Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T19:18:02.328Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  26 May 2017

Keke Zhang
Affiliation:
University of Exeter
Xinhao Liao
Affiliation:
Chinese Academy of Sciences
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Theory and Modeling of Rotating Fluids
Convection, Inertial Waves and Precession
, pp. 516 - 522
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, K. D., and Lumb, L. I. 1987. Inertial waves identified in the Earth's fluid outer core. Nature, 325, 421–423.Google Scholar
Aldridge, K. D., and Stergiopoulos, S. 1991. A technique for direct measurement of timedependent complex eigenfrequencies of waves in fluids. Phys. Fluids, 3, 316–327.Google Scholar
Aldridge, K. D., and Toomre, A. 1969. Axisymmetric inertial oscillations of a fluid in a rotating spherical container. J. Fluid Mech., 37, 307–323.Google Scholar
Aurnou, J. M., and Olson, P. L. 2001. Experiments on Rayleigh–Bénard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. J. Fluid Mech., 430, 283–307.Google Scholar
Bassom, A. P., and Zhang, K. 1998. Finite amplitude thermal inertial waves in a rotating fluid layer. Geophys. Astrophys. Fluid Dyn., 87, 193–214.Google Scholar
Batchelor, G. K. 1953. The condition for dynamical similarity of motions of a frictionless perfect-gas atmosphere. Quart. J. R. Meteor. Soc., 79, 224–235.Google Scholar
Batchelor, G. K. 1967. An introduction to fluid dynamics. Cambridge: Cambridge University Press.
Benjamin, T. B., and Feir, J. 1967. The disintegration of wave trains on deep water. Part. 1. Theory. J. Fluid Mech., 27, 417–430.Google Scholar
Benton, E. R., and Clark, A. 1974. Spin-up. Annu. Rev. Fluid Mech., 6, 257–280.Google Scholar
Boisson, J., Cébron, D. C., Moisy, F., and Cortet, P.-P. 2012. Earth rotation prevents exact solid-body rotation of fluids in the laboratory. Europhys. Lett., 98, 59002.Google Scholar
Boubnov, B. M., and Golitsyn, G. S. 1995. Convection in Rotating Fluids. Dordrecht: Kluwer Academic Publishers.
Boussinesq, J. 1903. Théorie analytique de la chaleur. Vol. 2. Paris: Gauthier-Villars.
Bryan, G. H. 1889. The waves on a rotating liquid spheroid of finite ellipticity. Philos. Trans. R. Soc. London Ser. A, 180, 187–219.Google Scholar
Bullard, E. C. 1949. The magnetic flux within the Earth. Proc. R. Soc., 197, 433–453.Google Scholar
Bullard, E. C., and Gellman, H. 1954. Homogeneous dynamos and terrestrial magnetism. Philos. Trans. R. Soc. London Ser. A, 247, 213–278.Google Scholar
Busse, F. H. 1968. Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech., 33, 739–751.Google Scholar
Busse, F. H. 1970. Thermal instabilities in rapidly rotating systems. J. Fluid Mech., 44, 441–460.Google Scholar
Busse, F. H. 1975. Patterns of convection in spherical shells. J. Fluid Mech., 72, 67–85.Google Scholar
Busse, F. H. 1976. A simple model of convection in Jovian atmosphere. Icarus, 29, 255–260.Google Scholar
Busse, F. H. 1983. A model of mean zonal flows in the major planets. Geophys. Astrophys. Fluid Dyn., 23, 153–174Google Scholar
Busse, F. H. 1994. Convection driven zonal flows and vortices in the major planets. Chaos, 4, 123–134.Google Scholar
Busse, F. H. 2005. Convection in a narrow annular channel rotating about its axis of symmetry. J. Fluid Mech., 537, 145–154.Google Scholar
Busse, F. H. 2010. Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech., 650, 505–512.Google Scholar
Calkins, M. A., Noir, J., Eldredge, J., and Aurnou, J. M. 2010. Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids, 22, 086602.Google Scholar
Carrigan, C. R., and Busse, F. H. 1983. An experimental and theoretical investigation of the onset of convection in rotating spherical shells. J. Fluid Mech., 126, 287–305.Google Scholar
Chamberlain, J. A., and Carrigan, C. R. 1986. An experimental investigation of convection in a rotating sphere subject to time varying thermal boundary conditions. Geophys. Astrophys. Fluid Dyn., 35, 303–327.Google Scholar
Chan, K., Zhang, K., and Liao, X. 2010. An EBE finite element method for simulating nonlinear flows in rotating spheroidal cavities. International Journal for Numerical Methods in Fluids, 63, 395–414.Google Scholar
Chan, K., Zhang, K., and Liao, X. 2011. Simulations of fluid motion in spheroidal planetary cores driven by latitudinal libration. Phys. Earth Planet. Int., 187, 404–415.Google Scholar
Chan, K., He, Y., Zhang, K., and Zou, J. 2014. A finite element analysis on fluid motion in librating triaxial ellipsoids. Numerical Methods for Partial Differential Equations, 30, 1518–1537.Google Scholar
Chandrasekhar, S. 1961. Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press.
