[I] Hog-Angeloni, C., Metzler, W., and Sieradski, A. (eds). 1993. Two dimensional Homotopy and Combinatorial Group Theory. London Math. Soc. Lecture Note Series 197, Cambridge University Press.
[AKN09] A. K., Naimzada, S., Stefani, A., Torriero. 2009. Networks, Topology and Dynamics. Theory and applications to economics and social systems edn. Springer-Verlag. [Chapter 5].
[Ans91] Anshel, I. L. 1991. A Freiheitssatz for a class of two-relator groups. Journal of Pure and Applied Algebra, 72, 207–250. [Chapter 7].
[Art81] Artamonov, V. A. 1981. Projective, nonfree modules over group rings of solvable groups. Math. USSR Sbornik., 116, 232–244. [Chapter 1].
[BaMi16] Barmak, J., and Minian, E. 2016. A new test for asphericity and diagrammatic reducibility of group presentations. preprint, arXiv:1601.00604. [Chapter 4].
[BaGr69] Barnett, D., and Gruenbaum, B. 1969. On Steinitz's theorem concerning convex 3-polytopes and on some properties of planar graphs. Many Facets of Graph Theory, Proc. Conf. Western Michigan Uni., Kalamazoo/Mi. 1968, 27–40.[Chapter 5].
[Bau74] Baumslag, G. 1974. Finitely presented metabelian groups. Proc. Second international Conference in Group Theory, Lecture Notes in Math., 372, 65–74. [Chapters 1, 6].
[BaSo62] Baumslag, G., and Solitar, S. 1962. Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc., 68, 199–201. [Chapter 1].
[BeWe99] Becker, T., and Weispfenning, V. 1999. Groebner bases. A computational approach to commutative algebra. Graduate Texts in Math., vol. 141. Springer-Verlag, New York. [Chapter 5].
[Ber] Berge, J. SnapPea. [Chapter 5].
[Ber78] Bergman, G. M. 1978. The diamond lemma for ring theory. Adv. in Math., 29 (2), 178–218. [Chapter 5].
[BeHi08] Berrick, A., and Hillman, J. 2008. The Whitehead Conjecture and L(2)-Betti numbers. In: Chatterji, I. (ed), Guido's Book of Conjectures. Monographie No. 40 De L' Enseignement Mathematique. [Chapter 4].
[BeDu79] Berridge, P. H., and Dunwoody, M. J. 1979. Non-free projective modules for torsion-free groups. J. London Math. Soc., 19(2), 433–436. [Chapter 1].
[BeBr97] Bestvina, M., and Brady, N. 1997. Morse theory and finiteness properties of groups. Invent. Math., 129, 445–470. [Chapters 1, 4, 6, 7].
[BeLaWa97] Beyl, F. R., Latiolais, M. P., and Waller, N. 1997. Classification of 2-complexes whose finite fundamental group is that of a 3-manifold. Proc. Edinburgh Math. Soc., 40, 69–84. [Chapter 1].
[BeWa05] Beyl, F. R., and Waller, N. 2005. A stably-free nonfree module and its relevance for homotopy classification, case Q 28. Algebraic & Geometric Topology, 5, 899–910. [Chapter 1].
[BeWa08] Beyl, F. R., and Waller, N. 2008. Examples of exotic free 2-complexes and stably free nonfree modules for quaternion groups. Algebraic & Geometric Topology, 8, 1–17. [Chapter 1].
[BeWa13] Beyl, F. R., and Waller, N. 2013. The geometric realization problem for algebraic 2-complexes. Preliminary version, unpublished, [Chapter 1].
[Big93] Biggs, N. 1993. Algebraic Graph Theory. Cambridge mathematical library (2nd ed.) edn. Cambridge University Press. [Chapter 5].
[Bir13] Biroth, L. 2013. Heegaard-Diagramme der 3-Sphäre und die Andrews-Curtis-Vermutung. Masterthesis, Johannes Gutenberg University Mainz 2013 (unpublished). [Chapter 2].
