2006). Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils, Journal of Fluid Mechanics 566, 309–43.CrossRefGoogle Scholar
Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils, in T. J. Mueller (Ed.), Proceedings of the Conference on Low Reynolds Number Aerodynamics (Notre Dame, University of Notre Dame Press), pp. 1–12.CrossRef
Dudley, R. (2000). The Biomechanics of Insect Flight: Form, Function, Evolution (Princeton, NJ, Princeton University Press).Google Scholar
Dudley, R. and Ellington, C. P. (1990a). Mechanics of forward flight in bumblebees. Ⅰ. Kinematics and morphology, Journal of Experimental Biology 148, 19–52.Google Scholar
Dudley, R. and Ellington, C. P. (1990b). Mechanics of forward flight in bumblebees. Ⅱ. Quasi-steady lift and power requirements, Journal of Experimental Biology 148, 53–88.Google Scholar
Ellington, C. P. (1984a). The aerodynamics of hovering insect flight. Ⅰ. The quasi-steady analysis, Philosophical Transactions of the Royal Society of London. Series B 305, 1–15.CrossRefGoogle Scholar
Ellington, C. P. (1984b). Morphological parameters, Ⅱ. The aerodynamics of hovering insect flight, Philosophical Transactions of the Royal Society of London. Series B 305, 17–40.CrossRefGoogle Scholar
Ellington, C. P. (1984c). The aerodynamics of insect flight. Ⅲ. Kinematics, Philosophical Transactions of the Royal Society of London. Series B 305, 41–78.CrossRefGoogle Scholar
Ellington, C. P. (1984d). The aerodynamics of hovering insect flight. Ⅳ. Aerodynamic mechanisms, Philosophical Transactions of the Royal Society of London. Series B 305, 79–113.CrossRefGoogle Scholar
Ellington, C. P. (1984e). The aerodynamics of hovering insect flight. V. A Vortex theory, Philosophical Transactions of the Royal Society of London. Series B 305, 115–44.CrossRefGoogle Scholar
Ellington, C. P. (1984f). The aerodynamics of hovering insect flight. Ⅵ. Lift and power requirements, Philosophical Transactions of the Royal Society of London. Series B 305, 145–181.CrossRefGoogle Scholar
Ellington, C. P. (1995). Unsteady aerodynamics of insect flight, in Ellington, C. P. and Pedley, T. J. (Eds.), Biological Fluid Dynamics, Society for Experimental Biology Symposium, Vol. 49 (Cambridge, UK, The Company of Biologists), pp. 109–29.Google Scholar
Ellington, C. P., Berg, C., Willmott, A. P., and Thomas, A. L. R. (1996). Leading-edge vortices in insect flight, Nature (London) 384, 626–30.CrossRefGoogle Scholar
Ennos, A. R. (1989). The kinematics and aerodynamics of the free flight of some Diptera, Journal of Experimental Biology 142, 49–85.Google Scholar
Erickson, G. E. and Campbell, J. F. (1975). Flow visualization of leading-edge vortex enhancement by spanwise blowing, NASA TM X-72702.
Escudier, M. (1988). Vortex breakdown: Observations and explanations, Progress in Aerospace Sciences 25, 189–229.CrossRefGoogle Scholar
Freymuth, P. (1988). Propulsive vortical signatures of plunging and pitching airfoils, AIAA Paper 88–323.
Freymuth, P. (1990). Thrust generation by an airfoil in hover modes, Experiments in Fluids 9, 17–24.CrossRefGoogle Scholar
Friedmann, P. P. (1999). Renaissance of aeroelasticity and its future, Journal of Aircraft 36, 105–21.CrossRefGoogle Scholar
Fry, S. N., Sayaman, R., and Dickinson, M. H. (2003). The aerodynamics of free-flight maneuvers in Drosophila, Science 300, 495–8.CrossRefGoogle ScholarPubMed
Fung, Y. C. (1969). An Introduction to the Theory of Aeroelasticity (New York, Dover).Google Scholar
Galvao, R., Israeli, E., Song, A., Tian, X., Bishop, K., Swartz, S., and Breuer, K. (2006). The aerodynamics of compliant membrane wings modeled on mammalian flight mechanics, AIAA Paper 2006–2866.
Garcia, H., Abdulrahim, M., and Lind, R. (2003). Roll control for a micro air vehicle using active wing morphing, AIAA Paper 2003–5347.
Gleyzes, C., Cousteix, J., and Bonnet, J. L. (1985). Theoretical and experimental study of low Reynolds number transitional separation bubbles, in T. J. Mueller (Ed.), Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics (Notre Dame, IN, University of Notre Dame Press), pp. 137–52.
Goldspink, G. (1977). Energy cost of locomotion, in Alexander, R. M. and Chapman, G. C. (Eds.), Mechanics and Energetics of Animal Locomotion (London, Chapman and Hall).Google Scholar
Gopalkrishnan, R., Triantafyllou, M. S., Triantafyllou, G. S., and Barrett, D. (1994). Active vorticity control in a shear flow using a flapping foil, Journal of Fluid Mechanics 274 (Sep.), 1–21.CrossRefGoogle Scholar
Goslow, G. E. Jr., Dial, K. P., and Jenkins, F. A. Jr. (1990). Bird flight: Insights and complications, BioScience 40, 108–15.CrossRefGoogle Scholar
Gotz, K. G. (1987). Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster, Journal of Experimental Biology 128, 35–46.Google Scholar
Green, A. E. and Adkins, J. E. (1960). Large Elastic Deformations (Oxford, Clarendon).Google Scholar
Greenewalt, C. H. (1975). The flight of birds: The significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure, Transactions of the American Philosophical Society 65 (4), 1–67.CrossRefGoogle Scholar
Greenhalgh, S., Curtiss, H. C., and Smith, B. (1984). Aerodynamic properties of a two-dimensional inextensible flexible airfoil, AIAA Journal 22, 865–70.Google Scholar
Grodnitsky, D. L. (1999). Form and function of insect wings: The evolution of biological structures (Baltimore, MD, Johns Hopkins University Press).Google Scholar
Hall, M. G. (1972). Vortex breakdown, Annual Review of Fluid Mechanics 4, 195–218.CrossRefGoogle Scholar
Ham, N. D. (1968). Aerodynamic loading on a two-dimensional airfoil during dynamic stall, AIAA Journal 6, 1927–34.CrossRefGoogle Scholar
Harper, P. W. and Flanigan, R. E. (1950). The effect of rate of change of angle of attack on the maximum lift of a small model, NACA TN-2061.
Harris, F. D. and Pruyn, R. R. (1968). Blade stall–Half fact, half fiction, Journal of the American Helicopter Society 13(2), 27–48.CrossRefGoogle Scholar
He, X., Senocak, I., Shyy, W., Thakur, S. S., and Gangadharan, S. (2000). Evaluation of laminar-turbulent transition and equilibrium near wall turbulence models, Numerical Heat Transfer, Part A 37, 101–12.Google Scholar
Heathcote, S., Martin, D., and Gursul, I. (2004). Flexible flapping airfoil propulsion at zero freestream velocity, AIAA Journal 42, 2196–204.CrossRefGoogle Scholar
Herbert, T. (1997). Parabolized stability equations, Annual Review of Fluid Mechanics 29, 245–83.CrossRefGoogle Scholar
Hill, A. V. (1950). The dimensions of animals and their muscular dynamics, Science Progress 38, 209–30.Google Scholar
Hillier, R. and Cherry, N. J. (1981). The effects of stream turbulence on separation bubbles, Journal of Wind Engineering and Industrial Aerodynamics 8, 49–58.CrossRefGoogle Scholar
Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y.-C., and Ho, C.-M. (2003). Unsteady aerodynamics and flow control for flapping wing flyers, Progress in Aerospace Sciences 39, 635–81.CrossRefGoogle Scholar
Hoff, W. (1919). Der Flug der Insekten, Naturwissenschaften 7, 159.CrossRefGoogle Scholar
Holloway, D. S., Walters, D. K., and Leylek, J. H. (2004). Prediction of unsteady, separated boundary layer over a blunt body for laminar, turbulent, and transitional flow, International Journal for Numerical Methods in Fluids 45, 1291–1315.CrossRefGoogle Scholar
Houghton, E. L. and Carpenter, P. W. (2003). Aerodynamics for engineering students (Burlington, MA, Butterworth-Heinemann).Google Scholar
Hsiao, F.-B., Liu, C.-F., and Tang, Z. (1989). Aerodynamic performance and flow structure studies of a low Reynolds number airfoil, AIAA Journal 27, 129–37.CrossRefGoogle Scholar
Huang, R. F., Shy, W. W., Lin, S. W., and Hsiao, F.-B. (1996). Influence of surface flow on aerodynamic loads of a cantilever wing, AIAA Journal 34, 527–32.CrossRefGoogle Scholar
Hurley, D. G. (1959). The use of boundary-layer control to establish free stream-line flows, Advances in Aeronautical Science 2, 662–708.CrossRefGoogle Scholar
Ifju, P. G., Jenkins, A. D., Ettingers, S., Lian, Y., and Shyy, W. (2002). Flexible-wing-based micro air vehicles, AIAA Paper 2002-0705.
Isogai, K., Fujishiro, S., Saitoh, T., Yamamoto, M., Yamasaki, M., and Matsubara, M. (2004). Unsteady three-dimensional viscous flow simulation of a dragonfly hovering, AIAA Journal 42, 2053–2059.CrossRefGoogle Scholar
Jackson, P. (2001). Jane's All the World's Aircraft, (Alexandria, VA, Jane's Information Group).Google Scholar
Jackson, P. S. (1983). A simple model for elastic two-dimensional sails, AIAA Journal 21, 153–5.CrossRefGoogle Scholar
Jackson, P. S. and Christie, G. W. (1987). Numerical analysis of three-dimensional elastic membrane wings, AIAA Journal 25, 676–82.CrossRefGoogle Scholar
Jenkins, C. H. (1996). Nonlinear dynamic response of membranes: State of the art–update, Applied Mechanics Reviews 49, S41-S48.CrossRefGoogle Scholar
Jenkins, C. H. and Leonard, J. W. (1991). Nonlinear dynamic response of membranes: State of the art, Applied Mechanics Reviews 44, 319–28.CrossRefGoogle Scholar
Jones, B. M. (1938). Stalling, Journal of the Royal Aeronautical Society 38, 747–70.Google Scholar
Jones, K. D., Dohring, C. M., and Platzer, F. M. (1998). Experimental and computational investigation of the Knoller–Betz effect, AIAA Journal 36, 1240–6.CrossRefGoogle Scholar
Jones, K. D., Lund, T. C., and Platzer, F. M. (2001). Experimental and computational investigation of flapping-wing propulsion for micro air vehicles, in Mueller, T. J. (Ed.), Fixed and Flapping Wings Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, Vol. 195 (Reston, VA, AIAA), pp. 307–36.CrossRefGoogle Scholar
Jones, K. D. and Platzer, F. M. (2006). Bio-inspired design of flapping-wing micro air vehicles – An engineer's perspective, AIAA Paper 2006-0037.
Jones, K. D. and Platzer, M. F. (1999). An experimental and numerical investigation of flapping-wing propulsion, AIAA Paper 1999-0995.
Jones, K. D. and Platzer, M. F. (2003). Experimental investigation of the aerodynamic characteristics of flapping-wing micro air vehicles, AIAA Paper 2003-0418.
Jones, R. T. (1990). Wing Theory (Princeton, NJ, Princeton University Press).CrossRefGoogle Scholar
Kasper, W. (1979). The Kasper Wing, Meheen, H. J. (Ed.), (Denver, CO, Meheen Engineering).Google Scholar
Katz, J. (1979). Low-Speed Aerodynamics: From Wing Theory to Panel Methods (San Francisco, CA, McGraw-Hill).Google Scholar
Katz, J. and Plotkin, A. (2002). Low-Speed Aerodynamics (Cambridge, UK, Cambridge University Press).Google Scholar
Katzmayr, R. (1922). Effect of periodic changes of angle of attack on behavior of airfoils, NACA TM-147.
Kawamura, Y., Souda, S., and Ellington, C. P. (2006). Quasi-hovering flight of a flapping micro air vehicle with large angle of attack, presented at The Third International Symposium on Aero Aqua Bio-Mechanisms, Okinawa Convention Center, Ginowan, Okinawa, Japan.
Kesel, A. B. (1998). Biologisches Vorbild Insektenflügel Mehrkriterienoptimierung ultraleichter Tragflächen, in Nachtigall, W. and Wisser, A. (Eds.), Biona-Report, Vol. 12 (Stuttgart/New York, Fischer), pp. 107–17.CrossRefGoogle Scholar
Kesel, A. B. (2000). Aerodynamic characteristics of dragonfly wing sections compared with technical airfoils, Journal of Experimental Biology 203, 3125–35.Google Scholar
Kirkpatrick, S. J. (1994). Scale effects on the stresses and safety factors in the wing bones of birds and bats, Journal of Experimental Biology 190, 195–215.Google ScholarPubMed
Kiya, M. and Sasaki, K. (1983). Free-stream turbulence effects on a separation bubble, Journal of Wind Engineering and Industrial Aerodynamics 14(1–3), 375–86.CrossRefGoogle Scholar
Knoller, R. (1909). Die Gesetze des Luftwiderstandes, Flug-und Motortechnik (Wein) 3(21), 1–7.Google Scholar
Koochesfahani, M. M. (1989). Vortical patterns in the wake of an oscillating airfoil, AIAA Journal 27, 1200–5.CrossRefGoogle Scholar
Kramer, M. (1932). Die Zunahme des Maximalauftriebes von Tragflügeln bei plötzlicher Anstellwinkelvergrösserung (Böeneffect), Zeitschrift für Flugtechnik und Motorluftschiffahrt 23(7), 185–9.Google Scholar
Kruppa, E. W. (1977). A wind tunnel investigation of the Kasper vortex concept, AIAA Paper 77-310.
