Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T16:25:48.832Z Has data issue: false hasContentIssue false

Chapter 7 - Free vorticity shear layers and inverse methods

Published online by Cambridge University Press:  05 November 2009

R. I. Lewis
Affiliation:
University of Newcastle upon Tyne
Get access

Summary

Introduction

So far we have considered only the case of fully attached inviscid steady flows, for which the introduction of a surface vorticity sheet of appropriate strength and of infinitesimal thickness, together with related trailing vorticity in three-dimensional flows, is completely adequate for a true representation. As pointed out in Chapter 1, where the justification of this model was argued from physical considerations, the surface vorticity method is representative of the infinite Reynolds number flow of a real fluid in all but one important respect, namely the problem of boundary layer separation. Real boundary layers involve complex mechanisms characterised by the influence of viscous shear stresses and vorticity convections and eddy formation on the free stream side. Depending upon the balance between these mechanisms and the consequent transfer of energy across a boundary layer, flow separation may occur when entering a rising pressure gradient, even at very high Reynolds numbers. Flow separation at a sharp corner will most certainly occur as in the case of flow past a flat plate held normal to the mainstream direction.

For a decade or so the development of computational fluid dynamic techniques to try to model these natural phenomena has attracted much attention and proceeded with remarkable success. The context of a good deal of this work has fallen rather more into the realm of classical methods than that of surface vorticity modelling, and is often classified by the generic title Vortex Dynamics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×