Published online by Cambridge University Press: 18 January 2010
The Telescope Conjecture (made public in a lecture at Northwestern University in 1977) says that the υn–periodic homotopy of a finite complex of type n has a nice algebraic description. It also gives an explicit description of certain Bousfield localizations. In this paper we outline a proof that it is false for n = 2 and p ≥ 5. A more detailed account of this work will appear in [Rav]. In view of this result, there is no longer any reason to think it is true for larger values of n or smaller primes p.
In Section 1 we will give some background surrounding the conjecture. In Section 2 we outline Miller's proof of it for the case n = 1 and p > 2. This includes a discussion of the localized Adams spectral sequence. In Section 3 we describe the difficulties in generalizing Miller's proof to the case n = 2 We end that section by stating a theorem (3.5) about some differentials in the Adams spectral sequence, which we prove in Section 4. This material is new; I stated the theorem in my lecture at the conference, but said nothing about its proof. In Section 5 we construct the parametrized Adams spectral sequence, which gives us a way of interpolating between the Adams spectral sequence and the Adams–Novikov spectral sequence. We need this new machinery to use Theorem 3.5 to disprove the Telescope Conjecture. This argument is sketched in Section 6.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.