Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T12:11:41.822Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  20 November 2017

Wolfgang Metzler
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Stephan Rosebrock
Affiliation:
Pädagogische Hochschule Karlsruhe, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[I] Hog-Angeloni, C., Metzler, W., and Sieradski, A. (eds). 1993. Two dimensional Homotopy and Combinatorial Group Theory. London Math. Soc. Lecture Note Series 197, Cambridge University Press.CrossRefGoogle Scholar
[AKN09] A. K., Naimzada, S., Stefani, A., Torriero. 2009. Networks, Topology and Dynamics. Theory and applications to economics and social systems edn. Springer-Verlag. [Chapter 5].Google Scholar
[Ans91] Anshel, I. L. 1991. A Freiheitssatz for a class of two-relator groups. Journal of Pure and Applied Algebra, 72, 207–250. [Chapter 7].CrossRefGoogle Scholar
[Art81] Artamonov, V. A. 1981. Projective, nonfree modules over group rings of solvable groups. Math. USSR Sbornik., 116, 232–244. [Chapter 1].Google Scholar
[BaMi16] Barmak, J., and Minian, E. 2016. A new test for asphericity and diagrammatic reducibility of group presentations. preprint, arXiv:1601.00604. [Chapter 4].
[BaGr69] Barnett, D., and Gruenbaum, B. 1969. On Steinitz's theorem concerning convex 3-polytopes and on some properties of planar graphs. Many Facets of Graph Theory, Proc. Conf. Western Michigan Uni., Kalamazoo/Mi. 1968, 27–40.[Chapter 5].Google Scholar
[Bau74] Baumslag, G. 1974. Finitely presented metabelian groups. Proc. Second international Conference in Group Theory, Lecture Notes in Math., 372, 65–74. [Chapters 1, 6].Google Scholar
[BaSo62] Baumslag, G., and Solitar, S. 1962. Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc., 68, 199–201. [Chapter 1].CrossRefGoogle Scholar
[BeWe99] Becker, T., and Weispfenning, V. 1999. Groebner bases. A computational approach to commutative algebra. Graduate Texts in Math., vol. 141. Springer-Verlag, New York. [Chapter 5].Google Scholar
[Ber] Berge, J. SnapPea. [Chapter 5].
[Ber78] Bergman, G. M. 1978. The diamond lemma for ring theory. Adv. in Math., 29 (2), 178–218. [Chapter 5].CrossRefGoogle Scholar
[BeHi08] Berrick, A., and Hillman, J. 2008. The Whitehead Conjecture and L(2)-Betti numbers. In: Chatterji, I. (ed), Guido's Book of Conjectures. Monographie No. 40 De L' Enseignement Mathematique. [Chapter 4].Google Scholar
[BeDu79] Berridge, P. H., and Dunwoody, M. J. 1979. Non-free projective modules for torsion-free groups. J. London Math. Soc., 19(2), 433–436. [Chapter 1].Google Scholar
[BeBr97] Bestvina, M., and Brady, N. 1997. Morse theory and finiteness properties of groups. Invent. Math., 129, 445–470. [Chapters 1, 4, 6, 7].CrossRefGoogle Scholar
[BeLaWa97] Beyl, F. R., Latiolais, M. P., and Waller, N. 1997. Classification of 2-complexes whose finite fundamental group is that of a 3-manifold. Proc. Edinburgh Math. Soc., 40, 69–84. [Chapter 1].CrossRefGoogle Scholar
[BeWa05] Beyl, F. R., and Waller, N. 2005. A stably-free nonfree module and its relevance for homotopy classification, case Q 28. Algebraic & Geometric Topology, 5, 899–910. [Chapter 1].CrossRefGoogle Scholar
[BeWa08] Beyl, F. R., and Waller, N. 2008. Examples of exotic free 2-complexes and stably free nonfree modules for quaternion groups. Algebraic & Geometric Topology, 8, 1–17. [Chapter 1].CrossRefGoogle Scholar
[BeWa13] Beyl, F. R., and Waller, N. 2013. The geometric realization problem for algebraic 2-complexes. Preliminary version, unpublished, [Chapter 1].
[Big93] Biggs, N. 1993. Algebraic Graph Theory. Cambridge mathematical library (2nd ed.) edn. Cambridge University Press. [Chapter 5].Google Scholar
[Bir13] Biroth, L. 2013. Heegaard-Diagramme der 3-Sphäre und die Andrews-Curtis-Vermutung. Masterthesis, Johannes Gutenberg University Mainz 2013 (unpublished). [Chapter 2].