Lai, C. S. J. and Platzer, F. M. (1999). Jet characteristics of a plunging airfoil, AIAA Journal 37, 1529–37.CrossRefGoogle Scholar
Lai, C. S. J. and Platzer, F. M. (2001). Characteristics of a plunging airfoil at zero freestream velocity, AIAA Journal 39, 531–4.CrossRefGoogle Scholar
LaRoche, U. and Palffy, S. (1996). Wing grid, a novel device for reduction of induced drag on wings, presented at the International Council of Aeronautical Sciences (ICAS) Conference, Sorrento, Italy.
Lehmann, F.-O. (2004). The mechanisms of lift enhancement in insect flight, Naturwissenschaften 91(3), 101–22.CrossRefGoogle ScholarPubMed
Lehmann, F.-O. and Dickinson, M. H. (1998). The control of wing kinematics and flight forces in fruit flies (Drosophila spp.), Journal of Experimental Biology 201, 385–401.Google Scholar
Lehmann, F.-O., Sane, S. P., and Dickinson, M. H. (2005). The aerodynamic effects of wing–wing interaction in flapping insect wings, Journal of Experimental Biology 208, 3075–92.CrossRefGoogle ScholarPubMed
Leibovich, S. (1978). The structure of vortex breakdown, Annual Review of Fluid Mechanics 10, 221–46.CrossRefGoogle Scholar
Lesieur, M. and Metais, O. (1996). New trends in large-eddy simulations of turbulence, Annual Review of Fluid Mechanics 28, 45–82.CrossRefGoogle Scholar
Lian, Y. (2003). Membrane and Adaptively-Shaped Wings for Micro Air Vehicles, Ph.D. dissertation, Mechanical and Aerospace Engineering Department (Gainesville, FL, University of Florida).
Lian, Y. and Shyy, W. (2003). Three-dimensional fluid–structure interactions of a membrane wing for micro air vehicle applications, AIAA Paper 2003-1726.
Lian, Y. and Shyy, W. (2005). Numerical simulations of membrane wing aerodynamics for micro air vehicle applications, Journal of Aircraft 42, 865–73.CrossRefGoogle Scholar
Lian, Y. and Shyy, W. (2006). Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil, AIAA Paper 2006-3051, also AIAA Journal 45, (2007) 1501–1513.
Lian, Y., Shyy, W., Ifju, P., and Verron, E. (2003a). A membrane wing model for micro air vehicles, AIAA Journal 41, 2492–4.CrossRefGoogle Scholar
Lian, Y., Shyy, W., Viieru, D., and Zhang, B. N. (2003b). Membrane wing aerodynamics for micro air vehicles, Progress in Aerospace Sciences 39, 425–65.CrossRefGoogle Scholar
Liebeck, R. H. (1992). Laminar separation bubbles and airfoil design at low Reynolds numbers, AIAA Paper 1992-2735.
Lighthill, M. J. (1969). Hydrodynamics of Aquatic Animal Propulsion (Philadelphia, PA, Society for Industry and Applied Mathematics).Google Scholar
Lighthill, M. J. (1973). On the Weis-Fogh mechanism of lift generation, Journal of Fluid Mechanics 60, 1–17.CrossRefGoogle Scholar
Lighthill, M. J. (1977). Introduction to the scaling of aerial locomotion, in Pedley, T. J. (Ed.), Scale Effects in Animal Locomotion (New York, Academic), pp. 365–404.Google Scholar
Lissaman, P. B. S. (1983). Low Reynolds number airfoils, Annual Review of Fluid Mechanics 15, 223–39.CrossRefGoogle Scholar
Liu, H. (2005). Simulation-based biological fluid dynamics in animal locomotion, Applied Mechanics Reviews 58, 269–282.CrossRefGoogle Scholar
Liu, H., Ellington, C. P., Kawachi, K., Berg, C., and Willmott, A. P. (1998). A computational fluid dynamics study of hawkmoth hovering, Journal of Experimental Biology 201, 461–77.Google ScholarPubMed
Liu, H. and Kawachi, K. (1998). A numerical study of insect flight, Journal of Computational Physics 146, 124–56.CrossRefGoogle Scholar
Liu, T. (2006). Comparative scaling of flapping- and fixed-wing flyers, AIAA Journal 44, 24–33.CrossRefGoogle Scholar
Livne, E. (2003). Future of airplane aeroelasticity, Journal of Aircraft 40, 1066–92.CrossRefGoogle Scholar
Mack, L. M. (1977). Transition prediction and linear stability theory, in Laminar-Turbulent Transition, AGARD CP 224, pp. 1/1–22.Google Scholar
Maddock, L., Bone, Q., and Rayner, J. M. V. (1994). Mechanics and Physiology of Animal Swimming (New York, Cambridge University Press).CrossRefGoogle Scholar
Malik, M. R. (1982). COSAL – A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers, NASA CR-165925.
Marden, J. (1987). Maximum lift production during takeoff in flying animals, Journal of Experimental Biology 130, 235–58.Google Scholar
Mary, I. and Sagaut, P. (2002). Large eddy simulation of flow around an airfoil near stall, AIAA Journal 40, 1139–45.CrossRefGoogle Scholar
Maxworthy, T. (1979). Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling,’Journal of Fluid Mechanics 93, 47–63.CrossRefGoogle Scholar
Mayle, R. E. (1991). The role of laminar-turbulent transition in gas turbine engine, Journal of Turbomachinery 113, 509–37.CrossRefGoogle Scholar
McCroskey, W. J., Carr, L. W., and McAlister, K. W. (1976). Dynamic stall experiments on oscillating airfoils, AIAA Journal 14, 57–63.CrossRefGoogle Scholar
McCroskey, W. J. and Fisher, R. K. (1972). Detailed aerodynamic measurements on a model rotor in the blade stall regime, Journal of the American Helicopter Society 17, 20–30.Google Scholar
McCroskey, W. J., McAlister, K. W., Carr, L. W., and Pucci, S. L. (1982). An experimental study of dynamic stall on advanced airfoil section, NASA TM-84245.
McMasters, J. H. and Henderson, M. J. (1980). Low speed single element airfoil synthesis, Technical Soaring 6(2), 1–21.Google Scholar
McMichael, J. M. and Francis, M. S. (1997). Micro air vehicles – Toward a new dimension in flight, available at http://euler.aero.iitb.ac.in/docs/MAV/www.darpa.mil/tto/MAV/mav_auvsi.html.
Moin, P. and Mahesh, K. (1998). Direct numerical simulation: A tool in turbulence research, Annual Review of Fluid Mechanics 30, 539–578.CrossRefGoogle Scholar
Mooney, M. (1940). A theory of large elastic deformation, Journal of Applied Physics 11, 582–592.CrossRefGoogle Scholar
Mueller, T. J. (Ed.), (2001). Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, Vol. 195 (Reston, VA, AIAA).CrossRefGoogle Scholar
Mueller, T. J. and DeLaurier, J. D. (2003). Aerodynamics of small vehicles, Annual Review of Fluid Mechanics 35, 89–111.CrossRefGoogle Scholar
Mueller, T. J., Pohlen, L. J., Conigliaro, P. E., and Jansen, B. J. J. (1983). The influence of free-stream disturbances on low Reynolds number airfoil experiments, Experiments in Fluids 1, 3–14.CrossRefGoogle Scholar
Murai, H. and Maruyama, S. (1980). Theoretical investigation of the aerodynamics of double membrane sailwing airfoil sections, Journal of Aircraft 17, 294–9.CrossRefGoogle Scholar
Murata, S. and Tanaka, S. (1989). Aerodynamic characteristics of a two-dimensional porous sail, Journal of Fluid Mechanics 206, 463–75.CrossRefGoogle Scholar
Newman, B. G. (1987). Aerodynamic theory for membranes and sails, Progress in Aerospace Sciences 24, 1–27.CrossRefGoogle Scholar
Newman, B. G. and Low, H. T. (1984). Two-dimensional impervious sails: Experimental results compared with theory, Journal of Fluid Mechanics 144, 445–62.CrossRefGoogle Scholar
Newman, B. G., Savage, S. B., and Schouella, D. (1977). Model test on a wing section of a dragonfly, in Pedley, T. J. (Ed.), Scale Effects in Animal Locomotion (London, Academic), pp. 445–77.Google Scholar
Nielsen, J. N. (1963). Theory of flexible aerodynamic surfaces, Journal of Applied Mechanics 30, 435–42.CrossRefGoogle Scholar
Norberg, U. M. (1975). Hovering flight of the dragonfly Aeschna juncea L., in Wu, T. Y.-T., Brokaw, C. J., and Brennen, C. (Eds.), Swimming and Flying in Nature, Vol. 2 (New York, Plenum), pp. 763–81.CrossRefGoogle Scholar
Norberg, U. M. (1976). Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus Auritus, Journal of Experimental Biology 65, 179–212.Google ScholarPubMed
Norberg, U. M. (1990). Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution (Berlin, Springer-Verlag).CrossRefGoogle Scholar
Obremski, H. J. and Fejer, A. A. (1967). Transition in oscillating boundary layer flow, Journal of Fluid Mechanics 29, 93–111.CrossRefGoogle Scholar
Obremski, H. J. and Morkovin, M. V. (1969). Application of a quasi-steady stability model to periodic boundary layer flows, AIAA Journal 7, 1298–1301.Google Scholar
Oden, J. T. and Sato, T. (1967). Finite strains and displacements of elastic membrane by the finite element method, International Journal for Solids and Structures 3, 471–88.CrossRefGoogle Scholar
Okamoto, M., Yasuda, K., and Azuma, A. (1996). Aerodynamic characteristics of the wings and body of a dragonfly, Journal of Experimental Biology 199, 281–94.Google ScholarPubMed
Ol, M., McAuliffe, B. R., Hanff, E. S., Scholz, U., and Kaehler, C. (2005). Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities, AIAA Paper 2005-5149.
O'Meara, M. M. and Mueller, T. J. (1987). Laminar separation bubble characteristics on an airfoil at low Reynolds numbers, AIAA Journal 25, 1033–41.CrossRefGoogle Scholar
Osborne, M. F. M. (1951). Aerodynamics of flapping flight with application to insects, Journal of Experimental Biology 28, 221–45.Google ScholarPubMed
Pedley, T. J. (Ed.) (1977). Scale Effects in Animal Locomotion (New York, Academic).Google Scholar
Pendersen, C. B. and Zbikowski, R. (2006). An indicial-Polhamus aerodynamic model of insect-like flapping wings in hover, in Liebe, R. (Ed.), Flow Phenomena in Nature, Vol. 2 (Southampton, UK, WIT Press), pp. 606–65.Google Scholar
Pennycuick, C. J. (1969). The mechanics of bird migration, Ibis 111, 525–56.CrossRefGoogle Scholar
Pennycuick, C. J. (1975). Mechanics of Flight, Avian Biology, Farner, D. S. and King, J. R. (Eds.), Vol. 5 (London, Academic).Google Scholar
Pennycuick, C. J. (1986). Mechanical constraints on the evolution of flight, in Padian, K. (Ed.), The Origin of Birds And the Evolution of Flight, Memoirs of the California Academy of Sciences, Vol. 8 (San Francisco, CA, California Academy of Sciences), pp. 83–98.Google Scholar
Pennycuick, C. J. (1989). Bird Flight Performance: A Practical Calculation Manual (Oxford, UK/New York, Oxford University Press).Google Scholar
Pennycuick, C. J. (1990). Predicting wingbeat frequency and wavelength of birds, Journal of Experimental Biology 150, 171–85.Google Scholar
Pennycuick, C. J. (1992). Newton Rules Biology: A Physical Approach to Biological Problems (New York, Oxford University Press).Google Scholar
Pennycuick, C. J. (1996). Wingbeat frequency of birds in steady cruising flight: New data and improved predictions, Journal of Experimental Biology 199, 1613–18.Google ScholarPubMed
Pennycuick, C. J., Klaassen, M., Kvist, A., and Lindstrom, A. (1996). Wingbeat frequency and the body drag anomaly: Wind-tunnel observations on a thrush nightingale (Luscinia Luscinia) and a teal (Anas Crecca), Journal of Experimental Biology 199, 2757–65.Google Scholar
Polonskiy, Y. E. (1948). Vortex streets, their application to the theory of flapping wing, Dissertatsiyay k.t.n, Moscow, VVA KA im. N. E. Zhukovskogo.
Polonskiy, Y. E. (1950). Some questions on the flapping wing, Inzhenerniy Sbornik 8, 49–60.Google Scholar
Praisner, T. J. and Clark, J. P. (2004). Predicting transition in turbomachinery, Part I-A, Review and new model development, ASME Paper GT2004-54108.
Prandtl, L. and Tietjens, O. G. (1957). Fundamentals of Hydro and Aeromechanics (New York, Dover).Google Scholar
Radespiel, R., Graage, K., and Brodersen, O. (1991). Transition predictions using Reynolds-averaged Navier–Stokes and linear stability analysis methods, AIAA Paper 91-1641.
Radespiel, R., Windte, J., and Scholz, U. (2006). Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles, AIAA Paper 2006-501.