Chorin, A. J. 1968. Numerical solutions of Navier–Stokes equations. Math. Comp., 22, 745–762.Google Scholar
Christensen, U. R. 2002. Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech., 470, 115–133.Google Scholar
Clever, R. M., and Busse, F. H. 1979. Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech., 94, 609–627.Google Scholar
Cui, Z., Zhang, K., and Liao, X. 2014. On the completeness of inertial wave modes in rotating annular channels. Geophys. Astrophys. Fluid Dyn., 108, 44–59.Google Scholar
Davies-Jones, R. P., and Gilman, P. A. 1971. Convection in a rotating annulus uniformly heated from below. J. Fluid Mech., 46, 65–81.Google Scholar
Debnath, L., and Mikusinski, P. 1999. Introduction to Hilbert space with applications. Amsterdam: Academic Press.
Dermott, S. F. 1979. Shapes and gravitational moments of satellites and asteroids. Icarus, 37, 575–586.Google Scholar
Dormy, E., Soward, A. M., Jones, C. A., Jault, D., and Cardin, P. 2004. The onset of thermal convection in rotating spherical shells. J. Fluid Mech., 501, 43–70.Google Scholar
Fearn, D. R., Roberts, P. H., and Soward, A. M. 1988. Convection, stability and the dynamo. Pages 60–324 of: Straughan, B., and Galdi, P. (eds), Energy, stability and convection. London: Longman.
Fultz, D. 1959. A note on overstability, and the elastoid–inertia oscillations of Kelvin, Solberg and Bjerknes. J. Atmos. Sci., 16, 199–208.Google Scholar
Gans, R. F. 1970. On the precession of a resonant cylinder. J. Fluid Mech., 41, 865–872.Google Scholar
Gans, R. F. 1984. Dynamics of a near-resonant fluid-filled gyroscope. AIAA J., 22, 1465– 1471.Google Scholar
Gillet, N., and Jones, C. A. 2006. The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder. J. Fluid Mech., 554, 343–369.Google Scholar
Gillet, N., Brito, D., Jault, D., and Nataf, H. C. 2007. Experimental and numerical studies of convection in a rapidly rotating spherical shell. J. Fluid Mech., 580, 83–121.Google Scholar
Gilman, P. A. 1973. Convection in a rotating annulus uniformly heated from below. Part 2. Nonlinear results. J. Fluid Mech., 57, 381–400.Google Scholar
Goldstein, H. F., Knobloch, E., Mercader, I., and Net, M. 1993. Convection in a rotating cylinder. Part 1. Linear theory for moderate Prandtl numbers. J. Fluid Mech., 248, 58– 604.Google Scholar
Goldstein, H. F., Knobloch, E., Mercader, I., and Net, M. 1994. Convection in a rotating cylinder. Part 2. Linear theory for low Prandtl numbers. J. Fluid Mech., 262, 293–324.Google Scholar
Goto, S., Ishii, N., Kida, S., and Nishioka, M. 2007. Turbulence generator using a precessing sphere. Phys. Fluids, 19, 061705.Google Scholar
Gough, D. O. 1969. The anelastic approximation for thermal convection. J. Atmos. Sci., 26, 448–456.Google Scholar
Greenspan, H. P. 1964. On the transient motion of a contained rotating fluid. J. Fluid Mech., 20, 673–696.Google Scholar
Greenspan, H. P. 1968. The theory of rotating fluids. Cambridge: Cambridge University Press.