[BiSt80] Bieri, R., and Strebel, R. 1980. Valuations and finitely presented metabelian groups. Proc. London Math. Soc. (3), 41, 439–464. [Chapters 1, 6].Google Scholar
[Bla10] Blaavand, Jakob. 2010. 3-manifolds derived from link invariants. lecture notes, University of California, Berkeley. [Chapter 3].
[BlTu06a] Blanchet, C., and Turaev, V. 2006a. Axiomatic approach to Topological Quantum Field theory. Elsevier Ltd. [Chapter 3].CrossRefGoogle Scholar
[BlTu06b] Blanchet, C., and Turaev, V. 2006b. Quantum 3-Manifold Invariants. Elsevier Ltd. [Chapter 3].CrossRefGoogle Scholar
[Bob00] Bobtcheva, Ivelina. 2000. On Quinn's Invariants of 2-dimensional CW-complexes. arXiv math. GT. [Chapter 3].
[BoQu05] Bobtcheva, Ivelina, and Quinn, Frank. 2005. The reduction of quantum invariants of 4-thickenings. Fund. Math., 188, 21–43. [Chapter 3].CrossRefGoogle Scholar
[BoLuMy05] Borovik, A.V., Lubotzky, A., and Myasnikov, A.G. 2005. The finitary Andrews-Curtis conjecture. In: Infinite groups: geometric, combinatorial and dynamical aspects. Progr. Math., vol. 248, pp.15-30, Birkhauser, Basel. [Chapters 2, 3].Google Scholar
[Bri15] Bridson, M. 2015. The complexity of balanced presentations and the Andrews-Curtis conjecture. arXiv:1504.04187. [Chapter 2].
[BrTw07] Bridson, M., and Tweedale, M. 2007. Deficieny and abelianized deficiency of some virtually free groups. Math. Proc. Cambridge Phil. Soc., 143, 257–264. [Chapters 6, 7].CrossRefGoogle Scholar
[BrTw08] Bridson, M. R., and Tweedale, M. 2008. Putative relation gaps. Guido's Book of Conjectures. Monographie No. 40 De L'Enseignement Math'ematique. [Chapter 1].
[BrTw14] Bridson, M. R., and Tweedale, M. 2014. Constructing presentations of subgroups of right-angled Artin groups. Geom. Dedicata, 169, 1– 14. [Chapters 1, 6].CrossRefGoogle Scholar
[Bro87] Brown, K. S. 1987. Finiteness properties of groups. J. Pure Appl. Algebra, 44, 45–75. [Chapters 1, 6].CrossRefGoogle Scholar
[Bro76] Browning, W.J. 1976. Normal generators of finite groups. manuscript. http://www.cambridge.org/9781316600900, [Chapter 2].
[Bur01] Burdon, M. 2001. Embedding 2-polyhedra with regular neighborhoods which have sphere boundaries. PhD thesis, Portland State University. [Chapter 5].Google Scholar
[CaEi56] Cartan, H., and Eilenberg, S. 1956. Homological algebra. Princeton Mathematical Series, vol. 19. Princeton, NJ: Princeton University Press. [Chapter 1].Google Scholar
[ChdW14] Christmann, M., and de Wolff, T. 2014. A sharp upper bound for the complexity of labeled oriented trees. preprint, arXiv:1412.7257. [Chapter 4].
[Coh64] Cohn, P. M. 1964. Free ideal rings. J. Algebra, 1, 47–69. [Chapter 1].CrossRefGoogle Scholar
[CoGrKo74] Cossey, J., Gruenberg, K. W., and Kovacs, L. G. 1974. Presentation rank of a direct product of finite groups. J. Algebra, 28, 597–603. [Chapters 1, 6].CrossRefGoogle Scholar
[Dun72] Dunwoody, M. J. 1972. Relation modules. Bull. London Math. Soc., 4, 151–155. [Chapters 1, 6].CrossRefGoogle Scholar
[Eck00] Eckmann, B. 2000. Introduction to L2-methods in Topology. Israel J. Math., 117, 183–219. [Chapter 4].Google Scholar
[EiGa57] Eilenberg, S. and Ganea, T. 1957. On the Lusternik-Schnirelmann category of abstract groups. Ann. of Math., 65, 517–518. [Chapter 1].