Ramamurti, R. and Sandberg, W. (2001). Simulation of flow about flapping airfoils using finite element incompressible flow solver, AIAA Journal 39, 253–260.CrossRefGoogle Scholar
Raney, D. L. and Slominski, E. C. (2004). Mechanization and control concepts for biologically inspired micro air vehicles, Journal of Aircraft 41, 1257–65.CrossRefGoogle Scholar
Rayner, J. M. V. (1979a). A new approach to animal flight mechanics, Journal of Experimental Biology 80, 17–54.Google Scholar
Rayner, J. M. V. (1979b). A vortex theory of animal flight. Part 1. The vortex wake of a hovering animal, Journal of Fluid Mechanics 91, 697–730.CrossRefGoogle Scholar
Rayner, J. M. V. (1979c). A vortex theory of animal flight. Part 2. The forward flight of birds, Journal of Fluid Mechanics 91, 731–63.CrossRefGoogle Scholar
Rayner, J. M. V. (1988). Form and function in avian flight, in Johnston, R. F. (Ed.), Current Ornithology, Vol. 5 (New York, Plenum), pp. 1–66.CrossRefGoogle Scholar
Roberts, S. K. and Yaras, M. I. (2005). Effects of surface roughness geometry on separation bubble transition, ASME Paper GT2005-68664.
Roberts, W. B. (1980). Calculation of laminar separation bubbles and their effect on airfoil performance, AIAA Journal 18, 25–31.CrossRefGoogle Scholar
Rosen, M. (1959). Water flow about a swimming fish, U.S. Navy Ordnance Test Station, NAVWEPS Technical Report No. 2298.
Rozhdestvensky, K. V. and Ryzhov, V. A. (2003). Aerohydrodynamics of flapping-wing propulsors, Progress in Aerospace Sciences 39, 585–633.CrossRefGoogle Scholar
Sane, S. P. and Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production, Journal of Experimental Biology 204, 2607–26.Google ScholarPubMed
Sane, S. P. and Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight, Journal of Experimental Biology 205, 1087–96.Google Scholar
Satyanarayana, B. and Davis, S. (1978). Experimental studies of unsteady trailing-edge conditions, AIAA Journal 16, 125–9.CrossRefGoogle Scholar
Schmidt-Nielsen, K. (1984). Scaling: Why Is Animal Size So Important? (New York, Cambridge University Press).CrossRefGoogle Scholar
Schmitz, F. W. (1942). Aerodynamik des Flugmodells (Berlin, Verlag).Google Scholar
Schrauf, G. (1998). A compressible stability code. User's Guide and Tutorial, Daimler Benz Aerospace Airbus GmbH, Technical Report EF 040/98.
Selig, M. S., Guglielmo, J. J., Broeren, A. P., and Giguere, P. (1995). Summary of Low-Speed Airfoil Data, Vol. 1 (Virginia Beach, VA, SoarTech Publications).Google Scholar
Selig, M. S., Guglielmo, J. J., Broeren, A. P., and Giguere, P. (1996a). Experiments on airfoils at low Reynolds numbers, AIAA Paper 1996-0062.
Selig, M. S., Lyon, C. A., Giguere, P., Ninham, C. N., and Guglielmo, J. J. (1996b). Summary of Low-Speed Airfoil Data, Vol. 2 (Virginia Beach, VA, SoarTech Publications).Google Scholar
Selig, M. S. and Maughmer, M. D. (1992). Multipoint inverse airfoil design method based on conformal mapping, AIAA Journal 30, 1162–1170.CrossRefGoogle Scholar
Shevell, R. S. (1983). Fundamentals of Flight (Englewood Cliffs, NJ, Prentice-Hall).Google Scholar
Shipman, P. (1998). Taking Wing: Archaeopteryx and the Evolution of Bird Flight (New York, Simon and Schuster).Google Scholar
Shyy, W., Berg, M., and Ljungqvist, D. (1999a). Flapping and flexible wings for biological and micro vehicles, Progress in Aerospace Sciences 35, 455–506.CrossRefGoogle Scholar
Shyy, W., Jenkins, D. A., and Smith, R. W. (1997). Study of adaptive shape airfoils at low Reynolds number in oscillatory flow, AIAA Journal 35, 1545–48.CrossRefGoogle Scholar
Shyy, W., Kleverbring, F., Nilsson, M., Sloan, J., Carroll, B., and Fuentes, C. (1999b). Rigid and flexible low Reynolds number airfoils, Journal of Aircraft 36, 523–9.CrossRefGoogle Scholar
Shyy, W. and Liu, H. (2007). Flapping wings and aerodynamic lift: the role of leading-edge vortices, to appear in AIAA Journal.
Shyy, W. and Smith, R. (1997). A study of flexible airfoil aerodynamics with application to micro aerial vehicles, AIAA Paper 97-1933.
Shyy, W., Udaykumar, H. S., Madhukar, M. R., and Richard, W. S. (1996). Computational Fluid Dynamics with Moving Boundaries, Series in Computational and Physical Processes in Mechanics and Thermal Sciences (Washington, D.C., Taylor and Francis).Google Scholar
Singh, B. and Chopra, I. (2006). Dynamics of insect-based flapping wings: Loads validation, AIAA Paper 2006-1663.
Singh, R. K., Chao, J., Popescu, M., Tai, C.-F., Mei, R., and Shyy, W. (2006). Multiphase/multidomain computations using continuum conservative and lattice Boltzmann methods, ASCE Journal of Aerospace Engineering 19, 288–95.CrossRefGoogle Scholar
Singh, R. K. and Shyy, W. (2006). Three-dimensional adaptive grid computation with conservative, marker-based tracking for interfacial fluid dynamics, AIAA Paper 2006-1523.
Smith, A. M. O. and Gamberoni, N. (1956). Transition, pressure gradient, and stability theory, Douglas Aircraft Co., Report No. ES 26388.
Smith, M. J. C. (1996). Simulating moth wing aerodynamics: Towards the development of flapping-wing technology, AIAA Journal 34, 1348–55.CrossRefGoogle Scholar
Sneyd, A. D. (1984). Aerodynamic coefficients and longitudinal stability of sail airfoils, Journal of Fluid Mechanics 149, 127–46.CrossRefGoogle Scholar
Spedding, G. R. (1992). The aerodynamics of flight, in Alexander, R. M. (Ed.), Mechanics of Animal Locomotion, Advances in Comparative and Environmental Physiology, Vol. 11 (Berlin, Springer-Verlag), pp. 52–111.CrossRefGoogle Scholar
Srygley, R. B. and Thomas, A. L. R. (2002). Unconventional lift-generating mechanisms in free-flying butterflies, Nature (London) 420, 660–4.CrossRefGoogle ScholarPubMed
Stanford, B., Viieru, D., Albertani, R., Shyy, W., and Ifju, P. (2006). A numerical and experimental investigation of flexible micro air vehicle wing deformation, AIAA Paper 2006-0440.
Stock, H. W. and Haase, W. (1999). A feasibility study of eN transition prediction in Navier–Stokes methods for airfoils, AIAA Journal 37, 1187–96.CrossRefGoogle Scholar
Storer, J. H. (1948). The Flight of Birds, Cranbrook Institute Bulletin, 28 (Bloomfield Hills, MI, Cranbrook Press).Google Scholar
Streitlien, K. and Triantafyllou, G. S. (1998). On thrust estimates for flapping foils, Journal of Fluids and Structures 12, 47–55.CrossRefGoogle Scholar
Sugimoto, T. and Sato, J. (1988). Aerodynamic characteristics of two-dimensional membrane airfoils, Journal of the Japan Society for Aeronautical and Space Sciences 36, 36–43.CrossRefGoogle Scholar
Sun, M. and Tang, J. (2002a). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion, Journal of Experimental Biology 205, 55–70.Google Scholar
Sun, M. and Tang, J. (2002b). Lift and power requirements of hovering flight in Drosophila virilis, Journal of Experimental Biology 205, 2413–27.Google Scholar
Sunada, S. and Ellington, C. P. (2000). Approximate added-mass method for estimationg induced power for flapping fight, AIAA Journal 38, 1313–21.CrossRefGoogle Scholar
Sunada, S., Kawachi, K., Matsumoto, A., and Sakaguchi, A. (2001). Unsteady forces on a two-dimensional wing in plunging and pitching motions, AIAA Journal 39, 1230–9.CrossRefGoogle Scholar
Sunada, S., Kawachi, K., Watanabe, I., and Azuma, A. (1993). Fundamental analysis of three-dimensional ‘near fling,’Journal of Experimental Biology 183, 217–48.Google Scholar
Sunada, S., Yasuda, T., Yasuda, K., and Kawachi, K. (2002). Comparison of wing characteristics at an ultralow Reynolds number, Journal of Aircraft 39, 331–8.CrossRefGoogle Scholar
Suzen, Y. B. and Huang, P. G. (2000). Modeling of flow transition using an intermittency transport equation, Journal of Fluids Engineering 122, 273–84.CrossRefGoogle Scholar
Swartz, S. M. (1997). Allometric patterning in the limb skeleton of bats: Implications for the mechanics and energies of powered flight, Journal of Morphology 234, 277–94.3.0.CO;2-6>CrossRefGoogle Scholar
Swartz, S. M., Bennett, M. B., and Carrier, D. R. (1992). Wing bone stresses in free flying bats and the evolution of skeletal design for flight, Nature (London), 359, 726–9.CrossRefGoogle ScholarPubMed
Taneda, S. (1976). Visual study of unsteady separated flows around bodies, Progress in Aerospace Sciences 17, 287–348.CrossRefGoogle Scholar
Tang, J., Viieru, D., and Shyy, W. (2007). Effects of Reynolds number, reduced frequency and flapping kinematics on hovering aerodynamics, AIAA Paper 2007-0129.
Tang, J. and Zhu, K.-Q. (2004). Numerical and experimental study of flow structure of low-aspect-ratio wing, Journal of Aircraft 41, 1196–1201.Google Scholar
Tani, I. (1964). Low-speed flows involving bubble separations, in Kuchenmann, D. and Sterne, L. H. G. (Eds.), Progress in Aeronautical Sciences, Vol. 5 (New York, Pergamon), pp. 70–103.Google Scholar
Taylor, G. K., Nudds, R. L., and Thomas, A. L. R. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency, Nature (London) 425, 707–11.CrossRefGoogle Scholar
Templin, R. J. (2000). The spectrum of animal flight: Insects to pterosaurs, Progress in Aerospace Sciences 36, 393–436.CrossRefGoogle Scholar
Tennekes, H. (1996). The Simple Science of Flight (From Insects to Jumbo Jets) (Boston, MIT Press).Google Scholar
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, L. R., and Bomphrey, R. J. (2004). Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack, Journal of Experimental Biology 207, 4299–323.CrossRefGoogle ScholarPubMed
Thwaites, B. (1961). The aerodynamic theory of sails. Part Ⅰ. Two-dimensional sails, Proceedings of the Royal Society of London. Series A 261, 402–22.CrossRefGoogle Scholar
Tian, X., Iriarte, J., Middleton, K., Galvao, R., Israeli, E., Roemer, A., Sullivan, A., Song, A., Swartz, S., and Breuer, K. (2006). Direct measurements of the kinematics and dynamics of bat flight, AIAA Paper 2006-2865.
Tobalske, B. W. and Dial, K. P. (1996). Flight kinematics of black-billed magpies and pigeons over a wide range of speeds, Journal of Experimental Biology 199, 263–80.Google Scholar
Tobalske, B. W., Hedrick, T. L., Dial, K. P., and Biewener, A. A. (2003). Comparative power curves in bird flight, Nature (London) 421, 363–6.CrossRefGoogle ScholarPubMed
Torres, G. E. and Mueller, T. J. (2001). Aerodynamic characteristics of low aspect ratio wings at low Reynolds numbers, in Mueller, T. J. (Ed.), Fixed and Flapping Wing Aerodynamics for Micro Air Vehicles, Progress in Astronautics and Aeronautics, Vol. 195 (Reston, VA, AIAA), pp. 341–91.CrossRefGoogle Scholar
Triantafyllou, M. S., Triantafyllou, G. S., and Yue, D. K. P. (2000). Hydrodynamics of fishlike swimming, Annual Review of Fluid Mechanics 32, 33–53.CrossRefGoogle Scholar
Usherwood, J. R. and Ellington, C. P. (2002). The aerodynamics of revolving wings Ⅰ. Model hawkmoth wings, Journal of Experimental Biology 205, 1547–64.Google ScholarPubMed
Berg, C. and Ellington, C. P. (1997). The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth, Philosophical Transactions of the Royal Society of London. Series B 352, 329–40.CrossRefGoogle Scholar
Vanden-Broeck, J. M. (1982). Nonlinear two-dimensional sail theory, Physics of Fluids 25, 420–3.CrossRefGoogle Scholar
Vanden-Broeck, J. M., and Keller, J. B. (1981). Shape of a sail in a flow, Physics of Fluids 24, 552–3.CrossRefGoogle Scholar
Van Ingen, J. L. (1956). A suggested semi-empirical method for the calculation of the boundary layer transition region, Delft University of Technology, Dept. of Aerospace Engineering, Report No. VTH-74.
Van Ingen, J. L. (1995). Some introductory remarks on transition prediction methods based on linear stability theory, in Henkes, R. A. W. M. and Ingen, J. L. (Eds.), Transitional Boundary Layers in Aeronautics (Amsterdam, The Netherlands, Elsevier), pp. 209–24.Google Scholar
Verron, E., Marckmann, G., and Pesaux, B. (2001). Dynamic inflation of non-linear elastic and viscoelastic rubber-like membranes, International Journal for Numerical Methods in Engineering 50, 1233–51.3.0.CO;2-W>CrossRefGoogle Scholar
Vest, M. S. and Katz, J. (1996). Unsteady aerodynamics model of flapping wings, AIAA Journal 34, 1435–40.CrossRefGoogle Scholar
Videler, J. J., Stamhuis, E. J., and Povel, G. D. E. (2004). Leading-edge vortex lifts swifts, Science 306, 1960–2.CrossRefGoogle ScholarPubMed
Viieru, D., Albertani, R., Shyy, W., and Ifju, G. P. (2005). Effect of tip vortex on wing aerodynamics of micro air vehicles, Journal of Aircraft 42, 1530–6.CrossRefGoogle Scholar
Viieru, D., Lian, Y., Shyy, W., and Ifju, G. P. (2003). Investigation of tip vortex on aerodynamic performance of a micro air vehicle, AIAA Paper 2003-3597.