Greenspan, H. P. 1990. The Theory of Rotating Fluids. Brookline, MA: Breukelen Press.
Gubbins, D., and Roberts, P. H. 1987. Magnetohydrodynamics of the Earth's core. Pages 1–183 of: Jacobs, J. A. (ed.), Geomagnetism, vol. 2. London: Academic Press.
Heimpel, M., and Aurnou, J. 2007. Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn. Icarus, 187, 540–557.Google Scholar
Herrmann, J., and Busse, F. H. 1993. Asymptotic theory of wall-attached convection in a rotating fluid layer. J. Fluid Mech., 255, 183–194.Google Scholar
Hollerbach, R., and Kerswell, R. R. 1995. Oscillatory internal shear layers in rotating and precessing flows. J. Fluid Mech., 298, 327–339.Google Scholar
Hood, P., and Taylor, C. 1974. Finite element methods in flow problems. Huntsville, AL: UAH Press.
Ivers, D. J., Jackson, A., and Winch, D. 2015. Enumeration, orthogonality and completeness of the incompressible coriolis modes in a sphere. J. Fluid Mech., 766, 468–498.Google Scholar
Jackson, A., Constable, C. G., Walker, M. R., and Parker, R. L. 2007. Models of Earth's main magnetic field incorporating flux and radial vorticity constraints. Geophys. J. Int., 171, 133–144.Google Scholar
Jones, C. A. 2011. Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech., 43, 583–614.Google Scholar
Jones, C. A., Soward, A. M., and Mussa, A. I. 2000. The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech., 405, 157–179.Google Scholar
Kelvin, Lord. 1880. Vibrations of a columnar vortex. Phil. Mag., 10, 155–168.Google Scholar
Kerswell, R. R. 1996. Upper bounds on the energy dissipation in turbulent precession. J. Fluid Mech., 321, 335–370.Google Scholar
Kerswell, R. R. 1999. Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. J. Fluid Mech., 382, 283–306.Google Scholar
Kerswell, R. R. 2002. Elliptical instability. Annu. Rev. Fluid Mech., 34, 83–113.Google Scholar
Kerswell, R. R., and Barenghi, C. F. 1995. On the viscous decay-rates of inertial waves in a rotating circular cylinder. J. Fluid Mech., 285, 203–214.Google Scholar
Kida, S. 2011. Steady flow in a rapidly rotating sphere with weak precession. J. Fluid Mech., 680, 150–193.Google Scholar
King, E. M., and Aurnou, J. M. 2013. Turbulent convection in liquid metal with and without rotation. Proc. Natl Acad. Sci. USA, 110, 6688–6693.Google Scholar
Kobine, J. J. 1995. Inertial wave dynamics in a rotating and precessing cylinder. J. Fluid Mech., 303, 233–252.Google Scholar
Kobine, J. J. 1996. Azimuthal flow associated with inertial wave resonance in a precessing cylinder. J. Fluid Mech., 319, 387–406.Google Scholar
Kong, D., Liao, X., and Zhang, K. 2014. The sidewall-localized mode in a resonant precessing cylinder. Phys. Fluids, 26, 051703.Google Scholar
Kong, D., Cui, Z., Liao, X., and Zhang, K. 2015. On the transition from the laminar to disordered flow in a precessing spherical-like cylinder. Geophys. Astrophys. Fluid Dyn., 109, 62–83.Google Scholar
Kudlick, M. D. 1966. On transient motions in a contained, rotating fluid. PhD thesis, Massachusetts Institute of Technology. MIT, USA.
Kuppers, G., and Lortz, D. 1969. Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech., 35, 609–620.Google Scholar
Lagrange, R., Eloy, C., Nadal, F., and Meunier, P. 2008. Instability of a fluid inside a precessing cylinder. Phys. Fluids, 20, 081701.Google Scholar
Lamb, H. 1932. Hydrodynamics. Cambridge: Cambridge University Press.