[BiSt80] Bieri, R., and Strebel, R. 1980. Valuations and finitely presented metabelian groups. Proc. London Math. Soc. (3), 41, 439–464. [Chapters 1, 6].
[Bla10] Blaavand, Jakob. 2010. 3-manifolds derived from link invariants. lecture notes, University of California, Berkeley. [Chapter 3].
[BlTu06a] Blanchet, C., and Turaev, V. 2006a. Axiomatic approach to Topological Quantum Field theory. Elsevier Ltd. [Chapter 3].
[BlTu06b] Blanchet, C., and Turaev, V. 2006b. Quantum 3-Manifold Invariants. Elsevier Ltd. [Chapter 3].
[Bob00] Bobtcheva, Ivelina. 2000. On Quinn's Invariants of 2-dimensional CW-complexes. arXiv math. GT. [Chapter 3].
[BoQu05] Bobtcheva, Ivelina, and Quinn, Frank. 2005. The reduction of quantum invariants of 4-thickenings. Fund. Math., 188, 21–43. [Chapter 3].
[BoLuMy05] Borovik, A.V., Lubotzky, A., and Myasnikov, A.G. 2005. The finitary Andrews-Curtis conjecture. In: Infinite groups: geometric, combinatorial and dynamical aspects. Progr. Math., vol. 248, pp.15-30, Birkhauser, Basel. [Chapters 2, 3].
[Bri15] Bridson, M. 2015. The complexity of balanced presentations and the Andrews-Curtis conjecture. arXiv:1504.04187. [Chapter 2].
[BrTw07] Bridson, M., and Tweedale, M. 2007. Deficieny and abelianized deficiency of some virtually free groups. Math. Proc. Cambridge Phil. Soc., 143, 257–264. [Chapters 6, 7].
[BrTw08] Bridson, M. R., and Tweedale, M. 2008. Putative relation gaps. Guido's Book of Conjectures. Monographie No. 40 De L'Enseignement Math'ematique. [Chapter 1].
[BrTw14] Bridson, M. R., and Tweedale, M. 2014. Constructing presentations of subgroups of right-angled Artin groups. Geom. Dedicata, 169, 1– 14. [Chapters 1, 6].
[Bro87] Brown, K. S. 1987. Finiteness properties of groups. J. Pure Appl. Algebra, 44, 45–75. [Chapters 1, 6].
[Bro76] Browning, W.J. 1976. Normal generators of finite groups. manuscript. http://www.cambridge.org/9781316600900, [Chapter 2].
[Bur01] Burdon, M. 2001. Embedding 2-polyhedra with regular neighborhoods which have sphere boundaries. PhD thesis, Portland State University. [Chapter 5].
[CaEi56] Cartan, H., and Eilenberg, S. 1956. Homological algebra. Princeton Mathematical Series, vol. 19. Princeton, NJ: Princeton University Press. [Chapter 1].
[ChdW14] Christmann, M., and de Wolff, T. 2014. A sharp upper bound for the complexity of labeled oriented trees. preprint, arXiv:1412.7257. [Chapter 4].
[Coh64] Cohn, P. M. 1964. Free ideal rings. J. Algebra, 1, 47–69. [Chapter 1].
[CoGrKo74] Cossey, J., Gruenberg, K. W., and Kovacs, L. G. 1974. Presentation rank of a direct product of finite groups. J. Algebra, 28, 597–603. [Chapters 1, 6].
[Dun72] Dunwoody, M. J. 1972. Relation modules. Bull. London Math. Soc., 4, 151–155. [Chapters 1, 6].
[Eck00] Eckmann, B. 2000. Introduction to L2-methods in Topology. Israel J. Math., 117, 183–219. [Chapter 4].
[EiGa57] Eilenberg, S. and Ganea, T. 1957. On the Lusternik-Schnirelmann category of abstract groups. Ann. of Math., 65, 517–518. [Chapter 1].