Viieru, D., Tang, J., Lian, Y., Liu, H., and Shyy, W. (2006). Flapping and flexible wing aerodynamics of low Reynolds number flight vehicles, AIAA Paper 2006-0503.
Voelz, K. (1950). Profil und Luftriebeines Segels, Zeitschrift für Angewandte Mathematik und Mechanik 30, 301–17.Google Scholar
Vogel, S. (1967). Flight in Drosophila. Ⅲ. Aerodynamic characteristics of fly wings and wing models, Journal of Experimental Biology 46, 431–43.Google Scholar
Vogel, S. (1996). Lift in Moving Fluids: The Physical Biology of Flow (Princeton, NJ, Princeton University Press).Google Scholar
Volino, R. J. and Bohl, D. G. (2004). Separated flow transition mechanism and prediction with high and low freestream turbulence under low pressure turbine conditions, ASME Paper GT2004-53360.
Von Karman, T. and Burgers, J. M. (1935). General aerodynamic theory – Perfect fluids, in Durand, W. (Ed.), Aerodynamic Theory, Vol. Ⅱ (Berlin, Springer).Google Scholar
Wakeling, J. M. and Ellington, C. P. (1997a). Dragonfly flight. Ⅱ. Velocities, accelerations and kinematics of flapping flight, Journal of Experimental Biology 200, 557–82.Google Scholar
Wakeling, J. M. and Ellington, C. P. (1997b). Dragonfly flight. Ⅲ. Lift and power requirements, Journal of Experimental Biology 200, 583–600.Google Scholar
Walker, J. A. and Westneat, M. W. (2000). Mechanical performance of aquatic rowing and flying, Proceedings of the Royal Society of London. Series B 267, 1875–81.CrossRefGoogle ScholarPubMed
Wang, Z. J. (2000). Vortex shedding and frequency selection in flapping flight, Journal of Fluid Mechanics 410, 323–41.CrossRefGoogle Scholar
Wang, Z. J., Birch, J. M., and Dickinson, M. H. (2004). Unsteady forces and flows in low Reynolds number hovering flight: Two-dimensional computations vs robotic wing experiments, Journal of Experimental Biology 207, 449–60.CrossRefGoogle ScholarPubMed
Ward-Smith, A. J. (1984). Biophysical Aerodynamics and the Natural Environment (New York, Wiley).Google Scholar
Warrick, D. R., Tobalske, B. W., and Powers, D. R. (2005). Aerodynamics of the hovering hummingbird, Nature (London) 435, 1094–7.CrossRefGoogle ScholarPubMed
Waszak, R. M., Jenkins, N. L., and Ifju, P. (2001). Stability and control properties of an aeroelastic fixed wing micro aerial vehicle, AIAA Paper 2001-4005.
Wazzan, A. R., Gazley, J. C., and Smith, A. M. O. (1979). Tollmien–Schlichting waves and transition: Heated and adiabatic wedge flows with application to bodies of revolution, Progress in Aerospace Sciences 18, 351–92.CrossRefGoogle Scholar
Wazzan, A. R., Okamura, T. T., and Smith, A. M. O. (1968). Spatial and temporal stability charts for the Falkner–Skan boundary layer profiles, Douglas Aircraft Co, DAC-67086.
Weis-Fogh, T. (1972). Energetics of hovering flight in hummingbirds and in drosophila, Journal of Experimental Biology 56, 79–104.Google Scholar
Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, Journal of Experimental Biology 59, 169–230.Google Scholar
Weis-Fogh, T. and Jensen, M. (1956). Biology and physics of locust flight. Ⅰ. Basic principles in insect flight. A critical review, Philosophical Transactions of the Royal Society of London. Series B 239, 415–58.CrossRefGoogle Scholar
Weiss, H. (1939). Wind tunnel: Effect of wing spar size, Journal of International Aeromodeling, pp. 5–7.
Westesson, R. A. and Clareus, U. (1974). Turbulent lift. Comments on some preliminary wind tunnel tests – Characteristics of vortex on wing surface from tangential blowing on upper surface, NASA-TT-F-15743, TP-74-51.
White, F. M. (1991). Viscous Fluid Flow (New York, McGraw-Hill).Google Scholar
Wilcox, C. D. (2000). Turbulence Modeling for computational fluid dynamics (La Canada, CA, DCW Industries).Google Scholar
Wilcox, D. C. (1994). Simulation of transition with a two-equation turbulence model, AIAA Journal 32, 247–55.CrossRefGoogle Scholar
Wilkin, P. J. and Williams, H. M. (1993). Comparison of the aerodynamic forces on a flying sphingid moth with those predicted by quasi-steady theory, Physiological Zoology 66, 1015–44.CrossRefGoogle Scholar
Willmott, A. P. and Ellington, C. P. (1997a). Measuring the angle of attack of beating insect wings: Robust three-dimensional reconstruction from two-dimensional images, Journal of Experimental Biology 200, 2693–2704.Google Scholar
Willmott, A. P. and Ellington, C. P. (1997b). The mechanics of flight in the hawkmoth Manduca Sexta. Ⅰ. Kinematics of hovering and forward flight, Journal of Experimental Biology 200, 2705–22.Google Scholar
Willmott, A. P. and Ellington, C. P. (1997c). The mechanics of flight in the hawkmoth Manduca Sexta. Ⅱ. Aerodynamic consequences of kinematic and morphological variation, Journal of Experimental Biology 200, 2723–45.Google Scholar
Wolfgang, M. J., Tolkoff, S. W., Techet, A. H., Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Hover, F. S., Grosenbaugh, M. A., and McGillis, W. R. (1998). Drag reduction and turbulence control in swimming fish-like bodies, Proceedings of the International Symposium on Seawater Drag Reduction (Newport, RI, Naval Undersea Warfare Center).Google Scholar
Wootton, R. J. and Newman, D. J. S. (1979). Whitefly have the highest contraction frequencies yet recorded in non-fibrillar flight muscles, Nature (London) 280, 402–3.CrossRefGoogle Scholar
Wu, J. Z., Vakili, A. D., and Wu, J. M. (1991). Review of the physics of enhancing vortex lift by unsteady excitation, Progress in Aerospace Sciences 28, 73–131.CrossRefGoogle Scholar
Wu, T. Y.-T. (1971). Hydromechanics of swimming of fishes and cetaceans, in Yih, C.-S. (Ed.), Advances in Applied Mechanics, Vol. 11 (New York, Academic), pp. 1–63.Google Scholar
Wu, T. Y.-T., Brokaw, C. J., and Brennen, C. (Eds.) (1975). Swimming and Flying in Nature, Vols. 1 and 2 (New York, Plenum).CrossRefGoogle Scholar
Ye, T., Shyy, W., and Chung, J. C. (2001). A fixed-grid, sharp-interface, method for bubble dynamics and phase change, Journal of Computational Physics 174, 781–815.CrossRefGoogle Scholar
Young, A. D. and Horton, H. P. (1966). Some results of investigation of separation bubbles, AGARD Conference Proceedings, Vol. 4, Part 2 (London, UK, Technical Editing and Reproduction, Ltd.), pp. 785–811.
Yuan, W., Khalid, M., Windte, J., Scholz, U., and Radespiel, R. (2005). An investigation of low-Reynolds-number flows past airfoils, AIAA Paper 2005-4607.
Zanker, J. M. and Gotz, K. G. (1990). The wing beat of Drosophila Melanogaster. Ⅱ. Dynamics, Philosophical Transactions of the Royal Society of London. Series B 327, 19–44.CrossRefGoogle Scholar
Zbikowski, R. (2002). On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles, Philosophical Transactions of the Royal Society of London. Series A 360, 273–90.CrossRefGoogle ScholarPubMed
Zheng, X., Liu, C., Liu, F., and Yang, C. (1998). Turbulence transition simulation using the k-ω model, International Journal for Numerical Methods in Engineering 42, 907–26.3.0.CO;2-T>CrossRefGoogle Scholar
Albertani, R., Hubner, P., Ifju, P. G., Lind, R., and Jackowski, J. (2004). Wind tunnel testing of micro air vehicles at low Reynolds numbers, SAE Paper 2004-01-3090, presented at the SAE 2004 World Aviation Conference, Reno, NV.
Alexander, D. E. (2002). Nature's Flyers (Baltimore/London, Johns Hopkins University Press).Google Scholar
Alexander, R. M. (1976). Mechanics of bipedal locomotion, in Davies, P. S. (Ed.), Perspectives in Experimental Biology (Oxford, Pergamon Press), pp. 493–504.Google Scholar
Alexander, R. M. (1997). The U J and L of bird flight, Nature (London) 390, 13.CrossRefGoogle Scholar
Anders, J. B. (2000). Biomimetic flow control, AIAA Paper 2000–2543.
Anderson, J. D. Jr. (1989). Introduction to Flight (New York, McGraw-Hill).Google Scholar
Anderson, J. M., Streitlien, K., Barrett, D. S., and Triantafyllou, M. S. (1998). Oscillating foils of high propulsive efficiency, Journal of Fluid Mechanics 360, 41–72.CrossRefGoogle Scholar
Aono, H., Liang, F., and Liu, H. (2006). Near- and far-field aerodynamics in insect hovering flight: An integrated computational study, Journal of Experimental Biology (submitted).
Aymar, G. C. (1935). Bird Flight (New York, Dodd and Mead).Google Scholar
Azuma, A. (1983). Local Momentum and Local Circulation Methods for Fixed, Rotary and Beating Wings, Thesis, Institute of Interdisciplinary Research, Faculty of Engineering (Tokyo, University of Tokyo).
Azuma, A. (1992). The Biokinetics of Flying and Swimming (Tokyo, Springer-Verlag).CrossRefGoogle Scholar
Barut, A., Das, M., and Madenci, E. (2006). Nonlinear deformations of flapping wings on a micro air vehicle, AIAA Paper 2006-1662.
Bass, R. L., Johnson, J. E., and Unruh, J. F. (1982). Correlation of lift and boundary-layer activity on an oscillating lifting surface, AIAA Journal 20, 1051–6.CrossRefGoogle Scholar
Bechert, D. W., Bruse, M., Hage, W., and Meyer, R. (1997). Biological surfaces and their technological application–laboratory and flight experiments on drag reduction and separation control, AIAA Paper 97-1960.
Berger, M. A. M. (1999). Determining propulsive force in front crawl swimming: A comparison of two methods, Journal of Sports Sciences 17, 95–105.CrossRefGoogle ScholarPubMed
Betz, A. (1912). Ein Beitrag zur Erklarung des Segelfluges, Zeitschrift für Flugtechnik und Motorluftschiffahrt 3, 269–72.Google Scholar
Biewener, A. A. (2003). Animal Locomotion, Oxford Animal Biology Series (Oxford, Oxford University Press).Google Scholar
Birch, J. M. and Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings, Nature (London) 412, 729–33.CrossRefGoogle Scholar
Birch, J. M., Dickson, W. B., and Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers, Journal of Experimental Biology 207, 1063–72.CrossRefGoogle Scholar
Bohorquez, F., Rankins, F., Baeder, J., and Pines, D. (2003). Hover performance of rotor blades at low Reynolds numbers for rotary wing micro air vehicles. An experimental and computational fluid dynamics study, AIAA Paper 2003–3930.CrossRef
Brackenbury, J. (1990). Wing movements in the bush cricket Tettigonia viridissima and the mantis Ameles spallanziana during natural leaping, Journal of Zoology 220, 593–602.CrossRefGoogle Scholar
Bradley, R. G., Smith, C. W., and Wary, W. O. (1974). An experimental investigation of leading-edge vortex augmentation by blowing, NASA CR-132415.
Bratt, J. B. (1953). Flow patterns in the wake of an oscillating airfoil, Aeronautical Research Council Technical Report R and M 2773.
Brodsky, A. K. (1994). The Evolution of Insect Flight (New York, Oxford University Press).Google Scholar
Brown, W. C. (1939). Boston low-speed wind tunnel, and Wind tunnel: Characteristics of indoor airfoils, Journal of International Aeromodeling, 3–7.
Buckholz, R. H. (1986). The functional role of wing corrugation in living system, Journal of Fluids Engineering 108, 93–7.CrossRefGoogle Scholar
Campbell, J. F. (1976). Augmentation of vortex lift by spanwise blowing, Journal of Aircraft 13, 727–32.CrossRefGoogle Scholar
Carmichael, B. H. (1981). Low Reynolds number airfoil survey, NASA CR 1165803.
Cebeci, T. (1988). Essential ingredients of a method for low Reynolds-number airfoils, AIAA Journal 27, 1680–8.CrossRefGoogle Scholar
Chai, P. and Dudley, R. (1996). Limits to flight energetics of hummingbirds hovering in hypodense and hypoxic gas mixtures, Journal of Experimental Biology 199, 2285–95.Google ScholarPubMed
Chai, P. and Millard, D. (1997). Flight and size constraints: Hovering performance of large hummingbirds under maximal loading, Journal of Experimental Biology 200, 2757–63.Google ScholarPubMed
Chambers, L. L. G. (1966). A variational formulation of the Thwaites sail equation, Quarterly Journal of Mechanics and Applied Mathematics 19, 221–31.CrossRefGoogle Scholar
Chasman, D. and Chakravarthy, S. (2001). Computational and experimental studies of asymmetric pitch/plunge flapping – The secret of biological flyers, AIAA Paper 2001-0859.