Li, L., Liao, X., Chan, K. H., and Zhang, K. 2008. Linear and nonlinear instabilities in rotating cylindrical Rayleigh–Bénard convection. Phys. Rev. E, 78, 056303.Google Scholar
Li, L., Liao, X., Chan, K. H., and Zhang, K. 2010. On nonlinear multiarmed spiral waves in slowly rotating fluid systems. Phys. Fluids, 22, 011701.Google Scholar
Liao, X., and Zhang, K. 2006. On the convective excitation of torsional oscillations in rotating system. Astrophys. J., 638, L113–L116.Google Scholar
Liao, X., and Zhang, K. 2009. Inertial oscillation, inertial wave and initial value problem in rotating annular channels. Geophys. Astrophys. Fluid Dyn., 103, 199–222.Google Scholar
Liao, X., and Zhang, K. 2010. A new Legendre-type polynomial and its application to geostrophic flow in rotating fluid spheres. Proc. R. Soc. A, 466, 2203–2217.Google Scholar
Liao, X., and Zhang, K. 2012. On flow in weakly precessing cylinders: The general asymptotic solution. J. Fluid Mech., 709, 610–621.Google Scholar
Liao, X., Zhang, K., and Earnshaw, P. 2001. On the viscous damping of inertial oscillation in planetary fluid interiors. Phys. Earth Planet. Int., 128, 125–136.Google Scholar
Liao, X., Zhang, K., and Chang, Y. 2005. Convection in rotating annular channels heated from below: Part 1. Linear stability and weakly nonlinear mean flows. Geophys. Astrophys. Fluid Dyn., 99, 445–465.Google Scholar
Liao, X., Zhang, K., and Chang, Y. 2006. On boundary-layer convection in a rotating fluid layer. J. Fluid Mech., 549, 375–384.Google Scholar
Lin, Y., Noir, J., and Jackson, A. 2014. Experimental study of fluid flows in a precessing cylindrical annulus. Phys. Fluids, 26, 046604.Google Scholar
Livermore, P., Bailey, L., and Hollerbach, R. 2016. A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell. Nature Sci. Rep., 6, 22812.Google Scholar
Lorenzani, S., and Tilgner, A. 2001. Fluid instabilities in precessing spheroidal cavities. J. Fluid Mech., 447, 111–128.Google Scholar
Lyttleton, R. A. 1953. The stability of rotating liquid masses. Cambridge: Cambridge University Press.
Malkus, W. V. R. 1968. Precession of the Earth as the cause of geomagnetism. Science, 160, 259–264.Google Scholar
Malkus, W. V. R. 1989. An experimental study of global instabilities due to the tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn., 48, 123–134.Google Scholar
Manasseh, R. 1992. Breakdown regimes of inertia waves in a precessing cylinder. J. Fluid Mech., 243, 261–296.Google Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A., and Holin, I. V. 2007. Large longitude libration of Mercury reveals a molten core. Science, 316, 710–714.Google Scholar
Marqués, F. 1990. On boundary conditions for velocity potentials in confined flows: Application to Couette flow. Phys. Fluids, 2, 729–737.Google Scholar
Mason, R. M., and Kerswell, R. R. 2002. Chaotic dynamics in a strained rotating flow: A precessing plane fluid layer. J. Fluid Mech., 471, 71–106.Google Scholar
Matthews, P. C. 2003. Pattern formation on a sphere. Phys. Rev. E, 67, 036206.Google Scholar
McEwan, A. D. 1970. Inertial oscillations in a rotating fluid cylinder. J. Fluid Mech., 40, 603–640.Google Scholar
Meunier, P., Eloy, C., Lagrange, R., and Nadal, F. 2008. A rotating fluid cylinder subject to weak precession. J. Fluid Mech., 599, 405–440.Google Scholar
Moffatt, H. K. 1978. Magnetic field generation in electrically conducting fluids. Cambridge: Cambridge University Press.