[Eps61] Epstein, D. B. A. 1961. Finite presentations of groups and 3- manifolds. Quart. J. Math. Oxford Series, (2), 12. [Chapters 6, 7].
[Euf92] Eufinger, M. 1992. Normalformen für Q-Transformationen bei Präsentationen freier Produkte. Diplomarbeit, Frankfurt/Main (unpublished). [Chapter 7].
[Fox52] Fox, R. H. 1952. On the Complementary Domains of a Certain Pair of Inequivalent Knots. Indag. Math, 14, 37–40. [Chapter 5].
[FrYe89] Freyd, Peter, and Yetter, David. 1989. Brided compact closed Categories with applications to Low dimensional Topology. Advances in Mathematics, 77, 156–182. [Chapter 3].
[Geo08] Geoghegan, R. 2008. Topological Methods in Group Theory. Graduate Texts in Math., vol. 243. Springer-Verlag. [Chapters 1, 6].
[Gil76] Gildenhuys, D. 1976. Classification of solvable groups of cohomological dimension 2. Math. Z., 166, 21–25. [Chapters 1, 6].
[GlHo05] Glock, J., and Hog-Angeloni, C. I. 2005. Embeddings of 2-complexes into 3-manifolds. Journal of Knot Theory and Its Ramifications, 14 (1), 9–20. [Chapter 5].
[Gol99] Goldstein, R. Z. 1999. The length and thickness of words in a free group. Proc. of the Am. Math. Soc., 127 (10), 2857–2863. [Chapter 5].
[Gru76] Gruenberg, K. W. 1976. Relation Modules of Finite Groups. CBMS Regional Conference Series in Mathematics No. 25, AMS. [Chapters 1, 6].
[Gru80] Gruenberg, K. W. 1980. The partial Euler characteristic of the direct powers of a finite group. Arch. Math., 35, 267–274. [Chapters 1, 6].
[GrLi08] Gruenberg†, K., and Linnell, P. 2008. Generation gaps and abelianized defects of free products. J. Group Theory, 11 (5), 587–608. [Chapters 1, 6, 7].
[Guo16] Guo, Guangyuan. 2016. Heegaard diagrams of S 3 and the Andrews- Curtis Conjecture. arXiv:1601.06871. [Chapter 2].
[Har93] Harlander, J. 1993. Solvable groups with cyclic relation module. J. Pure Appl. Algebra, 190, 189–198. [Chapter 1].
[Har96] Harlander, J. 1996. Closing the relation gap by direct product stabilization. J. Algebra, 182, 511–521. [Chapters 1, 6].
[Har97] Harlander, J. 1997. Embeddings into efficient groups. Proc. Edinburgh Math. Soc., 40, 314–324. [Chapters 1, 6].
[Har00] Harlander, J. 2000. Some aspects of efficiency. Pages 165–180 of: Baik, Johnson, and Kim (eds), Groups–Korea 1998, Proceedings of the 4th international conference, Pusan, Korea. Walter deGruyter. [Chapters 1, 6].
[HaHoMeRo00] Harlander, J., Hog-Angeloni, C., Metzler, W., and Rosebrock, S. 2000. Problems in Low-dimensional Topology. Encyclopedia of Mathematics Supplement II (ed. M. Hazewinkel). Kluwer Academic Publishers. [Chapter 1].
[HaJe06] Harlander, J., and Jensen, J. A. 2006. Exotic relation modules and homotopy types for certain 1-relator groups. Algebr. Geom. Topol., ü, 2163–2173. [Chapter 1].
[HaMi10] Harlander, J., and Misseldine, A. 2010. On the K-theory and homotopy theory of the Klein bottle group. Homology, Homotopy, and Applications, 12(2), 1–10. [Chapter 1].
[HaRo03] Harlander, J., and Rosebrock, S. 2003. Generalized knot complements and some aspherical ribbon disc complements. Knot theory and its Ramifications, 12 (7), 947–962. [Chapter 4].