[Eps61] Epstein, D. B. A. 1961. Finite presentations of groups and 3- manifolds. Quart. J. Math. Oxford Series, (2), 12. [Chapters 6, 7].Google Scholar
[Euf92] Eufinger, M. 1992. Normalformen für Q-Transformationen bei Präsentationen freier Produkte. Diplomarbeit, Frankfurt/Main (unpublished). [Chapter 7].
[Fox52] Fox, R. H. 1952. On the Complementary Domains of a Certain Pair of Inequivalent Knots. Indag. Math, 14, 37–40. [Chapter 5].Google Scholar
[FrYe89] Freyd, Peter, and Yetter, David. 1989. Brided compact closed Categories with applications to Low dimensional Topology. Advances in Mathematics, 77, 156–182. [Chapter 3].CrossRefGoogle Scholar
[Geo08] Geoghegan, R. 2008. Topological Methods in Group Theory. Graduate Texts in Math., vol. 243. Springer-Verlag. [Chapters 1, 6].Google Scholar
[Gil76] Gildenhuys, D. 1976. Classification of solvable groups of cohomological dimension 2. Math. Z., 166, 21–25. [Chapters 1, 6].Google Scholar
[GlHo05] Glock, J., and Hog-Angeloni, C. I. 2005. Embeddings of 2-complexes into 3-manifolds. Journal of Knot Theory and Its Ramifications, 14 (1), 9–20. [Chapter 5].CrossRefGoogle Scholar
[Gol99] Goldstein, R. Z. 1999. The length and thickness of words in a free group. Proc. of the Am. Math. Soc., 127 (10), 2857–2863. [Chapter 5].CrossRefGoogle Scholar
[Gru76] Gruenberg, K. W. 1976. Relation Modules of Finite Groups. CBMS Regional Conference Series in Mathematics No. 25, AMS. [Chapters 1, 6].CrossRefGoogle Scholar
[Gru80] Gruenberg, K. W. 1980. The partial Euler characteristic of the direct powers of a finite group. Arch. Math., 35, 267–274. [Chapters 1, 6].CrossRefGoogle Scholar
[GrLi08] Gruenberg†, K., and Linnell, P. 2008. Generation gaps and abelianized defects of free products. J. Group Theory, 11 (5), 587–608. [Chapters 1, 6, 7].Google Scholar
[Guo16] Guo, Guangyuan. 2016. Heegaard diagrams of S 3 and the Andrews- Curtis Conjecture. arXiv:1601.06871. [Chapter 2].
[Har93] Harlander, J. 1993. Solvable groups with cyclic relation module. J. Pure Appl. Algebra, 190, 189–198. [Chapter 1].Google Scholar
[Har96] Harlander, J. 1996. Closing the relation gap by direct product stabilization. J. Algebra, 182, 511–521. [Chapters 1, 6].CrossRefGoogle Scholar
[Har97] Harlander, J. 1997. Embeddings into efficient groups. Proc. Edinburgh Math. Soc., 40, 314–324. [Chapters 1, 6].CrossRefGoogle Scholar
[Har00] Harlander, J. 2000. Some aspects of efficiency. Pages 165–180 of: Baik, Johnson, and Kim (eds), Groups–Korea 1998, Proceedings of the 4th international conference, Pusan, Korea. Walter deGruyter. [Chapters 1, 6].Google Scholar
[HaHoMeRo00] Harlander, J., Hog-Angeloni, C., Metzler, W., and Rosebrock, S. 2000. Problems in Low-dimensional Topology. Encyclopedia of Mathematics Supplement II (ed. M. Hazewinkel). Kluwer Academic Publishers. [Chapter 1].Google Scholar
[HaJe06] Harlander, J., and Jensen, J. A. 2006. Exotic relation modules and homotopy types for certain 1-relator groups. Algebr. Geom. Topol., ü, 2163–2173. [Chapter 1].Google Scholar
[HaMi10] Harlander, J., and Misseldine, A. 2010. On the K-theory and homotopy theory of the Klein bottle group. Homology, Homotopy, and Applications, 12(2), 1–10. [Chapter 1].Google Scholar
[HaRo03] Harlander, J., and Rosebrock, S. 2003. Generalized knot complements and some aspherical ribbon disc complements. Knot theory and its Ramifications, 12 (7), 947–962. [Chapter 4].Google Scholar
[HaRo10] Harlander, J., and Rosebrock, S. 2010. On distinguishing virtual knot groups from knot groups. Journal of Knot Theory and its Ramifications, 19 (5), 695–704. [Chapter 4].CrossRefGoogle Scholar
[HaRo12] Harlander, J., and Rosebrock, S. 2012. On Primeness of Labeled Oriented Trees. Knot theory and its Ramifications, 21 (8). [Chapter 4].Google Scholar
[HaRo15] Harlander, J., and Rosebrock, S. 2015. Aspherical Word Labeled Oriented Graphs and cyclically presented groups. Knot theory and its Ramifications, 24 (5). [Chapter 4].Google Scholar
[HaRo17] Harlander, J., and Rosebrock, S. 2017. Injective labeled oriented trees are aspherical. arXiv:1212.1943, to appear in: Mathematische Zeitschrift. [Chapter 4].
