Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T04:04:01.840Z Has data issue: false hasContentIssue false

5 - Splitting methods

Published online by Cambridge University Press:  21 May 2010

Robert I. McLachlan
Affiliation:
IFS, Massey University, Palmerston North, New Zealand
G. Reinout W. Quispel
Affiliation:
Mathematics Department, La Trobe University, Bundoora, VIC 3086, Australia
Arieh Iserles
Affiliation:
University of Cambridge
Get access

Summary

I thought that instead of the great number of precepts of which logic is composed, I would have enough with the four following ones, provided that I made a firm and unalterable resolution not to violate them even in a single instance. The first rule was never to accept anything as true unless I recognized it to be certainly and evidently such…. The second was to divide each of the difficulties which I encountered into as many parts as possible, and as might be required for an easier solution.

(Descartes)

We survey splitting methods for the numerical integration of ordinary differential equations (ODEs). Splitting methods arise when a vector field can be split into a sum of two or more parts that are each simpler to integrate than the original (in a sense to be made precise). One of the main applications of splitting methods is in geometric integration, that is, the integration of vector fields that possess a certain geometric property (e.g., being Hamiltonian, or divergence-free, or possessing a symmetry or first integral) that one wants to preserve. We first survey the classification of geometric properties of dynamical systems, before considering the theory and applications of splitting in each case. Once a splitting is constructed, the pieces are composed to form the integrator; we discuss the theory of such ‘composition methods’ and summarize the best currently known methods.

Type
Chapter
Information
Acta Numerica 2002 , pp. 341 - 434
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Splitting methods
  • Edited by Arieh Iserles, University of Cambridge
  • Book: Acta Numerica 2002
  • Online publication: 21 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550140.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Splitting methods
  • Edited by Arieh Iserles, University of Cambridge
  • Book: Acta Numerica 2002
  • Online publication: 21 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550140.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Splitting methods
  • Edited by Arieh Iserles, University of Cambridge
  • Book: Acta Numerica 2002
  • Online publication: 21 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550140.005
Available formats
×