[HaRo10] Harlander, J., and Rosebrock, S. 2010. On distinguishing virtual knot groups from knot groups. Journal of Knot Theory and its Ramifications, 19 (5), 695–704. [Chapter 4].
[HaRo12] Harlander, J., and Rosebrock, S. 2012. On Primeness of Labeled Oriented Trees. Knot theory and its Ramifications, 21 (8). [Chapter 4].
[HaRo15] Harlander, J., and Rosebrock, S. 2015. Aspherical Word Labeled Oriented Graphs and cyclically presented groups. Knot theory and its Ramifications, 24 (5). [Chapter 4].
[HaRo17] Harlander, J., and Rosebrock, S. 2017. Injective labeled oriented trees are aspherical. arXiv:1212.1943, to appear in: Mathematische Zeitschrift. [Chapter 4].
[Hig51] Higman, G. 1951. A finitely generated infinite simple group. J. London Math. Soc., 26, 61–64. [Chapter 1].
[Hil97] Hillman, J. A. 1997. L2-homology and asphericity. Israel J. Math., 99, 271–283. [Chapter 4].
[Han05] Hansel, J. 2005. Andrews-Curtis-Graphen endlicher Gruppen. Diplomarbeit, Frankfurt (unpublished). [Chapter 2].
[Ho-AnMa08] Hog-Angeloni, C., and Matveev, S. 2008. Roots in 3-manifold topology. Pages 295–319 of: The Zieschang Gedenkschrift, Geom. Topol. Monogr., vol. 14. Geometry and Topology Publications, Coventry. [Chapter 5].
[Ho-AnMe04] Hog-Angeloni, C., and Metzler, W. 2004. Ein Überblick über Resultate und Aktivitäten zum Andrews-Curtis-Problem. preprint, Frankfurt. [Chapter 2].
[Ho-AnMe06] Hog-Angeloni, C., and Metzler, W. 2006. Strategies towards a disproof of the general Andrews-Curtis Conjecture. Siberian Electronic Mathematical Reports, 3. [Chapter 2].
[How99] Howie, J. 1999. Bestvina-Brady Groups and the Plus Construction. Math. Proc. Cambridge Phil. Soc., 127, 487–493. [Chapters 1, 4, 6].
[Hu01] Hu, Sen. 2001. Lecture notes on Chern-Simons-Witten Theory. World Scientific (Wspc). [Chapter 3].
[HuRo95] Huck, G., and Rosebrock, S. 1995. Weight tests and hyperbolic groups. Pages 174–183 of: A., Duncan, N., Gilbert, J., Howie (ed), Combinatorial and Geometric Group Theory. London Math. Soc. Lecture Note Ser., vol. 204. London: Cambridge University Press. [Chapter 4].
[HuRo00] Huck, G., and Rosebrock, S. 2000. Cancellation Diagrams with nonpositive Curvature. Pages 128–149 of: et al., Michael, Atkinson (ed), Computational and Geometric Aspects of Modern Algebra. London Math. Soc. Lecture Note Ser., vol. 275. London: Cambridge University Press. [Chapter 4].
[HuRo01] Huck, G., and Rosebrock, S. 2001. Aspherical Labelled Oriented Trees and Knots. Proceedings of the Edinburgh Math. Soc. 44, 285– 294. [Chapter 4].
[HuRo07] Huck, G., and Rosebrock, S. 2007. Spherical Diagrams and Labelled Oriented Trees. Proceedings of the Edinburgh Math. Soc., 137A, 519–530. [Chapter 4].
[Joh97] Johnson, D.L. 1997. Presentations of Groups, 2nd edition. LMS Student Texts, vol. 15. Cambridge University Press. [Chapters 1, 6].
[Joh03] Johnson, F.E.A. 2003. Stable Modules and the D(2)-Problem. London Math. Soc. Lecture Note Ser., vol. 301. Cambridge University Press. [Chapter 1].