Net, M., Garcia, F., and Sanchez, J. 2008. On the onset of low-Prandtl-number convection in rotating spherical shells: non-slip boundary conditions. J. Fluid Mech., 601, 317–337.Google Scholar
Noir, J., Jault, D., and Cardin, P. 2001. Numerical study of the motions within a slowly precessing sphere at low Ekman number. J. Fluid Mech., 437, 283–299.Google Scholar
Noir, J., Cardin, P., Jault, D., and Masson, J. P. 2003. Experimental evidence of nonlinear resonance effects between retrograde precession and the tilt-over mode within a spheroid. Geophys. J. Int., 154, 407–416.Google Scholar
Noir, J., Hemmerlin, F., Wicht, J., Baca, S. M., and Aurnou, J. M. 2009. An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Phys. Earth Planet. Int., 173, 141–152.Google Scholar
Oberbeck, A. 1888. On the phenomenon of motion in the atmosphere. Pages 261–275 of: Sitz. K Önig. Preuss. Akad. Wiss. English translation in Saltzman,1962.
Ogura, Y. and Phillips, N. A. 1962. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173–179.Google Scholar
Poincaré, H. 1885. Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation. Acta Mathematica, 7, 259–380.Google Scholar
Poincaré, H. 1910. Sur la précession des corps déformables. Bull. Astron., 27, 321–356.Google Scholar
Proudman, J. 1916. On the motion of solids in liquids possessing vorticity. Proc. R. Soc. A, 92, 408–424.Google Scholar
Rayleigh, Lord. 1916. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag., 32, 529–546.Google Scholar
Rieutord, M. 1991. Linear theory of rotating fluids using spherical harmonics part II, time-periodic flows. Geophys. Astrophys. Fluid Dyn., 59, 185–208.Google Scholar
Roberts, P. H. 1968. On the thermal instability of a rotating-fluid sphere containing heat sources. Philos. Trans. R. Soc. London Ser. A, 263, 93–117.Google Scholar
Roberts, P. H., and Soward, A. M. 1978. Rotating Fluids in Geophysics. New York: Academic Press.
Roberts, P. H., and Soward, A. M. 1992. Dynamo theory. Annu. Rev. Fluid Mech., 24, 459–512.Google Scholar
Roberts, P. H., and Stewartson, K. 1965. On the motion of a liquid in a spheroidal cavity of a precessing rigid body. II. Proc. Camb. Phil. Soc., 61, 279–288.Google Scholar
Sanchez, J., Garcia, F., and Net, M. 2016. Critical torsional modes of convection in rotating fluid spheres at high Taylor numbers. J. Fluid Mech., 791, R1.Google Scholar
Soward, A. M. 1977. On the finite amplitude thermal instability of a rapidly rotating fluid sphere. Geophys. Astrophys. Fluid Dyn., 9, 19–74.Google Scholar
Spiegel, E. A., and Veronis, G. 1960. On the Boussinesq approximation for a compressible fluid. Astrophys. J., 131, 442–447.Google Scholar
Stewartson, K., and Roberts, P. H. 1963. On the motion of liquid in a spheroidal cavity of a precessing rigid body. J. Fluid Mech., 17, 1–20.Google Scholar
Taylor, G. I. 1921. Experiments with rotating fluids. Proc. R. Soc. A, 100, 114–121.Google Scholar
Tilgner, A. 1999. Driven inertial oscillations in spherical shells. Phys. Rev. E, 59, 1789– 1794.Google Scholar
Tilgner, A. 2005. Precession driven dynamos. Phys. Fluids, 17, 034104.Google Scholar
Tilgner, A. 2007a. Kinematic dynamos with precession driven flow in a sphere. Geophys. Astrophys. Fluid Dyn., 10, 1–9.Google Scholar
Tilgner, A. 2007b. Rotational dynamics of the core. Pages 207–243 of: Schubert, G. (ed.), Treatise on geophysics, vol. 8. Amsterdam: Elsevier B.V.