[Hig51] Higman, G. 1951. A finitely generated infinite simple group. J. London Math. Soc., 26, 61–64. [Chapter 1].Google Scholar
[Hil97] Hillman, J. A. 1997. L2-homology and asphericity. Israel J. Math., 99, 271–283. [Chapter 4].CrossRefGoogle Scholar
[Han05] Hansel, J. 2005. Andrews-Curtis-Graphen endlicher Gruppen. Diplomarbeit, Frankfurt (unpublished). [Chapter 2].
[Ho-AnMa08] Hog-Angeloni, C., and Matveev, S. 2008. Roots in 3-manifold topology. Pages 295–319 of: The Zieschang Gedenkschrift, Geom. Topol. Monogr., vol. 14. Geometry and Topology Publications, Coventry. [Chapter 5].Google Scholar
[Ho-AnMe04] Hog-Angeloni, C., and Metzler, W. 2004. Ein Überblick über Resultate und Aktivitäten zum Andrews-Curtis-Problem. preprint, Frankfurt. [Chapter 2].
[Ho-AnMe06] Hog-Angeloni, C., and Metzler, W. 2006. Strategies towards a disproof of the general Andrews-Curtis Conjecture. Siberian Electronic Mathematical Reports, 3. [Chapter 2].Google Scholar
[How99] Howie, J. 1999. Bestvina-Brady Groups and the Plus Construction. Math. Proc. Cambridge Phil. Soc., 127, 487–493. [Chapters 1, 4, 6].CrossRefGoogle Scholar
[Hu01] Hu, Sen. 2001. Lecture notes on Chern-Simons-Witten Theory. World Scientific (Wspc). [Chapter 3].
[HuRo95] Huck, G., and Rosebrock, S. 1995. Weight tests and hyperbolic groups. Pages 174–183 of: A., Duncan, N., Gilbert, J., Howie (ed), Combinatorial and Geometric Group Theory. London Math. Soc. Lecture Note Ser., vol. 204. London: Cambridge University Press. [Chapter 4].Google Scholar
[HuRo00] Huck, G., and Rosebrock, S. 2000. Cancellation Diagrams with nonpositive Curvature. Pages 128–149 of: et al., Michael, Atkinson (ed), Computational and Geometric Aspects of Modern Algebra. London Math. Soc. Lecture Note Ser., vol. 275. London: Cambridge University Press. [Chapter 4].Google Scholar
[HuRo01] Huck, G., and Rosebrock, S. 2001. Aspherical Labelled Oriented Trees and Knots. Proceedings of the Edinburgh Math. Soc. 44, 285– 294. [Chapter 4].CrossRefGoogle Scholar
[HuRo07] Huck, G., and Rosebrock, S. 2007. Spherical Diagrams and Labelled Oriented Trees. Proceedings of the Edinburgh Math. Soc., 137A, 519–530. [Chapter 4].
[Joh97] Johnson, D.L. 1997. Presentations of Groups, 2nd edition. LMS Student Texts, vol. 15. Cambridge University Press. [Chapters 1, 6].
[Joh03] Johnson, F.E.A. 2003. Stable Modules and the D(2)-Problem. London Math. Soc. Lecture Note Ser., vol. 301. Cambridge University Press. [Chapter 1].Google Scholar
[Joh12] Johnson, F.E.A. 2012. Syzygies and Homotopy Theory. Algebra and Applications, vol. 17. London: Springer-Verlag. [Chapter 1].Google Scholar
[Kad10] Kaden, H. 2010. Considerations about the Andrews-Curtis invariants based on sliced 2-complexes. arXiv math. GT. [Chapter 3].