[Joh12] Johnson, F.E.A. 2012. Syzygies and Homotopy Theory. Algebra and Applications, vol. 17. London: Springer-Verlag. [Chapter 1].
[Kad10] Kaden, H. 2010. Considerations about the Andrews-Curtis invariants based on sliced 2-complexes. arXiv math. GT. [Chapter 3].
[Kad17] Kaden, H. 2017. Considerations for constructing Andrews-Curtis invariants of s-move 3-cells. arXiv math. GT. [Chapter 3].
[KaMaSo60] Karrass, A., Magnus, W., and Solitar, D. 1960. Elements of finite order in groups with a single defining relation. Comm. Pure Appl. Math., 13, 57–66. [Chapter 7].
[KaRo96] Kaselowsky, A., and Rosebrock, S. 1996. On the Impossibility of a Generalization of the HOMFLY – Polynomial to labelled Oriented Graphs. Annales de la Facult'e des Sciences de Toulouse V, 3, 407–419. [Chapter 4].
[Kau87] Kauffman, Louis H. 1987. On knots. Annals of Mathematics Studies, vol. 115. Princeton University Press, Princeton, NJ. [Chapter 3].
[Kau99] Kauffman, Louis H. 1999. Virtual knot theory. European Journal of Combinatorics, 20 (7), 663–690. [Chapters 4, 5].
[Kin07a] King, Simon A. 2007a. Ideal Turaev-Viro invariants. Topology Appl., 154(6), 1141–1156. [Chapter 3].
[Kin07b] King, Simon A. 2007b. Verschiedene Anwendungen kombinatorischer und algebraischer Strukturen in der Topologie. [Chapter 3].
[Kly93] Klyachko, A. 1993. A funny property of sphere and equations over groups. Communications in Algebra, 21 (7), 2555–2575. [Chapter 4].
[Kne29] Kneser, H. 1929. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. J. Dtsch. Math. Verein, 38, 248–260. [Chapter 5].
[KoMa11] Korablev, F. G., and Matveev, S. V. 2011. Reduction of knots in thickened surfaces and virtual knots. Dokl. Math., 83 (2), 262–264. [Chapter 5].
[KrRo00] Kreuzer, Martin, and Robbiano, Lorenzo. 2000. Computational commutative algebra. Springer-Verlag, Berlin. [Chapter 3].
[Kor15] Korner, J. 2015. Das Relatorenlückenproblem für freie Produkte. Masterarbeit, Frankfurt/Main, unpublished. [Chapter 7].
[Kuh00a] Kuhn, A. 2000a. extract from: Stabile Teilkomplexe und Andrews-Curtis-Operationen. Diplomarbeit, Frankfurt/Main. http://www.cambridge.org/9781316600900, [Chapter 2].
[Kuh00b] Kuhn, A. 2000b. Stabile Teilkomplexe und Andrews-Curtis- Operationen. Diplomarbeit, Frankfurt/Main (unpublished). [Chapter 2].
[Luc01] Luck, W. 2001. L2-invariants: Theory and Applications to Geometry and K-Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 44, Springer. [Chapter 4].
[Li00] Li, Zhongmou. 2000. Heegaard-Diagrams and Applications. PhDthesis, university of British Columbia. [Chapter 2].
[Lis17] Lishak, B. 2017. Balanced finite presentations of the trivial group. Journal of Topology and Analysis, 9 (2), 363–378. [Chapter 2].
[LiNa17] Lishak, B., and Nabutovsky, A. 2017. Balanced presentations of the trivial group and four-dimensional geometry. Journal of topology and analysis, 9 (1), 27–49. [Chapter 2].
[Lou15] Louder, L. 2015. Nielsen equivalence in closed surface groups. arXiv:1009.0454v2. [Chapter 1].
[Luf96] Luft, E. 1996. On 2-dimensional aspherical complexes and a problem of J. H. C. Whitehead. Math. Proc. Camb. Phil. Soc., 119, 493–495. [Chapter 4].