Chen, K. K. and Thyson, N. A. (1971). Extension of Emmons’ spot theory to flows on blunt bodies, AIAA Journal 9, 821–5.CrossRefGoogle Scholar
Childress, S. (1981). Mechanics of Swimming and Flying (New York, Cambridge University Press).CrossRefGoogle Scholar
Cloupeau, M. (1979). Direct measurements of instantaneous lift in desert locust; Comparison with Jensen's experiments on detached wings, Journal of Experimental Biology 80, 1–15.Google Scholar
Collins, P. Q. and Graham, J. M. R. (1994). Human flapping – Wing flight under reduced gravity, Aeronautical Journal 98, 177–84.CrossRefGoogle Scholar
Combes, S. A. and Daniel, T. L. (2003). Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmothManduca sexta, Journal of Experimental Biology 206, 2999–3006.CrossRefGoogle Scholar
Cooter, R. J. and Baker, P. S. (1977). Weis-Fogh clap and fling mechanism in locusta, Nature (London) 269, 53–4.CrossRefGoogle Scholar
Cox, J. (1973). The revolutionary Kasper wing, Soaring, December, 20.
Crabtree, L. F. (1957). Effect of leading edge separation on thin wings in two-dimensional incompressible flow, Journal of Aeronautical Sciences 24, 597–604.CrossRefGoogle Scholar
Cummings, R. M., Morton, S. A., Siegel, S. G., and Bosscher, S. (2003). Numerical prediction and wind tunnel experiment for pitching unmanned combat air vehicles, AIAA Paper 2003-0417.
Davis, R. L., Carter, J. E., and Reshotko, E. (1987). Analysis of transitional separation bubbles on infinite swept wings, AIAA Journal 25, 421–8.CrossRefGoogle Scholar
Davis, W. R., Kosicki, B. B., Boroson, D. M., and Kostishack, D. F. (1996). Micro air vehicles for optical surveillance, Lincoln Laboratory Journal 9, 197–214.Google Scholar
DeLaurier, J. D. (1993). An aerodynamic model for flapping wing flight, Aeronautical Journal 97, 125–130.Google Scholar
Matteis, G. and Socio, L. (1986). Nonlinear aerodynamics of a two-dimensional membrane airfoil with separation, Journal of Aircraft 23, 831–6.CrossRefGoogle Scholar
Devin, S. I., Zavyalov, V. M., and Korovich, B. K. (1972). On the question of unsteady aerodynamic forces acting upon a wing of finite aspect ratio at large amplitudes of oscillation and large Strouhal numbers, Voprosy Sudostroeniya Ser.: Proektirovanie Sudov, Vyp. 1, 34–41.Google Scholar
Vries, O. (1983). On the theory of the horizontal-axis wind turbine, Annual Review of Fluid Mechanics 15, 77–96.CrossRefGoogle Scholar
Dhawan, S. (1991). Bird flight, Sadhana – Academy Proceedings in Engineering Sciences 16, 275–352.Google Scholar
Dial, K. P. (1994). An inside look at how birds fly: Experimental studies of the internal and external processes controlling flight, 1994 Report to the Aerospace Profession, 38th Symposium Proceedings, Beverly Hills, CA.
Dick, E. and Steelant, J. (1996). Modeling of bypass transition with conditioned Navier–Stokes equations coupled to an intermittency transport equation, International Journal for Numerical Methods in Fluids 23, 193–220.Google Scholar
Dick, E. and Steelant, J. (1997). Coupled solution of the steady compressible Navier–Stokes equations and the k–∊ turbulence equations with a multigrid method, Applied Numerical Mathematics 23, 49–61.CrossRefGoogle Scholar
Dickinson, M. H. and Gotz, K. G. (1993). Unsteady aerodynamic perfornamce of model wings at low Reynolds numbers, Journal of Experimental Biology 174, 45–64.Google Scholar
Dickinson, M. H., Lehmann, F.-O., and Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight, Science 284, 1954–60.CrossRefGoogle ScholarPubMed
Ding, H., Yang, B., Lou, M., and Fang, H. (2003). New numerical method for two-dimensional partially wrinkled membranes, AIAA Journal 41, 125–32.CrossRefGoogle Scholar
Dong, H., Mittal, R., and Najjar, F. M. (2006). Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils, Journal of Fluid Mechanics 566, 309–43.CrossRefGoogle Scholar
Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils, in T. J. Mueller (Ed.), Proceedings of the Conference on Low Reynolds Number Aerodynamics (Notre Dame, University of Notre Dame Press), pp. 1–12.CrossRef
Dudley, R. (2000). The Biomechanics of Insect Flight: Form, Function, Evolution (Princeton, NJ, Princeton University Press).Google Scholar
Dudley, R. and Ellington, C. P. (1990a). Mechanics of forward flight in bumblebees. Ⅰ. Kinematics and morphology, Journal of Experimental Biology 148, 19–52.Google Scholar
Dudley, R. and Ellington, C. P. (1990b). Mechanics of forward flight in bumblebees. Ⅱ. Quasi-steady lift and power requirements, Journal of Experimental Biology 148, 53–88.Google Scholar
Ellington, C. P. (1984a). The aerodynamics of hovering insect flight. Ⅰ. The quasi-steady analysis, Philosophical Transactions of the Royal Society of London. Series B 305, 1–15.CrossRefGoogle Scholar
Ellington, C. P. (1984b). Morphological parameters, Ⅱ. The aerodynamics of hovering insect flight, Philosophical Transactions of the Royal Society of London. Series B 305, 17–40.CrossRefGoogle Scholar
Ellington, C. P. (1984c). The aerodynamics of insect flight. Ⅲ. Kinematics, Philosophical Transactions of the Royal Society of London. Series B 305, 41–78.CrossRefGoogle Scholar
Ellington, C. P. (1984d). The aerodynamics of hovering insect flight. Ⅳ. Aerodynamic mechanisms, Philosophical Transactions of the Royal Society of London. Series B 305, 79–113.CrossRefGoogle Scholar
Ellington, C. P. (1984e). The aerodynamics of hovering insect flight. V. A Vortex theory, Philosophical Transactions of the Royal Society of London. Series B 305, 115–44.CrossRefGoogle Scholar
Ellington, C. P. (1984f). The aerodynamics of hovering insect flight. Ⅵ. Lift and power requirements, Philosophical Transactions of the Royal Society of London. Series B 305, 145–181.CrossRefGoogle Scholar
Ellington, C. P. (1995). Unsteady aerodynamics of insect flight, in Ellington, C. P. and Pedley, T. J. (Eds.), Biological Fluid Dynamics, Society for Experimental Biology Symposium, Vol. 49 (Cambridge, UK, The Company of Biologists), pp. 109–29.Google Scholar
Ellington, C. P., Berg, C., Willmott, A. P., and Thomas, A. L. R. (1996). Leading-edge vortices in insect flight, Nature (London) 384, 626–30.CrossRefGoogle Scholar
Ennos, A. R. (1989). The kinematics and aerodynamics of the free flight of some Diptera, Journal of Experimental Biology 142, 49–85.Google Scholar
Erickson, G. E. and Campbell, J. F. (1975). Flow visualization of leading-edge vortex enhancement by spanwise blowing, NASA TM X-72702.
Escudier, M. (1988). Vortex breakdown: Observations and explanations, Progress in Aerospace Sciences 25, 189–229.CrossRefGoogle Scholar
Freymuth, P. (1988). Propulsive vortical signatures of plunging and pitching airfoils, AIAA Paper 88–323.
Freymuth, P. (1990). Thrust generation by an airfoil in hover modes, Experiments in Fluids 9, 17–24.CrossRefGoogle Scholar
Friedmann, P. P. (1999). Renaissance of aeroelasticity and its future, Journal of Aircraft 36, 105–21.CrossRefGoogle Scholar
Fry, S. N., Sayaman, R., and Dickinson, M. H. (2003). The aerodynamics of free-flight maneuvers in Drosophila, Science 300, 495–8.CrossRefGoogle ScholarPubMed
Fung, Y. C. (1969). An Introduction to the Theory of Aeroelasticity (New York, Dover).Google Scholar
Galvao, R., Israeli, E., Song, A., Tian, X., Bishop, K., Swartz, S., and Breuer, K. (2006). The aerodynamics of compliant membrane wings modeled on mammalian flight mechanics, AIAA Paper 2006–2866.
Garcia, H., Abdulrahim, M., and Lind, R. (2003). Roll control for a micro air vehicle using active wing morphing, AIAA Paper 2003–5347.
Gleyzes, C., Cousteix, J., and Bonnet, J. L. (1985). Theoretical and experimental study of low Reynolds number transitional separation bubbles, in T. J. Mueller (Ed.), Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics (Notre Dame, IN, University of Notre Dame Press), pp. 137–52.
Goldspink, G. (1977). Energy cost of locomotion, in Alexander, R. M. and Chapman, G. C. (Eds.), Mechanics and Energetics of Animal Locomotion (London, Chapman and Hall).Google Scholar
Gopalkrishnan, R., Triantafyllou, M. S., Triantafyllou, G. S., and Barrett, D. (1994). Active vorticity control in a shear flow using a flapping foil, Journal of Fluid Mechanics 274 (Sep.), 1–21.CrossRefGoogle Scholar
Goslow, G. E. Jr., Dial, K. P., and Jenkins, F. A. Jr. (1990). Bird flight: Insights and complications, BioScience 40, 108–15.CrossRefGoogle Scholar
Gotz, K. G. (1987). Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster, Journal of Experimental Biology 128, 35–46.Google Scholar
Green, A. E. and Adkins, J. E. (1960). Large Elastic Deformations (Oxford, Clarendon).Google Scholar
Greenewalt, C. H. (1975). The flight of birds: The significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure, Transactions of the American Philosophical Society 65 (4), 1–67.CrossRefGoogle Scholar
Greenhalgh, S., Curtiss, H. C., and Smith, B. (1984). Aerodynamic properties of a two-dimensional inextensible flexible airfoil, AIAA Journal 22, 865–70.Google Scholar
Grodnitsky, D. L. (1999). Form and function of insect wings: The evolution of biological structures (Baltimore, MD, Johns Hopkins University Press).Google Scholar
Hall, M. G. (1972). Vortex breakdown, Annual Review of Fluid Mechanics 4, 195–218.CrossRefGoogle Scholar
Ham, N. D. (1968). Aerodynamic loading on a two-dimensional airfoil during dynamic stall, AIAA Journal 6, 1927–34.CrossRefGoogle Scholar
Harper, P. W. and Flanigan, R. E. (1950). The effect of rate of change of angle of attack on the maximum lift of a small model, NACA TN-2061.
Harris, F. D. and Pruyn, R. R. (1968). Blade stall–Half fact, half fiction, Journal of the American Helicopter Society 13(2), 27–48.CrossRefGoogle Scholar
He, X., Senocak, I., Shyy, W., Thakur, S. S., and Gangadharan, S. (2000). Evaluation of laminar-turbulent transition and equilibrium near wall turbulence models, Numerical Heat Transfer, Part A 37, 101–12.Google Scholar
Heathcote, S., Martin, D., and Gursul, I. (2004). Flexible flapping airfoil propulsion at zero freestream velocity, AIAA Journal 42, 2196–204.CrossRefGoogle Scholar
Herbert, T. (1997). Parabolized stability equations, Annual Review of Fluid Mechanics 29, 245–83.CrossRefGoogle Scholar
Hill, A. V. (1950). The dimensions of animals and their muscular dynamics, Science Progress 38, 209–30.Google Scholar
Hillier, R. and Cherry, N. J. (1981). The effects of stream turbulence on separation bubbles, Journal of Wind Engineering and Industrial Aerodynamics 8, 49–58.CrossRefGoogle Scholar
Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y.-C., and Ho, C.-M. (2003). Unsteady aerodynamics and flow control for flapping wing flyers, Progress in Aerospace Sciences 39, 635–81.CrossRefGoogle Scholar
Hoff, W. (1919). Der Flug der Insekten, Naturwissenschaften 7, 159.CrossRefGoogle Scholar
Holloway, D. S., Walters, D. K., and Leylek, J. H. (2004). Prediction of unsteady, separated boundary layer over a blunt body for laminar, turbulent, and transitional flow, International Journal for Numerical Methods in Fluids 45, 1291–1315.CrossRefGoogle Scholar
Houghton, E. L. and Carpenter, P. W. (2003). Aerodynamics for engineering students (Burlington, MA, Butterworth-Heinemann).Google Scholar
Hsiao, F.-B., Liu, C.-F., and Tang, Z. (1989). Aerodynamic performance and flow structure studies of a low Reynolds number airfoil, AIAA Journal 27, 129–37.CrossRefGoogle Scholar
Huang, R. F., Shy, W. W., Lin, S. W., and Hsiao, F.-B. (1996). Influence of surface flow on aerodynamic loads of a cantilever wing, AIAA Journal 34, 527–32.CrossRefGoogle Scholar
Hurley, D. G. (1959). The use of boundary-layer control to establish free stream-line flows, Advances in Aeronautical Science 2, 662–708.CrossRefGoogle Scholar
Ifju, P. G., Jenkins, A. D., Ettingers, S., Lian, Y., and Shyy, W. (2002). Flexible-wing-based micro air vehicles, AIAA Paper 2002-0705.