[Kad17] Kaden, H. 2017. Considerations for constructing Andrews-Curtis invariants of s-move 3-cells. arXiv math. GT. [Chapter 3].
[KaMaSo60] Karrass, A., Magnus, W., and Solitar, D. 1960. Elements of finite order in groups with a single defining relation. Comm. Pure Appl. Math., 13, 57–66. [Chapter 7].CrossRefGoogle Scholar
[KaRo96] Kaselowsky, A., and Rosebrock, S. 1996. On the Impossibility of a Generalization of the HOMFLY – Polynomial to labelled Oriented Graphs. Annales de la Facult'e des Sciences de Toulouse V, 3, 407–419. [Chapter 4].Google Scholar
[Kau87] Kauffman, Louis H. 1987. On knots. Annals of Mathematics Studies, vol. 115. Princeton University Press, Princeton, NJ. [Chapter 3].Google Scholar
[Kau99] Kauffman, Louis H. 1999. Virtual knot theory. European Journal of Combinatorics, 20 (7), 663–690. [Chapters 4, 5].CrossRefGoogle Scholar
[Kin07a] King, Simon A. 2007a. Ideal Turaev-Viro invariants. Topology Appl., 154(6), 1141–1156. [Chapter 3].CrossRefGoogle Scholar
[Kin07b] King, Simon A. 2007b. Verschiedene Anwendungen kombinatorischer und algebraischer Strukturen in der Topologie. [Chapter 3].
[Kly93] Klyachko, A. 1993. A funny property of sphere and equations over groups. Communications in Algebra, 21 (7), 2555–2575. [Chapter 4].CrossRefGoogle Scholar
[Kne29] Kneser, H. 1929. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. J. Dtsch. Math. Verein, 38, 248–260. [Chapter 5].Google Scholar
[KoMa11] Korablev, F. G., and Matveev, S. V. 2011. Reduction of knots in thickened surfaces and virtual knots. Dokl. Math., 83 (2), 262–264. [Chapter 5].CrossRefGoogle Scholar
[KrRo00] Kreuzer, Martin, and Robbiano, Lorenzo. 2000. Computational commutative algebra. Springer-Verlag, Berlin. [Chapter 3].CrossRefGoogle Scholar
[Kor15] Korner, J. 2015. Das Relatorenlückenproblem für freie Produkte. Masterarbeit, Frankfurt/Main, unpublished. [Chapter 7].Google Scholar
[Kuh00a] Kuhn, A. 2000a. extract from: Stabile Teilkomplexe und Andrews-Curtis-Operationen. Diplomarbeit, Frankfurt/Main. http://www.cambridge.org/9781316600900, [Chapter 2].
[Kuh00b] Kuhn, A. 2000b. Stabile Teilkomplexe und Andrews-Curtis- Operationen. Diplomarbeit, Frankfurt/Main (unpublished). [Chapter 2].
[Luc01] Luck, W. 2001. L2-invariants: Theory and Applications to Geometry and K-Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 44, Springer. [Chapter 4].Google Scholar
[Li00] Li, Zhongmou. 2000. Heegaard-Diagrams and Applications. PhDthesis, university of British Columbia. [Chapter 2].
[Lis17] Lishak, B. 2017. Balanced finite presentations of the trivial group. Journal of Topology and Analysis, 9 (2), 363–378. [Chapter 2].Google Scholar
[LiNa17] Lishak, B., and Nabutovsky, A. 2017. Balanced presentations of the trivial group and four-dimensional geometry. Journal of topology and analysis, 9 (1), 27–49. [Chapter 2].Google Scholar
[Lou15] Louder, L. 2015. Nielsen equivalence in closed surface groups. arXiv:1009.0454v2. [Chapter 1].
[Luf96] Luft, E. 1996. On 2-dimensional aspherical complexes and a problem of J. H. C. Whitehead. Math. Proc. Camb. Phil. Soc., 119, 493–495. [Chapter 4].CrossRefGoogle Scholar
[Lus95] Lustig, M. 1995. Non-efficient torsion free groups exist. Comm. Algebra, 23, 215–218. [Chapters 1, 6].CrossRefGoogle Scholar
[MaKaSo76] Magnus, W., Karras, A., and Solitar, D. 1976. Combinatorial Group Theory. Dover Publications. [Chapter 1].
[Man80] Mandelbaum, Richard. 1980. Four-dimensional topology: an introduction. bams. [Chapter 3].