[Lus95] Lustig, M. 1995. Non-efficient torsion free groups exist. Comm. Algebra, 23, 215–218. [Chapters 1, 6].
[MaKaSo76] Magnus, W., Karras, A., and Solitar, D. 1976. Combinatorial Group Theory. Dover Publications. [Chapter 1].
[Man80] Mandelbaum, Richard. 1980. Four-dimensional topology: an introduction. bams. [Chapter 3].
[Man07a] Mannan, W. H. 2007a. The D(2) property for D8. Algebraic & Geometric Topology, 7, 517–528. [Chapter 1].
[Man07b] Mannan, W. H. 2007b. Homotopy types of truncated projective resolutions. Homology, Homotopy and Applications, 9(2), 445–449. [Chapter 1].
[Man09] Mannan, W. H. 2009. Realizing algebraic 2-complexes by cell complexes. Math. Proc. Cambridge Math. Soc., Issue 03, 146, Issue 03, 671–673. [Chapter 1].
[Man13] Mannan, W. H. 2013. A commutative version of the group ring. J. Algebra, 379, 113–143. [Chapter 1].
[MaO'S13] Mannan, W. H., and O'Shea, S. 2013. Minimal algebraic complexes over D4n. Algebraic & Geometric Topology, 13, 3287–3304. [Chapter 1].
[Man16] Mannan, Wajid H. 2016. Explicit generators of the relation module in the example of Gruenberg-Linell. Math. Proc. Cambridge Philos. Soc., 161 (2), 199–202. [Chapter 7].
[Mat03] Matveev, S. 2003. Algorithmic Topology and Classification of 3- Manifolds. Algorithms and Computations in Mathematics, vol. 9. Springer Verlag New York, Heidelberg, Berlin. [Chapters 2, 3].
[Mat12a] Matveev, S. 2012a. Prime decomposition of knots in T × I. Topology Appl., 159 (7), 1820–1824. [Chapter 5].
[Mat12b] Matveev, S. 2012b. Roots and decompositions of three-dimensional manifolds. Russiam Math. Surveis, 67 (3), 1459–507. [Chapter 5].
[MaTu11] Matveev, S., and Turaev, V. 2011. A semigroup of theta-curves in 3-manifolds. Mosc. Math. J., 11 (4), 805–814. [Chapter 5].
[Mat10] Matveev, S. V. 2010. On prime decompositions of knotted graphs and orbifolds. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 57, 89–96. [Chapter 5].
[MaSo96] Matveev, Sergei V., and Sokolov, Maxim V. 1996. On a simple invariant of Turaev-Viro type. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 234 (Differ. Geom. Gruppy Li i Mekh. 15-1), 137–142, 263. [Chapter 3].
[Met00] Metzler, W. 2000. Verallgemeinerte Biasinvarianten und ihre Berechnung. Pages 192–207 of: Atkinson, M. et al. (ed), Computational and Geometric Aspects of Modern Algebra. London Math. Soc. Lecture Note Series, vol. 275. [Chapter 2].
[Mil62] Milnor, J. 1962. A unique factorisation theorem for 3-manifolds. Amer. J. Math., 84, 1–7. [Chapter 5].
[Mul00] Muller, Klaus. 2000. Probleme des Einfachen Homotopietyps in niederen Dimensionen und ihre Behandlung mit Hilfsmitteln der Topologischen Quantenfeldtheorie. Der Andere Verlag Dissertation Frankfurt/Main. [Chapter 3].
[Mut11] Muth, C. 2011. Relatorenlücke und vermutete Beispiele. Masterarbeit, Mainz unpublished. [Chapter 7].
[Nab12] Naber, Greg. 2012. Yang-Mills to Seiberg-Witten via TQFT The Witten Conjecture. preprint, Black Hills State University. [Chapter 3].
[New42] Newman, M. H. A. 1942. On theories with a combinatorial definition of ‘equivalence’. Ann. of Math., (2) 43:2, 223–243. [Chapter 5].