Isogai, K., Fujishiro, S., Saitoh, T., Yamamoto, M., Yamasaki, M., and Matsubara, M. (2004). Unsteady three-dimensional viscous flow simulation of a dragonfly hovering, AIAA Journal 42, 2053–2059.CrossRefGoogle Scholar
Jackson, P. (2001). Jane's All the World's Aircraft, (Alexandria, VA, Jane's Information Group).Google Scholar
Jackson, P. S. (1983). A simple model for elastic two-dimensional sails, AIAA Journal 21, 153–5.CrossRefGoogle Scholar
Jackson, P. S. and Christie, G. W. (1987). Numerical analysis of three-dimensional elastic membrane wings, AIAA Journal 25, 676–82.CrossRefGoogle Scholar
Jenkins, C. H. (1996). Nonlinear dynamic response of membranes: State of the art–update, Applied Mechanics Reviews 49, S41-S48.CrossRefGoogle Scholar
Jenkins, C. H. and Leonard, J. W. (1991). Nonlinear dynamic response of membranes: State of the art, Applied Mechanics Reviews 44, 319–28.CrossRefGoogle Scholar
Jones, B. M. (1938). Stalling, Journal of the Royal Aeronautical Society 38, 747–70.Google Scholar
Jones, K. D., Dohring, C. M., and Platzer, F. M. (1998). Experimental and computational investigation of the Knoller–Betz effect, AIAA Journal 36, 1240–6.CrossRefGoogle Scholar
Jones, K. D., Lund, T. C., and Platzer, F. M. (2001). Experimental and computational investigation of flapping-wing propulsion for micro air vehicles, in Mueller, T. J. (Ed.), Fixed and Flapping Wings Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, Vol. 195 (Reston, VA, AIAA), pp. 307–36.CrossRefGoogle Scholar
Jones, K. D. and Platzer, F. M. (2006). Bio-inspired design of flapping-wing micro air vehicles – An engineer's perspective, AIAA Paper 2006-0037.
Jones, K. D. and Platzer, M. F. (1999). An experimental and numerical investigation of flapping-wing propulsion, AIAA Paper 1999-0995.
Jones, K. D. and Platzer, M. F. (2003). Experimental investigation of the aerodynamic characteristics of flapping-wing micro air vehicles, AIAA Paper 2003-0418.
Jones, R. T. (1990). Wing Theory (Princeton, NJ, Princeton University Press).CrossRefGoogle Scholar
Kasper, W. (1979). The Kasper Wing, Meheen, H. J. (Ed.), (Denver, CO, Meheen Engineering).Google Scholar
Katz, J. (1979). Low-Speed Aerodynamics: From Wing Theory to Panel Methods (San Francisco, CA, McGraw-Hill).Google Scholar
Katz, J. and Plotkin, A. (2002). Low-Speed Aerodynamics (Cambridge, UK, Cambridge University Press).Google Scholar
Katzmayr, R. (1922). Effect of periodic changes of angle of attack on behavior of airfoils, NACA TM-147.
Kawamura, Y., Souda, S., and Ellington, C. P. (2006). Quasi-hovering flight of a flapping micro air vehicle with large angle of attack, presented at The Third International Symposium on Aero Aqua Bio-Mechanisms, Okinawa Convention Center, Ginowan, Okinawa, Japan.
Kesel, A. B. (1998). Biologisches Vorbild Insektenflügel Mehrkriterienoptimierung ultraleichter Tragflächen, in Nachtigall, W. and Wisser, A. (Eds.), Biona-Report, Vol. 12 (Stuttgart/New York, Fischer), pp. 107–17.CrossRefGoogle Scholar
Kesel, A. B. (2000). Aerodynamic characteristics of dragonfly wing sections compared with technical airfoils, Journal of Experimental Biology 203, 3125–35.Google Scholar
Kirkpatrick, S. J. (1994). Scale effects on the stresses and safety factors in the wing bones of birds and bats, Journal of Experimental Biology 190, 195–215.Google ScholarPubMed
Kiya, M. and Sasaki, K. (1983). Free-stream turbulence effects on a separation bubble, Journal of Wind Engineering and Industrial Aerodynamics 14(1–3), 375–86.CrossRefGoogle Scholar
Knoller, R. (1909). Die Gesetze des Luftwiderstandes, Flug-und Motortechnik (Wein) 3(21), 1–7.Google Scholar
Koochesfahani, M. M. (1989). Vortical patterns in the wake of an oscillating airfoil, AIAA Journal 27, 1200–5.CrossRefGoogle Scholar
Kramer, M. (1932). Die Zunahme des Maximalauftriebes von Tragflügeln bei plötzlicher Anstellwinkelvergrösserung (Böeneffect), Zeitschrift für Flugtechnik und Motorluftschiffahrt 23(7), 185–9.Google Scholar
Kruppa, E. W. (1977). A wind tunnel investigation of the Kasper vortex concept, AIAA Paper 77-310.
Lai, C. S. J. and Platzer, F. M. (1999). Jet characteristics of a plunging airfoil, AIAA Journal 37, 1529–37.CrossRefGoogle Scholar
Lai, C. S. J. and Platzer, F. M. (2001). Characteristics of a plunging airfoil at zero freestream velocity, AIAA Journal 39, 531–4.CrossRefGoogle Scholar
LaRoche, U. and Palffy, S. (1996). Wing grid, a novel device for reduction of induced drag on wings, presented at the International Council of Aeronautical Sciences (ICAS) Conference, Sorrento, Italy.
Lehmann, F.-O. (2004). The mechanisms of lift enhancement in insect flight, Naturwissenschaften 91(3), 101–22.CrossRefGoogle ScholarPubMed
Lehmann, F.-O. and Dickinson, M. H. (1998). The control of wing kinematics and flight forces in fruit flies (Drosophila spp.), Journal of Experimental Biology 201, 385–401.Google Scholar
Lehmann, F.-O., Sane, S. P., and Dickinson, M. H. (2005). The aerodynamic effects of wing–wing interaction in flapping insect wings, Journal of Experimental Biology 208, 3075–92.CrossRefGoogle ScholarPubMed
Leibovich, S. (1978). The structure of vortex breakdown, Annual Review of Fluid Mechanics 10, 221–46.CrossRefGoogle Scholar
Lesieur, M. and Metais, O. (1996). New trends in large-eddy simulations of turbulence, Annual Review of Fluid Mechanics 28, 45–82.CrossRefGoogle Scholar
Lian, Y. (2003). Membrane and Adaptively-Shaped Wings for Micro Air Vehicles, Ph.D. dissertation, Mechanical and Aerospace Engineering Department (Gainesville, FL, University of Florida).
Lian, Y. and Shyy, W. (2003). Three-dimensional fluid–structure interactions of a membrane wing for micro air vehicle applications, AIAA Paper 2003-1726.
Lian, Y. and Shyy, W. (2005). Numerical simulations of membrane wing aerodynamics for micro air vehicle applications, Journal of Aircraft 42, 865–73.CrossRefGoogle Scholar
Lian, Y. and Shyy, W. (2006). Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil, AIAA Paper 2006-3051, also AIAA Journal 45, (2007) 1501–1513.
Lian, Y., Shyy, W., Ifju, P., and Verron, E. (2003a). A membrane wing model for micro air vehicles, AIAA Journal 41, 2492–4.CrossRefGoogle Scholar
Lian, Y., Shyy, W., Viieru, D., and Zhang, B. N. (2003b). Membrane wing aerodynamics for micro air vehicles, Progress in Aerospace Sciences 39, 425–65.CrossRefGoogle Scholar
Liebeck, R. H. (1992). Laminar separation bubbles and airfoil design at low Reynolds numbers, AIAA Paper 1992-2735.
Lighthill, M. J. (1969). Hydrodynamics of Aquatic Animal Propulsion (Philadelphia, PA, Society for Industry and Applied Mathematics).Google Scholar
Lighthill, M. J. (1973). On the Weis-Fogh mechanism of lift generation, Journal of Fluid Mechanics 60, 1–17.CrossRefGoogle Scholar
Lighthill, M. J. (1977). Introduction to the scaling of aerial locomotion, in Pedley, T. J. (Ed.), Scale Effects in Animal Locomotion (New York, Academic), pp. 365–404.Google Scholar
Lissaman, P. B. S. (1983). Low Reynolds number airfoils, Annual Review of Fluid Mechanics 15, 223–39.CrossRefGoogle Scholar
Liu, H. (2005). Simulation-based biological fluid dynamics in animal locomotion, Applied Mechanics Reviews 58, 269–282.CrossRefGoogle Scholar
Liu, H., Ellington, C. P., Kawachi, K., Berg, C., and Willmott, A. P. (1998). A computational fluid dynamics study of hawkmoth hovering, Journal of Experimental Biology 201, 461–77.Google ScholarPubMed
Liu, H. and Kawachi, K. (1998). A numerical study of insect flight, Journal of Computational Physics 146, 124–56.CrossRefGoogle Scholar
Liu, T. (2006). Comparative scaling of flapping- and fixed-wing flyers, AIAA Journal 44, 24–33.CrossRefGoogle Scholar
Livne, E. (2003). Future of airplane aeroelasticity, Journal of Aircraft 40, 1066–92.CrossRefGoogle Scholar
Mack, L. M. (1977). Transition prediction and linear stability theory, in Laminar-Turbulent Transition, AGARD CP 224, pp. 1/1–22.Google Scholar
Maddock, L., Bone, Q., and Rayner, J. M. V. (1994). Mechanics and Physiology of Animal Swimming (New York, Cambridge University Press).CrossRefGoogle Scholar
Malik, M. R. (1982). COSAL – A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers, NASA CR-165925.
Marden, J. (1987). Maximum lift production during takeoff in flying animals, Journal of Experimental Biology 130, 235–58.Google Scholar
Mary, I. and Sagaut, P. (2002). Large eddy simulation of flow around an airfoil near stall, AIAA Journal 40, 1139–45.CrossRefGoogle Scholar
Maxworthy, T. (1979). Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling,’Journal of Fluid Mechanics 93, 47–63.CrossRefGoogle Scholar
Mayle, R. E. (1991). The role of laminar-turbulent transition in gas turbine engine, Journal of Turbomachinery 113, 509–37.CrossRefGoogle Scholar
McCroskey, W. J., Carr, L. W., and McAlister, K. W. (1976). Dynamic stall experiments on oscillating airfoils, AIAA Journal 14, 57–63.CrossRefGoogle Scholar
McCroskey, W. J. and Fisher, R. K. (1972). Detailed aerodynamic measurements on a model rotor in the blade stall regime, Journal of the American Helicopter Society 17, 20–30.Google Scholar
McCroskey, W. J., McAlister, K. W., Carr, L. W., and Pucci, S. L. (1982). An experimental study of dynamic stall on advanced airfoil section, NASA TM-84245.
McMasters, J. H. and Henderson, M. J. (1980). Low speed single element airfoil synthesis, Technical Soaring 6(2), 1–21.Google Scholar
McMichael, J. M. and Francis, M. S. (1997). Micro air vehicles – Toward a new dimension in flight, available at http://euler.aero.iitb.ac.in/docs/MAV/www.darpa.mil/tto/MAV/mav_auvsi.html.
Moin, P. and Mahesh, K. (1998). Direct numerical simulation: A tool in turbulence research, Annual Review of Fluid Mechanics 30, 539–578.CrossRefGoogle Scholar
Mooney, M. (1940). A theory of large elastic deformation, Journal of Applied Physics 11, 582–592.CrossRefGoogle Scholar
Mueller, T. J. (Ed.), (2001). Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Progress in Astronautics and Aeronautics, Vol. 195 (Reston, VA, AIAA).CrossRefGoogle Scholar
Mueller, T. J. and DeLaurier, J. D. (2003). Aerodynamics of small vehicles, Annual Review of Fluid Mechanics 35, 89–111.CrossRefGoogle Scholar
Mueller, T. J., Pohlen, L. J., Conigliaro, P. E., and Jansen, B. J. J. (1983). The influence of free-stream disturbances on low Reynolds number airfoil experiments, Experiments in Fluids 1, 3–14.CrossRefGoogle Scholar
Murai, H. and Maruyama, S. (1980). Theoretical investigation of the aerodynamics of double membrane sailwing airfoil sections, Journal of Aircraft 17, 294–9.CrossRefGoogle Scholar
Murata, S. and Tanaka, S. (1989). Aerodynamic characteristics of a two-dimensional porous sail, Journal of Fluid Mechanics 206, 463–75.CrossRefGoogle Scholar
Newman, B. G. (1987). Aerodynamic theory for membranes and sails, Progress in Aerospace Sciences 24, 1–27.CrossRefGoogle Scholar
Newman, B. G. and Low, H. T. (1984). Two-dimensional impervious sails: Experimental results compared with theory, Journal of Fluid Mechanics 144, 445–62.CrossRefGoogle Scholar
Newman, B. G., Savage, S. B., and Schouella, D. (1977). Model test on a wing section of a dragonfly, in Pedley, T. J. (Ed.), Scale Effects in Animal Locomotion (London, Academic), pp. 445–77.Google Scholar
Nielsen, J. N. (1963). Theory of flexible aerodynamic surfaces, Journal of Applied Mechanics 30, 435–42.CrossRefGoogle Scholar
Norberg, U. M. (1975). Hovering flight of the dragonfly Aeschna juncea L., in Wu, T. Y.-T., Brokaw, C. J., and Brennen, C. (Eds.), Swimming and Flying in Nature, Vol. 2 (New York, Plenum), pp. 763–81.CrossRefGoogle Scholar
Norberg, U. M. (1976). Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus Auritus, Journal of Experimental Biology 65, 179–212.Google ScholarPubMed
Norberg, U. M. (1990). Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution (Berlin, Springer-Verlag).CrossRefGoogle Scholar
Obremski, H. J. and Fejer, A. A. (1967). Transition in oscillating boundary layer flow, Journal of Fluid Mechanics 29, 93–111.CrossRefGoogle Scholar
Obremski, H. J. and Morkovin, M. V. (1969). Application of a quasi-steady stability model to periodic boundary layer flows, AIAA Journal 7, 1298–1301.Google Scholar
Oden, J. T. and Sato, T. (1967). Finite strains and displacements of elastic membrane by the finite element method, International Journal for Solids and Structures 3, 471–88.CrossRefGoogle Scholar
Okamoto, M., Yasuda, K., and Azuma, A. (1996). Aerodynamic characteristics of the wings and body of a dragonfly, Journal of Experimental Biology 199, 281–94.Google ScholarPubMed
Ol, M., McAuliffe, B. R., Hanff, E. S., Scholz, U., and Kaehler, C. (2005). Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities, AIAA Paper 2005-5149.