[Man07a] Mannan, W. H. 2007a. The D(2) property for D8. Algebraic & Geometric Topology, 7, 517–528. [Chapter 1].Google Scholar
[Man07b] Mannan, W. H. 2007b. Homotopy types of truncated projective resolutions. Homology, Homotopy and Applications, 9(2), 445–449. [Chapter 1].CrossRefGoogle Scholar
[Man09] Mannan, W. H. 2009. Realizing algebraic 2-complexes by cell complexes. Math. Proc. Cambridge Math. Soc., Issue 03, 146, Issue 03, 671–673. [Chapter 1].Google Scholar
[Man13] Mannan, W. H. 2013. A commutative version of the group ring. J. Algebra, 379, 113–143. [Chapter 1].CrossRefGoogle Scholar
[MaO'S13] Mannan, W. H., and O'Shea, S. 2013. Minimal algebraic complexes over D4n. Algebraic & Geometric Topology, 13, 3287–3304. [Chapter 1].CrossRefGoogle Scholar
[Man16] Mannan, Wajid H. 2016. Explicit generators of the relation module in the example of Gruenberg-Linell. Math. Proc. Cambridge Philos. Soc., 161 (2), 199–202. [Chapter 7].CrossRefGoogle Scholar
[Mat03] Matveev, S. 2003. Algorithmic Topology and Classification of 3- Manifolds. Algorithms and Computations in Mathematics, vol. 9. Springer Verlag New York, Heidelberg, Berlin. [Chapters 2, 3].Google Scholar
[Mat12a] Matveev, S. 2012a. Prime decomposition of knots in T × I. Topology Appl., 159 (7), 1820–1824. [Chapter 5].CrossRefGoogle Scholar
[Mat12b] Matveev, S. 2012b. Roots and decompositions of three-dimensional manifolds. Russiam Math. Surveis, 67 (3), 1459–507. [Chapter 5].Google Scholar
[MaTu11] Matveev, S., and Turaev, V. 2011. A semigroup of theta-curves in 3-manifolds. Mosc. Math. J., 11 (4), 805–814. [Chapter 5].Google Scholar
[Mat10] Matveev, S. V. 2010. On prime decompositions of knotted graphs and orbifolds. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 57, 89–96. [Chapter 5].Google Scholar
[MaSo96] Matveev, Sergei V., and Sokolov, Maxim V. 1996. On a simple invariant of Turaev-Viro type. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 234 (Differ. Geom. Gruppy Li i Mekh. 15-1), 137–142, 263. [Chapter 3].Google Scholar
[Met00] Metzler, W. 2000. Verallgemeinerte Biasinvarianten und ihre Berechnung. Pages 192–207 of: Atkinson, M. et al. (ed), Computational and Geometric Aspects of Modern Algebra. London Math. Soc. Lecture Note Series, vol. 275. [Chapter 2].Google Scholar
[Mil62] Milnor, J. 1962. A unique factorisation theorem for 3-manifolds. Amer. J. Math., 84, 1–7. [Chapter 5].CrossRefGoogle Scholar
[Mul00] Muller, Klaus. 2000. Probleme des Einfachen Homotopietyps in niederen Dimensionen und ihre Behandlung mit Hilfsmitteln der Topologischen Quantenfeldtheorie. Der Andere Verlag Dissertation Frankfurt/Main. [Chapter 3].
[Mut11] Muth, C. 2011. Relatorenlücke und vermutete Beispiele. Masterarbeit, Mainz unpublished. [Chapter 7].
[Nab12] Naber, Greg. 2012. Yang-Mills to Seiberg-Witten via TQFT The Witten Conjecture. preprint, Black Hills State University. [Chapter 3].Google Scholar
[New42] Newman, M. H. A. 1942. On theories with a combinatorial definition of ‘equivalence’. Ann. of Math., (2) 43:2, 223–243. [Chapter 5].CrossRefGoogle Scholar
[O'S12] O'Shea, S. 2012. The D(2)-problem for dihedral groups of order 4n. Algebraic & Geometric Topology, 12, 2287–2297. [Chapter 1].Google Scholar
[Osi15] Osin, D. 2015. On acylindrical hyperbolicity of groups with positive first 2-Betti number. Bull. London Math. Soc. 47, 5, 725–730. [Chapter 4].CrossRefGoogle Scholar
[OsTh13] Osin, D., and Thom, A. 2013. Normal generation and 2-betti numbers of groups. Math. Ann., 355 (4), 1331–1347. [Chapters I, IV].CrossRefGoogle Scholar
[Per02] Perelman, G. 2002. The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159. [Chapter 2].