[O'S12] O'Shea, S. 2012. The D(2)-problem for dihedral groups of order 4n. Algebraic & Geometric Topology, 12, 2287–2297. [Chapter 1].
[Osi15] Osin, D. 2015. On acylindrical hyperbolicity of groups with positive first 2-Betti number. Bull. London Math. Soc. 47, 5, 725–730. [Chapter 4].
[OsTh13] Osin, D., and Thom, A. 2013. Normal generation and 2-betti numbers of groups. Math. Ann., 355 (4), 1331–1347. [Chapters I, IV].
[Per02] Perelman, G. 2002. The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159. [Chapter 2].
[Per03a] Perelman, G. 2003a. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math.DG/0307245. [Chapter 2].
[Per03b] Perelman, G. 2003b. Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109. [Chapter 2].
[Pet07] Petronio, C. 2007. Spherical splitting of 3-orbifolds. Math. Proc. Cambridge Philos. Soc., 142, 269–287. [Chapter 5].
[Poe13] Poelstra, Andrew. 2013. A brief Overview of Topological Quantum Field Theory. preprint. [Chapter 3].
[Qui76] Quillen, D. 1976. Projective modules over polynomial rings. Invent. Math., 36, 167–171. [Chapter 1].
[Qui92] Quinn, Frank. 1992. Lectures on Axiomatic Quantum Field Theory. preprint. [Chapter 3].
[Qui95] Quinn, Frank. 1995. Lectures on Axiomatic Quantum Field Theory. IAS/Park City Mathematical series, 1. [Chapter 3].
[Rep88] Repovs, D. 1988. Regular neighbourhoods of homotopically PL embedded compacta in 3-manifolds. Suppl. Rend. Circ. Mat. Palermo, 18, 213–243. [Chapter 5].
[Ros94] Rosebrock, S. 1994. On the Realization of Wirtinger Presentations as Knot Groups. Journal of Knot Theory and its Ramifications, 3 (2), 211 – 222. [Chapter 4].
[Ros00] Rosebrock, S. 2000. Some aspherical labeled oriented graphs. Pages 307–314 of: Matveev, S. (ed), Low-Dimensional Topology and Combinatorial Group Theory. Proceedings of the International Conference, Kiev. [Chapter 4].
[Ros07] Rosebrock, S. 2007. The Whitehead-Conjecture – an Overview. Siberian Electronic Mathematical Reports, 4, 440–449. [Chapter 4].
[Ros10] Rosebrock, S. 2010. On the Complexity of labeled oriented trees. Proc. of the Indian Acad. of Sci, 120 (1), 11–18. [Chapter 4].
[Ros02] Rosson, John. 2002. Multiplicative Invariants of Special 2- Complexes. Ph.D. thesis, Department of Mathematics, Portland State University, unpublished. [Chapter 3].
[Rot02] Rotman, J. J. 2002. Advanced Modern Algebra. Prentice Hall. [Chapters 1, 6].
[Sch49] Schubert, H. 1949. Die eindeutige Zerlegbarkeit eines Knotens in Primknoten. S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl., 3, 57– 104. [Chapter 5].
[Sta85] Stafford, J. T. 1985. Stably free, projective right ideals. Compositio Math., 54, 63–78. [Chapter 1].
[Sta99] Stallings, J. 1999. Whitehead Graphs on handlebodies. Geom. group theory down under (Canberra 1996) edn. de Gruyter, Berlin. [Chapter 5]. Pages 317–330.
[Sta68] Stallings, J. R. 1968. On torsion-free groups with infinitely many ends. Ann. of Math., 88, 312–334. [Chapter 1].
[Sta87] Stallings, John. 1987. A graph-theoretic lemma and groupembeddings. Pages 145–155 of: Gersten, S.M., and Stallings, J.R. (eds), Combinatorial group theory and topology. Annals of Mathematics Studies, vol. 111. [Chapter 4].