O'Meara, M. M. and Mueller, T. J. (1987). Laminar separation bubble characteristics on an airfoil at low Reynolds numbers, AIAA Journal 25, 1033–41.CrossRefGoogle Scholar
Osborne, M. F. M. (1951). Aerodynamics of flapping flight with application to insects, Journal of Experimental Biology 28, 221–45.Google ScholarPubMed
Pedley, T. J. (Ed.) (1977). Scale Effects in Animal Locomotion (New York, Academic).Google Scholar
Pendersen, C. B. and Zbikowski, R. (2006). An indicial-Polhamus aerodynamic model of insect-like flapping wings in hover, in Liebe, R. (Ed.), Flow Phenomena in Nature, Vol. 2 (Southampton, UK, WIT Press), pp. 606–65.Google Scholar
Pennycuick, C. J. (1969). The mechanics of bird migration, Ibis 111, 525–56.CrossRefGoogle Scholar
Pennycuick, C. J. (1975). Mechanics of Flight, Avian Biology, Farner, D. S. and King, J. R. (Eds.), Vol. 5 (London, Academic).Google Scholar
Pennycuick, C. J. (1986). Mechanical constraints on the evolution of flight, in Padian, K. (Ed.), The Origin of Birds And the Evolution of Flight, Memoirs of the California Academy of Sciences, Vol. 8 (San Francisco, CA, California Academy of Sciences), pp. 83–98.Google Scholar
Pennycuick, C. J. (1989). Bird Flight Performance: A Practical Calculation Manual (Oxford, UK/New York, Oxford University Press).Google Scholar
Pennycuick, C. J. (1990). Predicting wingbeat frequency and wavelength of birds, Journal of Experimental Biology 150, 171–85.Google Scholar
Pennycuick, C. J. (1992). Newton Rules Biology: A Physical Approach to Biological Problems (New York, Oxford University Press).Google Scholar
Pennycuick, C. J. (1996). Wingbeat frequency of birds in steady cruising flight: New data and improved predictions, Journal of Experimental Biology 199, 1613–18.Google ScholarPubMed
Pennycuick, C. J., Klaassen, M., Kvist, A., and Lindstrom, A. (1996). Wingbeat frequency and the body drag anomaly: Wind-tunnel observations on a thrush nightingale (Luscinia Luscinia) and a teal (Anas Crecca), Journal of Experimental Biology 199, 2757–65.Google Scholar
Polonskiy, Y. E. (1948). Vortex streets, their application to the theory of flapping wing, Dissertatsiyay k.t.n, Moscow, VVA KA im. N. E. Zhukovskogo.
Polonskiy, Y. E. (1950). Some questions on the flapping wing, Inzhenerniy Sbornik 8, 49–60.Google Scholar
Praisner, T. J. and Clark, J. P. (2004). Predicting transition in turbomachinery, Part I-A, Review and new model development, ASME Paper GT2004-54108.
Prandtl, L. and Tietjens, O. G. (1957). Fundamentals of Hydro and Aeromechanics (New York, Dover).Google Scholar
Radespiel, R., Graage, K., and Brodersen, O. (1991). Transition predictions using Reynolds-averaged Navier–Stokes and linear stability analysis methods, AIAA Paper 91-1641.
Radespiel, R., Windte, J., and Scholz, U. (2006). Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles, AIAA Paper 2006-501.
Ramamurti, R. and Sandberg, W. (2001). Simulation of flow about flapping airfoils using finite element incompressible flow solver, AIAA Journal 39, 253–260.CrossRefGoogle Scholar
Raney, D. L. and Slominski, E. C. (2004). Mechanization and control concepts for biologically inspired micro air vehicles, Journal of Aircraft 41, 1257–65.CrossRefGoogle Scholar
Rayner, J. M. V. (1979a). A new approach to animal flight mechanics, Journal of Experimental Biology 80, 17–54.Google Scholar
Rayner, J. M. V. (1979b). A vortex theory of animal flight. Part 1. The vortex wake of a hovering animal, Journal of Fluid Mechanics 91, 697–730.CrossRefGoogle Scholar
Rayner, J. M. V. (1979c). A vortex theory of animal flight. Part 2. The forward flight of birds, Journal of Fluid Mechanics 91, 731–63.CrossRefGoogle Scholar
Rayner, J. M. V. (1988). Form and function in avian flight, in Johnston, R. F. (Ed.), Current Ornithology, Vol. 5 (New York, Plenum), pp. 1–66.CrossRefGoogle Scholar
Roberts, S. K. and Yaras, M. I. (2005). Effects of surface roughness geometry on separation bubble transition, ASME Paper GT2005-68664.
Roberts, W. B. (1980). Calculation of laminar separation bubbles and their effect on airfoil performance, AIAA Journal 18, 25–31.CrossRefGoogle Scholar
Rosen, M. (1959). Water flow about a swimming fish, U.S. Navy Ordnance Test Station, NAVWEPS Technical Report No. 2298.
Rozhdestvensky, K. V. and Ryzhov, V. A. (2003). Aerohydrodynamics of flapping-wing propulsors, Progress in Aerospace Sciences 39, 585–633.CrossRefGoogle Scholar
Sane, S. P. and Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production, Journal of Experimental Biology 204, 2607–26.Google ScholarPubMed
Sane, S. P. and Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight, Journal of Experimental Biology 205, 1087–96.Google Scholar
Satyanarayana, B. and Davis, S. (1978). Experimental studies of unsteady trailing-edge conditions, AIAA Journal 16, 125–9.CrossRefGoogle Scholar
Schmidt-Nielsen, K. (1984). Scaling: Why Is Animal Size So Important? (New York, Cambridge University Press).CrossRefGoogle Scholar
Schmitz, F. W. (1942). Aerodynamik des Flugmodells (Berlin, Verlag).Google Scholar
Schrauf, G. (1998). A compressible stability code. User's Guide and Tutorial, Daimler Benz Aerospace Airbus GmbH, Technical Report EF 040/98.
Selig, M. S., Guglielmo, J. J., Broeren, A. P., and Giguere, P. (1995). Summary of Low-Speed Airfoil Data, Vol. 1 (Virginia Beach, VA, SoarTech Publications).Google Scholar
Selig, M. S., Guglielmo, J. J., Broeren, A. P., and Giguere, P. (1996a). Experiments on airfoils at low Reynolds numbers, AIAA Paper 1996-0062.
Selig, M. S., Lyon, C. A., Giguere, P., Ninham, C. N., and Guglielmo, J. J. (1996b). Summary of Low-Speed Airfoil Data, Vol. 2 (Virginia Beach, VA, SoarTech Publications).Google Scholar
Selig, M. S. and Maughmer, M. D. (1992). Multipoint inverse airfoil design method based on conformal mapping, AIAA Journal 30, 1162–1170.CrossRefGoogle Scholar
Shevell, R. S. (1983). Fundamentals of Flight (Englewood Cliffs, NJ, Prentice-Hall).Google Scholar
Shipman, P. (1998). Taking Wing: Archaeopteryx and the Evolution of Bird Flight (New York, Simon and Schuster).Google Scholar
Shyy, W., Berg, M., and Ljungqvist, D. (1999a). Flapping and flexible wings for biological and micro vehicles, Progress in Aerospace Sciences 35, 455–506.CrossRefGoogle Scholar
Shyy, W., Jenkins, D. A., and Smith, R. W. (1997). Study of adaptive shape airfoils at low Reynolds number in oscillatory flow, AIAA Journal 35, 1545–48.CrossRefGoogle Scholar
Shyy, W., Kleverbring, F., Nilsson, M., Sloan, J., Carroll, B., and Fuentes, C. (1999b). Rigid and flexible low Reynolds number airfoils, Journal of Aircraft 36, 523–9.CrossRefGoogle Scholar
Shyy, W. and Liu, H. (2007). Flapping wings and aerodynamic lift: the role of leading-edge vortices, to appear in AIAA Journal.
Shyy, W. and Smith, R. (1997). A study of flexible airfoil aerodynamics with application to micro aerial vehicles, AIAA Paper 97-1933.
Shyy, W., Udaykumar, H. S., Madhukar, M. R., and Richard, W. S. (1996). Computational Fluid Dynamics with Moving Boundaries, Series in Computational and Physical Processes in Mechanics and Thermal Sciences (Washington, D.C., Taylor and Francis).Google Scholar
Singh, B. and Chopra, I. (2006). Dynamics of insect-based flapping wings: Loads validation, AIAA Paper 2006-1663.
Singh, R. K., Chao, J., Popescu, M., Tai, C.-F., Mei, R., and Shyy, W. (2006). Multiphase/multidomain computations using continuum conservative and lattice Boltzmann methods, ASCE Journal of Aerospace Engineering 19, 288–95.CrossRefGoogle Scholar
Singh, R. K. and Shyy, W. (2006). Three-dimensional adaptive grid computation with conservative, marker-based tracking for interfacial fluid dynamics, AIAA Paper 2006-1523.
Smith, A. M. O. and Gamberoni, N. (1956). Transition, pressure gradient, and stability theory, Douglas Aircraft Co., Report No. ES 26388.
Smith, M. J. C. (1996). Simulating moth wing aerodynamics: Towards the development of flapping-wing technology, AIAA Journal 34, 1348–55.CrossRefGoogle Scholar
Sneyd, A. D. (1984). Aerodynamic coefficients and longitudinal stability of sail airfoils, Journal of Fluid Mechanics 149, 127–46.CrossRefGoogle Scholar
Spedding, G. R. (1992). The aerodynamics of flight, in Alexander, R. M. (Ed.), Mechanics of Animal Locomotion, Advances in Comparative and Environmental Physiology, Vol. 11 (Berlin, Springer-Verlag), pp. 52–111.CrossRefGoogle Scholar
Srygley, R. B. and Thomas, A. L. R. (2002). Unconventional lift-generating mechanisms in free-flying butterflies, Nature (London) 420, 660–4.CrossRefGoogle ScholarPubMed
Stanford, B., Viieru, D., Albertani, R., Shyy, W., and Ifju, P. (2006). A numerical and experimental investigation of flexible micro air vehicle wing deformation, AIAA Paper 2006-0440.
Stock, H. W. and Haase, W. (1999). A feasibility study of eN transition prediction in Navier–Stokes methods for airfoils, AIAA Journal 37, 1187–96.CrossRefGoogle Scholar
Storer, J. H. (1948). The Flight of Birds, Cranbrook Institute Bulletin, 28 (Bloomfield Hills, MI, Cranbrook Press).Google Scholar
Streitlien, K. and Triantafyllou, G. S. (1998). On thrust estimates for flapping foils, Journal of Fluids and Structures 12, 47–55.CrossRefGoogle Scholar
Sugimoto, T. and Sato, J. (1988). Aerodynamic characteristics of two-dimensional membrane airfoils, Journal of the Japan Society for Aeronautical and Space Sciences 36, 36–43.CrossRefGoogle Scholar
Sun, M. and Tang, J. (2002a). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion, Journal of Experimental Biology 205, 55–70.Google Scholar
Sun, M. and Tang, J. (2002b). Lift and power requirements of hovering flight in Drosophila virilis, Journal of Experimental Biology 205, 2413–27.Google Scholar
Sunada, S. and Ellington, C. P. (2000). Approximate added-mass method for estimationg induced power for flapping fight, AIAA Journal 38, 1313–21.CrossRefGoogle Scholar
Sunada, S., Kawachi, K., Matsumoto, A., and Sakaguchi, A. (2001). Unsteady forces on a two-dimensional wing in plunging and pitching motions, AIAA Journal 39, 1230–9.CrossRefGoogle Scholar
Sunada, S., Kawachi, K., Watanabe, I., and Azuma, A. (1993). Fundamental analysis of three-dimensional ‘near fling,’Journal of Experimental Biology 183, 217–48.Google Scholar
Sunada, S., Yasuda, T., Yasuda, K., and Kawachi, K. (2002). Comparison of wing characteristics at an ultralow Reynolds number, Journal of Aircraft 39, 331–8.CrossRefGoogle Scholar
Suzen, Y. B. and Huang, P. G. (2000). Modeling of flow transition using an intermittency transport equation, Journal of Fluids Engineering 122, 273–84.CrossRefGoogle Scholar
Swartz, S. M. (1997). Allometric patterning in the limb skeleton of bats: Implications for the mechanics and energies of powered flight, Journal of Morphology 234, 277–94.3.0.CO;2-6>CrossRefGoogle Scholar
Swartz, S. M., Bennett, M. B., and Carrier, D. R. (1992). Wing bone stresses in free flying bats and the evolution of skeletal design for flight, Nature (London), 359, 726–9.CrossRefGoogle ScholarPubMed
Taneda, S. (1976). Visual study of unsteady separated flows around bodies, Progress in Aerospace Sciences 17, 287–348.CrossRefGoogle Scholar
Tang, J., Viieru, D., and Shyy, W. (2007). Effects of Reynolds number, reduced frequency and flapping kinematics on hovering aerodynamics, AIAA Paper 2007-0129.