Tilgner, A., and Busse, F. H. 2001. Fluid flows in precessing spherical shells. J. Fluid Mech., 426, 387–396.Google Scholar
Triana, S. A., Zimmerman, D. S., and Lathrop, D. P. 2012. Precessional states in a laboratory model of the Earth's core. J. Geophys. Res., 117, B04103.Google Scholar
Vantieghem, S. 2014. Inertial modes in a rotating triaxial ellipsoid. Proc. R. Soc. A, 470, doi:10.1098/rspa.2014.0093.Google Scholar
Vantieghem, S., Cebron, D., and Noir, J. 2015. Latitudinal libration driven flows in triaxial ellipsoids. J. Fluid Mech., 771, 193–228.Google Scholar
Vanyo, J. P. 1993. Rotating Fluids in Engineering and Science. Toronto: General Publishing Company.
Vanyo, J., Wilde, P., Cardin, P., and Olson, P. 1995. Experiments on precessing flows in the Earth's liquid core. Geophys. J. Int., 121, 136–142.Google Scholar
Veronis, G. 1959. Cellular convection with finite amplitude in a rotating fluid. J. Fluid Mech., 5, 401–435.Google Scholar
Veronis, G. 1966. Motions at subcritical values of the Rayleigh number in a rotating fluid. J. Fluid Mech., 24, 545–554.Google Scholar
Wei, X., and Tilgner, A. 2013. Stratified precessional flow in spherical geometry. J. Fluid Mech., 718, R2.Google Scholar
Wood, W.W. 1966. An oscillatory disturbance of rigidly rotating fluid. Proc. R. Soc. Lond. A, 293, 181–212.Google Scholar
Wu, C. C., and Roberts, P. H. 2008. A precesionally-driven dynamo in a plane layer. Geophys. Astrophys. Fluid Dyn., 102, 1–19.Google Scholar
Wu, C. C., and Roberts, P. H. 2009. On a dynamo driven by topographic precession. Geophys. Astrophys. Fluid Dyn., 103, 467–501.Google Scholar
Zatman, S., and Bloxham, J. 1997. Torsional oscillations and the magnetic field within the Earth's core. Nature, 388, 760–763.Google Scholar
Zhan, X., Liao, X., Zhu, R., and Zhang, K. 2009. Convection in rotating annular channels heated from below: Part 3. Experimental boundary conditions. Geophys. Astrophys. Fluid Dyn., 103, 443–466.Google Scholar
Zhang, K. 1992. Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech., 236, 535–556.Google Scholar
Zhang, K. 1993. On equatorially trapped boundary inertial waves. J. Fluid Mech., 248, 203–217.Google Scholar
Zhang, K. 1994. On coupling between the Poincaré equation and the heat equation. J. Fluid Mech., 268, 211–229.Google Scholar
Zhang, K. 1995. On coupling between the Poincaré equation and the heat equation: Nonslip boundary condition. J. Fluid Mech., 284, 239–256.Google Scholar
Zhang, K., and Busse, F. H. 1987. On the onset of convection in rotating spherical shells. Geophys. Astrophys. Fluid Dyn., 39, 119–147.Google Scholar
Zhang, K., and Greed, G. 1998. Convection in a rotating annulus: an asymptotic theory and numerical solutions. Phys. Fluids, 10, 2396–2404.Google Scholar
Zhang, K., and Gubbins, D. 1993. Convection in a rotating spherical fluid shell with an inhomogeneous temperature boundary condition at infinite Prandtl number. J. Fluid Mech., 250, 209–232.Google Scholar
Zhang, K., and Liao, X. 2004. A new asymptotic method for the analysis of convection in a rapidly rotating sphere. J. Fluid Mech., 518, 319–346.Google Scholar
Zhang, K., and Liao, X. 2008. On the initial value problem in a rotating circular cylinder. J. Fluid Mech., 610, 425–443.Google Scholar
Zhang, K., and Liao, X. 2009. The onset of convection in rotating circular cylinders with experimental boundary conditions. J. Fluid Mech., 622, 63–73.Google Scholar
Zhang, K., and Roberts, P. H. 1997. Thermal inertial waves in a rotating fluid layer: exact and asymptotic solutions. Phys. Fluids, 9, 1980–1987.Google Scholar
Zhang, K., and Roberts, P. H. 1998. A note on stabilising/destabilising effects of Ekman boundary layers. Geophys. Astrophys. Fluid Dyn., 88, 215–223.Google Scholar