[Per03a] Perelman, G. 2003a. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math.DG/0307245. [Chapter 2].
[Per03b] Perelman, G. 2003b. Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109. [Chapter 2].
[Pet07] Petronio, C. 2007. Spherical splitting of 3-orbifolds. Math. Proc. Cambridge Philos. Soc., 142, 269–287. [Chapter 5].CrossRefGoogle Scholar
[Poe13] Poelstra, Andrew. 2013. A brief Overview of Topological Quantum Field Theory. preprint. [Chapter 3].
[Qui76] Quillen, D. 1976. Projective modules over polynomial rings. Invent. Math., 36, 167–171. [Chapter 1].CrossRefGoogle Scholar
[Qui92] Quinn, Frank. 1992. Lectures on Axiomatic Quantum Field Theory. preprint. [Chapter 3].
[Qui95] Quinn, Frank. 1995. Lectures on Axiomatic Quantum Field Theory. IAS/Park City Mathematical series, 1. [Chapter 3].
[Rep88] Repovs, D. 1988. Regular neighbourhoods of homotopically PL embedded compacta in 3-manifolds. Suppl. Rend. Circ. Mat. Palermo, 18, 213–243. [Chapter 5].Google Scholar
[Ros94] Rosebrock, S. 1994. On the Realization of Wirtinger Presentations as Knot Groups. Journal of Knot Theory and its Ramifications, 3 (2), 211 – 222. [Chapter 4].CrossRefGoogle Scholar
[Ros00] Rosebrock, S. 2000. Some aspherical labeled oriented graphs. Pages 307–314 of: Matveev, S. (ed), Low-Dimensional Topology and Combinatorial Group Theory. Proceedings of the International Conference, Kiev. [Chapter 4].
[Ros07] Rosebrock, S. 2007. The Whitehead-Conjecture – an Overview. Siberian Electronic Mathematical Reports, 4, 440–449. [Chapter 4].Google Scholar
[Ros10] Rosebrock, S. 2010. On the Complexity of labeled oriented trees. Proc. of the Indian Acad. of Sci, 120 (1), 11–18. [Chapter 4].Google Scholar
[Ros02] Rosson, John. 2002. Multiplicative Invariants of Special 2- Complexes. Ph.D. thesis, Department of Mathematics, Portland State University, unpublished. [Chapter 3].
[Rot02] Rotman, J. J. 2002. Advanced Modern Algebra. Prentice Hall. [Chapters 1, 6].
[Sch49] Schubert, H. 1949. Die eindeutige Zerlegbarkeit eines Knotens in Primknoten. S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl., 3, 57– 104. [Chapter 5].Google Scholar
[Sta85] Stafford, J. T. 1985. Stably free, projective right ideals. Compositio Math., 54, 63–78. [Chapter 1].Google Scholar
[Sta99] Stallings, J. 1999. Whitehead Graphs on handlebodies. Geom. group theory down under (Canberra 1996) edn. de Gruyter, Berlin. [Chapter 5]. Pages 317–330.Google Scholar
[Sta68] Stallings, J. R. 1968. On torsion-free groups with infinitely many ends. Ann. of Math., 88, 312–334. [Chapter 1].CrossRefGoogle Scholar
[Sta87] Stallings, John. 1987. A graph-theoretic lemma and groupembeddings. Pages 145–155 of: Gersten, S.M., and Stallings, J.R. (eds), Combinatorial group theory and topology. Annals of Mathematics Studies, vol. 111. [Chapter 4].Google Scholar
[Str74] Strebel, R. 1974. Homological methods applied to the derived series of groups. Comment. Math. Helv., 49, 63–78. [Chapter 1].Google Scholar
[Swa60] Swan, R. G. 1960. Periodic resolutions for finite groups. Ann. of Math. (2), 72, 267–291. [Chapter 1].CrossRefGoogle Scholar
[Swa69] Swan, R. G. 1969. Groups of cohomological dimension one. J. Algebra, 12, 585–601. [Chapter 1].CrossRefGoogle Scholar
[Swa83] Swan, R. G. 1983. Projective modules over binary polyhedral groups. J. Reine Angew. Math., 342, 66–172. [Chapter 1].Google Scholar
[Swa70] Swarup, G. A. 1970. Some properties of 3-manifolds with boundary. Quart. J. Math. Oxford Ser., (2) 21:1, 1–23. [Chapter 5].CrossRefGoogle Scholar