Tang, J. and Zhu, K.-Q. (2004). Numerical and experimental study of flow structure of low-aspect-ratio wing, Journal of Aircraft 41, 1196–1201.Google Scholar
Tani, I. (1964). Low-speed flows involving bubble separations, in Kuchenmann, D. and Sterne, L. H. G. (Eds.), Progress in Aeronautical Sciences, Vol. 5 (New York, Pergamon), pp. 70–103.Google Scholar
Taylor, G. K., Nudds, R. L., and Thomas, A. L. R. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency, Nature (London) 425, 707–11.CrossRefGoogle Scholar
Templin, R. J. (2000). The spectrum of animal flight: Insects to pterosaurs, Progress in Aerospace Sciences 36, 393–436.CrossRefGoogle Scholar
Tennekes, H. (1996). The Simple Science of Flight (From Insects to Jumbo Jets) (Boston, MIT Press).Google Scholar
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, L. R., and Bomphrey, R. J. (2004). Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack, Journal of Experimental Biology 207, 4299–323.CrossRefGoogle ScholarPubMed
Thwaites, B. (1961). The aerodynamic theory of sails. Part Ⅰ. Two-dimensional sails, Proceedings of the Royal Society of London. Series A 261, 402–22.CrossRefGoogle Scholar
Tian, X., Iriarte, J., Middleton, K., Galvao, R., Israeli, E., Roemer, A., Sullivan, A., Song, A., Swartz, S., and Breuer, K. (2006). Direct measurements of the kinematics and dynamics of bat flight, AIAA Paper 2006-2865.
Tobalske, B. W. and Dial, K. P. (1996). Flight kinematics of black-billed magpies and pigeons over a wide range of speeds, Journal of Experimental Biology 199, 263–80.Google Scholar
Tobalske, B. W., Hedrick, T. L., Dial, K. P., and Biewener, A. A. (2003). Comparative power curves in bird flight, Nature (London) 421, 363–6.CrossRefGoogle ScholarPubMed
Torres, G. E. and Mueller, T. J. (2001). Aerodynamic characteristics of low aspect ratio wings at low Reynolds numbers, in Mueller, T. J. (Ed.), Fixed and Flapping Wing Aerodynamics for Micro Air Vehicles, Progress in Astronautics and Aeronautics, Vol. 195 (Reston, VA, AIAA), pp. 341–91.CrossRefGoogle Scholar
Triantafyllou, M. S., Triantafyllou, G. S., and Yue, D. K. P. (2000). Hydrodynamics of fishlike swimming, Annual Review of Fluid Mechanics 32, 33–53.CrossRefGoogle Scholar
Usherwood, J. R. and Ellington, C. P. (2002). The aerodynamics of revolving wings Ⅰ. Model hawkmoth wings, Journal of Experimental Biology 205, 1547–64.Google ScholarPubMed
Berg, C. and Ellington, C. P. (1997). The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth, Philosophical Transactions of the Royal Society of London. Series B 352, 329–40.CrossRefGoogle Scholar
Vanden-Broeck, J. M. (1982). Nonlinear two-dimensional sail theory, Physics of Fluids 25, 420–3.CrossRefGoogle Scholar
Vanden-Broeck, J. M., and Keller, J. B. (1981). Shape of a sail in a flow, Physics of Fluids 24, 552–3.CrossRefGoogle Scholar
Van Ingen, J. L. (1956). A suggested semi-empirical method for the calculation of the boundary layer transition region, Delft University of Technology, Dept. of Aerospace Engineering, Report No. VTH-74.
Van Ingen, J. L. (1995). Some introductory remarks on transition prediction methods based on linear stability theory, in Henkes, R. A. W. M. and Ingen, J. L. (Eds.), Transitional Boundary Layers in Aeronautics (Amsterdam, The Netherlands, Elsevier), pp. 209–24.Google Scholar
Verron, E., Marckmann, G., and Pesaux, B. (2001). Dynamic inflation of non-linear elastic and viscoelastic rubber-like membranes, International Journal for Numerical Methods in Engineering 50, 1233–51.3.0.CO;2-W>CrossRefGoogle Scholar
Vest, M. S. and Katz, J. (1996). Unsteady aerodynamics model of flapping wings, AIAA Journal 34, 1435–40.CrossRefGoogle Scholar
Videler, J. J., Stamhuis, E. J., and Povel, G. D. E. (2004). Leading-edge vortex lifts swifts, Science 306, 1960–2.CrossRefGoogle ScholarPubMed
Viieru, D., Albertani, R., Shyy, W., and Ifju, G. P. (2005). Effect of tip vortex on wing aerodynamics of micro air vehicles, Journal of Aircraft 42, 1530–6.CrossRefGoogle Scholar
Viieru, D., Lian, Y., Shyy, W., and Ifju, G. P. (2003). Investigation of tip vortex on aerodynamic performance of a micro air vehicle, AIAA Paper 2003-3597.
Viieru, D., Tang, J., Lian, Y., Liu, H., and Shyy, W. (2006). Flapping and flexible wing aerodynamics of low Reynolds number flight vehicles, AIAA Paper 2006-0503.
Voelz, K. (1950). Profil und Luftriebeines Segels, Zeitschrift für Angewandte Mathematik und Mechanik 30, 301–17.Google Scholar
Vogel, S. (1967). Flight in Drosophila. Ⅲ. Aerodynamic characteristics of fly wings and wing models, Journal of Experimental Biology 46, 431–43.Google Scholar
Vogel, S. (1996). Lift in Moving Fluids: The Physical Biology of Flow (Princeton, NJ, Princeton University Press).Google Scholar
Volino, R. J. and Bohl, D. G. (2004). Separated flow transition mechanism and prediction with high and low freestream turbulence under low pressure turbine conditions, ASME Paper GT2004-53360.
Von Karman, T. and Burgers, J. M. (1935). General aerodynamic theory – Perfect fluids, in Durand, W. (Ed.), Aerodynamic Theory, Vol. Ⅱ (Berlin, Springer).Google Scholar
Wakeling, J. M. and Ellington, C. P. (1997a). Dragonfly flight. Ⅱ. Velocities, accelerations and kinematics of flapping flight, Journal of Experimental Biology 200, 557–82.Google Scholar
Wakeling, J. M. and Ellington, C. P. (1997b). Dragonfly flight. Ⅲ. Lift and power requirements, Journal of Experimental Biology 200, 583–600.Google Scholar
Walker, J. A. and Westneat, M. W. (2000). Mechanical performance of aquatic rowing and flying, Proceedings of the Royal Society of London. Series B 267, 1875–81.CrossRefGoogle ScholarPubMed
Wang, Z. J. (2000). Vortex shedding and frequency selection in flapping flight, Journal of Fluid Mechanics 410, 323–41.CrossRefGoogle Scholar
Wang, Z. J., Birch, J. M., and Dickinson, M. H. (2004). Unsteady forces and flows in low Reynolds number hovering flight: Two-dimensional computations vs robotic wing experiments, Journal of Experimental Biology 207, 449–60.CrossRefGoogle ScholarPubMed
Ward-Smith, A. J. (1984). Biophysical Aerodynamics and the Natural Environment (New York, Wiley).Google Scholar
Warrick, D. R., Tobalske, B. W., and Powers, D. R. (2005). Aerodynamics of the hovering hummingbird, Nature (London) 435, 1094–7.CrossRefGoogle ScholarPubMed
Waszak, R. M., Jenkins, N. L., and Ifju, P. (2001). Stability and control properties of an aeroelastic fixed wing micro aerial vehicle, AIAA Paper 2001-4005.
Wazzan, A. R., Gazley, J. C., and Smith, A. M. O. (1979). Tollmien–Schlichting waves and transition: Heated and adiabatic wedge flows with application to bodies of revolution, Progress in Aerospace Sciences 18, 351–92.CrossRefGoogle Scholar
Wazzan, A. R., Okamura, T. T., and Smith, A. M. O. (1968). Spatial and temporal stability charts for the Falkner–Skan boundary layer profiles, Douglas Aircraft Co, DAC-67086.
Weis-Fogh, T. (1972). Energetics of hovering flight in hummingbirds and in drosophila, Journal of Experimental Biology 56, 79–104.Google Scholar
Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, Journal of Experimental Biology 59, 169–230.Google Scholar
Weis-Fogh, T. and Jensen, M. (1956). Biology and physics of locust flight. Ⅰ. Basic principles in insect flight. A critical review, Philosophical Transactions of the Royal Society of London. Series B 239, 415–58.CrossRefGoogle Scholar
Weiss, H. (1939). Wind tunnel: Effect of wing spar size, Journal of International Aeromodeling, pp. 5–7.
Westesson, R. A. and Clareus, U. (1974). Turbulent lift. Comments on some preliminary wind tunnel tests – Characteristics of vortex on wing surface from tangential blowing on upper surface, NASA-TT-F-15743, TP-74-51.
White, F. M. (1991). Viscous Fluid Flow (New York, McGraw-Hill).Google Scholar
Wilcox, C. D. (2000). Turbulence Modeling for computational fluid dynamics (La Canada, CA, DCW Industries).Google Scholar
Wilcox, D. C. (1994). Simulation of transition with a two-equation turbulence model, AIAA Journal 32, 247–55.CrossRefGoogle Scholar
Wilkin, P. J. and Williams, H. M. (1993). Comparison of the aerodynamic forces on a flying sphingid moth with those predicted by quasi-steady theory, Physiological Zoology 66, 1015–44.CrossRefGoogle Scholar
Willmott, A. P. and Ellington, C. P. (1997a). Measuring the angle of attack of beating insect wings: Robust three-dimensional reconstruction from two-dimensional images, Journal of Experimental Biology 200, 2693–2704.Google Scholar
Willmott, A. P. and Ellington, C. P. (1997b). The mechanics of flight in the hawkmoth Manduca Sexta. Ⅰ. Kinematics of hovering and forward flight, Journal of Experimental Biology 200, 2705–22.Google Scholar
Willmott, A. P. and Ellington, C. P. (1997c). The mechanics of flight in the hawkmoth Manduca Sexta. Ⅱ. Aerodynamic consequences of kinematic and morphological variation, Journal of Experimental Biology 200, 2723–45.Google Scholar
Wolfgang, M. J., Tolkoff, S. W., Techet, A. H., Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Hover, F. S., Grosenbaugh, M. A., and McGillis, W. R. (1998). Drag reduction and turbulence control in swimming fish-like bodies, Proceedings of the International Symposium on Seawater Drag Reduction (Newport, RI, Naval Undersea Warfare Center).Google Scholar
Wootton, R. J. and Newman, D. J. S. (1979). Whitefly have the highest contraction frequencies yet recorded in non-fibrillar flight muscles, Nature (London) 280, 402–3.CrossRefGoogle Scholar
Wu, J. Z., Vakili, A. D., and Wu, J. M. (1991). Review of the physics of enhancing vortex lift by unsteady excitation, Progress in Aerospace Sciences 28, 73–131.CrossRefGoogle Scholar
Wu, T. Y.-T. (1971). Hydromechanics of swimming of fishes and cetaceans, in Yih, C.-S. (Ed.), Advances in Applied Mechanics, Vol. 11 (New York, Academic), pp. 1–63.Google Scholar
Wu, T. Y.-T., Brokaw, C. J., and Brennen, C. (Eds.) (1975). Swimming and Flying in Nature, Vols. 1 and 2 (New York, Plenum).CrossRefGoogle Scholar
Ye, T., Shyy, W., and Chung, J. C. (2001). A fixed-grid, sharp-interface, method for bubble dynamics and phase change, Journal of Computational Physics 174, 781–815.CrossRefGoogle Scholar
Young, A. D. and Horton, H. P. (1966). Some results of investigation of separation bubbles, AGARD Conference Proceedings, Vol. 4, Part 2 (London, UK, Technical Editing and Reproduction, Ltd.), pp. 785–811.
Yuan, W., Khalid, M., Windte, J., Scholz, U., and Radespiel, R. (2005). An investigation of low-Reynolds-number flows past airfoils, AIAA Paper 2005-4607.
Zanker, J. M. and Gotz, K. G. (1990). The wing beat of Drosophila Melanogaster. Ⅱ. Dynamics, Philosophical Transactions of the Royal Society of London. Series B 327, 19–44.CrossRefGoogle Scholar
Zbikowski, R. (2002). On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles, Philosophical Transactions of the Royal Society of London. Series A 360, 273–90.CrossRefGoogle ScholarPubMed
Zheng, X., Liu, C., Liu, F., and Yang, C. (1998). Turbulence transition simulation using the k-ω model, International Journal for Numerical Methods in Engineering 42, 907–26.3.0.CO;2-T>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Wei Shyy, University of Michigan, Ann Arbor, Yongsheng Lian, University of Michigan, Ann Arbor, Jian Tang, University of Michigan, Ann Arbor, Dragos Viieru, University of Michigan, Ann Arbor, Hao Liu, Chiba University, Japan
  • Book: Aerodynamics of Low Reynolds Number Flyers
  • Online publication: 05 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551154.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Wei Shyy, University of Michigan, Ann Arbor, Yongsheng Lian, University of Michigan, Ann Arbor, Jian Tang, University of Michigan, Ann Arbor, Dragos Viieru, University of Michigan, Ann Arbor, Hao Liu, Chiba University, Japan
  • Book: Aerodynamics of Low Reynolds Number Flyers
  • Online publication: 05 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551154.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Wei Shyy, University of Michigan, Ann Arbor, Yongsheng Lian, University of Michigan, Ann Arbor, Jian Tang, University of Michigan, Ann Arbor, Dragos Viieru, University of Michigan, Ann Arbor, Hao Liu, Chiba University, Japan
  • Book: Aerodynamics of Low Reynolds Number Flyers
  • Online publication: 05 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551154.007
Available formats
×