Zhang, K., and Schubert, G. 2000. Magnetohydrodynamics in rapidly rotating spherical systems. Annu. Rev. Fluid Mech., 32, 409–443.Google Scholar
Zhang, K., Earnshaw, P., Liao, X., and Busse, F. H. 2001. On inertial waves in in a rotating fluid sphere. J. Fluid Mech., 437, 103–119.Google Scholar
Zhang, K., Liao, X., and Earnshaw, P. 2004a. On inertial waves and oscillations in a rapidly rotating spheroid. J. Fluid Mech., 504, 1–40.Google Scholar
Zhang, K., Liao, X., and Earnshaw, P. 2004b. The Poincare equation: A new polynomial and its unusual properties. J. Mathe. Phy., 45, 4777–4790.Google Scholar
Zhang, K., Liao, X., and Schubert, G. 2005. Pore water convection within carbonaceous chondrite parent bodies: Temperature-dependent viscosity and flow structure. Phys. Fluids, 17, 086602.Google Scholar
Zhang, K., Liao, X., Zhan, X., and Zhu, R. 2006. Convective instabilities in a rotating vertical Hele-Shaw cell. Phys. Fluids, 18, 124102.Google Scholar
Zhang, K., Liao, X., and Busse, F. H. 2007a. Asymptotic solutions of convection in rapidly rotating non-slip spheres. J. Fluid Mech., 578, 371–380.Google Scholar
Zhang, K., Liao, X., and Busse, F. H. 2007b. Asymptotic theory of inertial convection in a rotating cylinder. J. Fluid Mech., 575, 449–471.Google Scholar
Zhang, K., Liao, X., Zhan, X., and Zhu, R. 2007c. Nonlinear convection in rotating systems: Slip-stick three-dimensional travelling waves. Phys. Rev. E, 75, 055302(R).Google Scholar
Zhang, K., Kong, D., and Liao, X. 2010a. On fluid flows in precessing narrow annular channels: Asymptotic analysis and numerical simulation. J. Fluid Mech., 656, 116–146.Google Scholar
Zhang, K., Chan, K., and Liao, X. 2010b. On fluid flows in precessing spheres in the mantle frame of reference. Phys. Fluids, 22, 116604.Google Scholar
Zhang, K., Chan, K., and Liao, X. 2011. On fluid motion in librating ellipsoids with moderate equatorial eccentricity. J. Fluid Mech., 673, 468–479.Google Scholar
Zhang, K., Chan, K., and Liao, X. 2012. Asymptotic theory of resonant flow in a spheroidal cavity driven by latitudinal libration. J. Fluid Mech., 692, 420–445.Google Scholar
Zhang, K., Chan, K., Liao, X, and Aurnou, J. M. 2013. The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration. J. Fluid Mech., 720, 212–235.Google Scholar
Zhang, K., Chan, K., and Liao, X. 2014. On precessing flow in an oblate spheroid of arbitrary eccentricity. J. Fluid Mech., 743, 358–384.Google Scholar
Zhang, K., Liao, X., and Kong, D. 2015. Inertial convection in a rotating narrow annulus: Asymptotic theory and numerical simulation. Phys. Fluids, 27, 106604.Google Scholar
Zhang, K., Lam, K. and Kong, D. 2017. Asymptotic theory for torsional convection in rotating fluid spheres. J. Fluid Mech., 813. doi: 10.1017/jfm.2017.9.Google Scholar
Zhong, F., Ecke, R. E., and Steinberg, V. 1991. Asymmetric modes and the transition to vortex structure in rotating Rayleigh–Benard convection. Phys. Rev. Lett., 67, 2473– 2476.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Keke Zhang, University of Exeter, Xinhao Liao
  • Book: Theory and Modeling of Rotating Fluids
  • Online publication: 26 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781139024853.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Keke Zhang, University of Exeter, Xinhao Liao
  • Book: Theory and Modeling of Rotating Fluids
  • Online publication: 26 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781139024853.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Keke Zhang, University of Exeter, Xinhao Liao
  • Book: Theory and Modeling of Rotating Fluids
  • Online publication: 26 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781139024853.023
Available formats
×