[ThSe30] Threlfall, W., and Seifert, H. 1930. Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes I. Math. Ann., 104, 1–70. [Chapter 1].Google Scholar
[ThSe32] Threlfall, W., and Seifert, H. 1932. Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes II. Math. Ann., 107, 543–586. [Chapter 1].Google Scholar
[TuVi92] Turaev, V., and Viro, O. 1992. State Sum Invariants of 3-manifolds and Quantum 6j-symbols. Topology, 31 (4), 865–902. [Chapter 3].CrossRefGoogle Scholar
[Tur94] Turaev, V. G. 1994. Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter & Co., Berlin. [Chapter 3].Google Scholar
[Tut61] Tutte, W. 1961. A theory of 3-connected graphs. Ind. Math., 29, 441–455. [Chapter 5].Google Scholar
[Tut63] Tutte, W. 1963. How to draw a graph. Proc. London Math. Soc. (3), 13, 743–768. [Chapter 5].Google Scholar
[Vir10] Virelizier, Alexis. 2010. Quantum invariants of 3-manifolds, TQFTs, and Hopf monads. Habilitation a Diriger des recherches Universite Montpellier 2. [Chapter 3].Google Scholar
[Wald68] Waldhausen, F. 1968. Heegaard-Zerlegungen der 3-Sphäre. Topology, 7, 195–203. [Chapter 2].CrossRefGoogle Scholar
[Wall66] Wall, C. T. C. 1966. Finiteness conditions for CW-complexes II. Proc. Roy. Soc. London Ser. A, 295, 129–139. [Chapter 1].CrossRefGoogle Scholar
[Wam70] Wamsley, J. W. 1970. The multiplier of finite nilpotent groups. Bull. Austral. Math. Soc. 3, 1–8. [Chapters 1, 6].CrossRefGoogle Scholar
[Whi36a] Whitehead, J. H. C. 1936a. On certain sets of elements in a free group. Proc. London Math. Soc., 41, 48–56. [Chapter 5].Google Scholar
[Whi36b] Whitehead, J. H. C. 1936b. On equivalent sets of elements in a free group. Annals of Math., 37, 782–800. [Chapter 5].CrossRefGoogle Scholar
[Whi39] Whitehead, J. H. C. 1939. On the asphericity of regions in a 3-sphere. Fund. Math., 32, 149–166. [Chapter 4].CrossRefGoogle Scholar
[Whi32a] Whitney, H. 1932a. Congruent graphs and the connectivity of graphs. Amer. J. Math., 54, 150–168. [Chapter 5].CrossRefGoogle Scholar
[Whi32b] Whitney, H. 1932b. Non-separable and planar graphs. Trans. Amer. Math. Soc., 34, 339–362. [Chapter 5].CrossRefGoogle Scholar
[Whi33a] Whitney, H. 1933a. 2-Isomorphic graphs. Amer. J. Math., 55, 245– 254. [Chapter 5].CrossRefGoogle Scholar
[Whi33b] Whitney, H. 1933b. On the classification of graphs. Amer. J. Math., 55, 236–244. [Chapter 5].CrossRefGoogle Scholar
[Whi33c] Whitney, H. 1933c. A set of topological invariants for graphs. Amer. J. Math., 55, 231–235. [Chapter 5].CrossRefGoogle Scholar
[Zen05] Zentner, Stefanie. 2005. Wurzeln von Cobordismen und die Andrews- Curtis-Vermutung. Diplomarbeit Frankfurt/Main (unpublished). [Chapter 5].
[Zie70] Zieschang, H. 1970. Über die Nielsensche Kürzungsmethode in freien Produkten mit Amalgam. Invent. Math., 10, 4–37. [Chapter 7].CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Edited by Wolfgang Metzler, Stephan Rosebrock
  • Book: Advances in Two-Dimensional Homotopy and Combinatorial Group Theory
  • Online publication: 20 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781316555798.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Edited by Wolfgang Metzler, Stephan Rosebrock
  • Book: Advances in Two-Dimensional Homotopy and Combinatorial Group Theory
  • Online publication: 20 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781316555798.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Edited by Wolfgang Metzler, Stephan Rosebrock
  • Book: Advances in Two-Dimensional Homotopy and Combinatorial Group Theory
  • Online publication: 20 November 2017
  • Chapter DOI: https://doi.org/10.1017/9781316555798.009
Available formats
×