[Str74] Strebel, R. 1974. Homological methods applied to the derived series of groups. Comment. Math. Helv., 49, 63–78. [Chapter 1].
[Swa60] Swan, R. G. 1960. Periodic resolutions for finite groups. Ann. of Math. (2), 72, 267–291. [Chapter 1].
[Swa69] Swan, R. G. 1969. Groups of cohomological dimension one. J. Algebra, 12, 585–601. [Chapter 1].
[Swa83] Swan, R. G. 1983. Projective modules over binary polyhedral groups. J. Reine Angew. Math., 342, 66–172. [Chapter 1].
[Swa70] Swarup, G. A. 1970. Some properties of 3-manifolds with boundary. Quart. J. Math. Oxford Ser., (2) 21:1, 1–23. [Chapter 5].
[ThSe30] Threlfall, W., and Seifert, H. 1930. Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes I. Math. Ann., 104, 1–70. [Chapter 1].
[ThSe32] Threlfall, W., and Seifert, H. 1932. Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes II. Math. Ann., 107, 543–586. [Chapter 1].
[TuVi92] Turaev, V., and Viro, O. 1992. State Sum Invariants of 3-manifolds and Quantum 6j-symbols. Topology, 31 (4), 865–902. [Chapter 3].
[Tur94] Turaev, V. G. 1994. Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter & Co., Berlin. [Chapter 3].
[Tut61] Tutte, W. 1961. A theory of 3-connected graphs. Ind. Math., 29, 441–455. [Chapter 5].
[Tut63] Tutte, W. 1963. How to draw a graph. Proc. London Math. Soc. (3), 13, 743–768. [Chapter 5].
[Vir10] Virelizier, Alexis. 2010. Quantum invariants of 3-manifolds, TQFTs, and Hopf monads. Habilitation a Diriger des recherches Universite Montpellier 2. [Chapter 3].
[Wald68] Waldhausen, F. 1968. Heegaard-Zerlegungen der 3-Sphäre. Topology, 7, 195–203. [Chapter 2].
[Wall66] Wall, C. T. C. 1966. Finiteness conditions for CW-complexes II. Proc. Roy. Soc. London Ser. A, 295, 129–139. [Chapter 1].
[Wam70] Wamsley, J. W. 1970. The multiplier of finite nilpotent groups. Bull. Austral. Math. Soc. 3, 1–8. [Chapters 1, 6].
[Whi36a] Whitehead, J. H. C. 1936a. On certain sets of elements in a free group. Proc. London Math. Soc., 41, 48–56. [Chapter 5].
[Whi36b] Whitehead, J. H. C. 1936b. On equivalent sets of elements in a free group. Annals of Math., 37, 782–800. [Chapter 5].
[Whi39] Whitehead, J. H. C. 1939. On the asphericity of regions in a 3-sphere. Fund. Math., 32, 149–166. [Chapter 4].
[Whi32a] Whitney, H. 1932a. Congruent graphs and the connectivity of graphs. Amer. J. Math., 54, 150–168. [Chapter 5].
[Whi32b] Whitney, H. 1932b. Non-separable and planar graphs. Trans. Amer. Math. Soc., 34, 339–362. [Chapter 5].
[Whi33a] Whitney, H. 1933a. 2-Isomorphic graphs. Amer. J. Math., 55, 245– 254. [Chapter 5].
[Whi33b] Whitney, H. 1933b. On the classification of graphs. Amer. J. Math., 55, 236–244. [Chapter 5].
[Whi33c] Whitney, H. 1933c. A set of topological invariants for graphs. Amer. J. Math., 55, 231–235. [Chapter 5].
[Zen05] Zentner, Stefanie. 2005. Wurzeln von Cobordismen und die Andrews- Curtis-Vermutung. Diplomarbeit Frankfurt/Main (unpublished). [Chapter 5].
[Zie70] Zieschang, H. 1970. Über die Nielsensche Kürzungsmethode in freien Produkten mit Amalgam. Invent. Math., 10, 4–37. [Chapter 7].