Skip to main content Accessibility help
×
  • Cited by 53
Publisher:
Cambridge University Press
Online publication date:
May 2017
Print publication year:
2017
Online ISBN:
9781139024853

Book description

A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances in the area and brings researchers and postgraduate students in atmospheres, oceanography, geophysics, astrophysics and engineering to the frontiers of research. Sufficient mathematical and numerical detail is provided in a variety of geometries such that the analysis and results can be readily reproduced, and many numerical tables are included to enable readers to compare or benchmark their own calculations. Traditionally, there are two disjointed topics in rotating fluids: convective fluid motion driven by buoyancy, discussed by Chandrasekhar (1961), and inertial waves and precession-driven flow, described by Greenspan (1968). Now, for the first time in book form, a unified theory is presented for three topics - thermal convection, inertial waves and precession-driven flow - to demonstrate that these seemingly complicated, and previously disconnected, problems become mathematically simple in the framework of an asymptotic approach that incorporates the essential characteristics of rotating fluids.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Aldridge, K. D., and Lumb, L. I. 1987. Inertial waves identified in the Earth's fluid outer core. Nature, 325, 421–423.
Aldridge, K. D., and Stergiopoulos, S. 1991. A technique for direct measurement of timedependent complex eigenfrequencies of waves in fluids. Phys. Fluids, 3, 316–327.
Aldridge, K. D., and Toomre, A. 1969. Axisymmetric inertial oscillations of a fluid in a rotating spherical container. J. Fluid Mech., 37, 307–323.
Aurnou, J. M., and Olson, P. L. 2001. Experiments on Rayleigh–Bénard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. J. Fluid Mech., 430, 283–307.
Bassom, A. P., and Zhang, K. 1998. Finite amplitude thermal inertial waves in a rotating fluid layer. Geophys. Astrophys. Fluid Dyn., 87, 193–214.
Batchelor, G. K. 1953. The condition for dynamical similarity of motions of a frictionless perfect-gas atmosphere. Quart. J. R. Meteor. Soc., 79, 224–235.
Batchelor, G. K. 1967. An introduction to fluid dynamics. Cambridge: Cambridge University Press.
Benjamin, T. B., and Feir, J. 1967. The disintegration of wave trains on deep water. Part. 1. Theory. J. Fluid Mech., 27, 417–430.
Benton, E. R., and Clark, A. 1974. Spin-up. Annu. Rev. Fluid Mech., 6, 257–280.
Boisson, J., Cébron, D. C., Moisy, F., and Cortet, P.-P. 2012. Earth rotation prevents exact solid-body rotation of fluids in the laboratory. Europhys. Lett., 98, 59002.
Boubnov, B. M., and Golitsyn, G. S. 1995. Convection in Rotating Fluids. Dordrecht: Kluwer Academic Publishers.
Boussinesq, J. 1903. Théorie analytique de la chaleur. Vol. 2. Paris: Gauthier-Villars.
Bryan, G. H. 1889. The waves on a rotating liquid spheroid of finite ellipticity. Philos. Trans. R. Soc. London Ser. A, 180, 187–219.
Bullard, E. C. 1949. The magnetic flux within the Earth. Proc. R. Soc., 197, 433–453.
Bullard, E. C., and Gellman, H. 1954. Homogeneous dynamos and terrestrial magnetism. Philos. Trans. R. Soc. London Ser. A, 247, 213–278.
Busse, F. H. 1968. Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech., 33, 739–751.
Busse, F. H. 1970. Thermal instabilities in rapidly rotating systems. J. Fluid Mech., 44, 441–460.
Busse, F. H. 1975. Patterns of convection in spherical shells. J. Fluid Mech., 72, 67–85.
Busse, F. H. 1976. A simple model of convection in Jovian atmosphere. Icarus, 29, 255–260.
Busse, F. H. 1983. A model of mean zonal flows in the major planets. Geophys. Astrophys. Fluid Dyn., 23, 153–174
Busse, F. H. 1994. Convection driven zonal flows and vortices in the major planets. Chaos, 4, 123–134.
Busse, F. H. 2005. Convection in a narrow annular channel rotating about its axis of symmetry. J. Fluid Mech., 537, 145–154.
Busse, F. H. 2010. Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech., 650, 505–512.
Calkins, M. A., Noir, J., Eldredge, J., and Aurnou, J. M. 2010. Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids, 22, 086602.
Carrigan, C. R., and Busse, F. H. 1983. An experimental and theoretical investigation of the onset of convection in rotating spherical shells. J. Fluid Mech., 126, 287–305.
Chamberlain, J. A., and Carrigan, C. R. 1986. An experimental investigation of convection in a rotating sphere subject to time varying thermal boundary conditions. Geophys. Astrophys. Fluid Dyn., 35, 303–327.
Chan, K., Zhang, K., and Liao, X. 2010. An EBE finite element method for simulating nonlinear flows in rotating spheroidal cavities. International Journal for Numerical Methods in Fluids, 63, 395–414.
Chan, K., Zhang, K., and Liao, X. 2011. Simulations of fluid motion in spheroidal planetary cores driven by latitudinal libration. Phys. Earth Planet. Int., 187, 404–415.
Chan, K., He, Y., Zhang, K., and Zou, J. 2014. A finite element analysis on fluid motion in librating triaxial ellipsoids. Numerical Methods for Partial Differential Equations, 30, 1518–1537.
Chandrasekhar, S. 1961. Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press.
Chorin, A. J. 1968. Numerical solutions of Navier–Stokes equations. Math. Comp., 22, 745–762.
Christensen, U. R. 2002. Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech., 470, 115–133.
Clever, R. M., and Busse, F. H. 1979. Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech., 94, 609–627.
Cui, Z., Zhang, K., and Liao, X. 2014. On the completeness of inertial wave modes in rotating annular channels. Geophys. Astrophys. Fluid Dyn., 108, 44–59.
Davies-Jones, R. P., and Gilman, P. A. 1971. Convection in a rotating annulus uniformly heated from below. J. Fluid Mech., 46, 65–81.
Debnath, L., and Mikusinski, P. 1999. Introduction to Hilbert space with applications. Amsterdam: Academic Press.
Dermott, S. F. 1979. Shapes and gravitational moments of satellites and asteroids. Icarus, 37, 575–586.
Dormy, E., Soward, A. M., Jones, C. A., Jault, D., and Cardin, P. 2004. The onset of thermal convection in rotating spherical shells. J. Fluid Mech., 501, 43–70.
Fearn, D. R., Roberts, P. H., and Soward, A. M. 1988. Convection, stability and the dynamo. Pages 60–324 of: Straughan, B., and Galdi, P. (eds), Energy, stability and convection. London: Longman.
Fultz, D. 1959. A note on overstability, and the elastoid–inertia oscillations of Kelvin, Solberg and Bjerknes. J. Atmos. Sci., 16, 199–208.
Gans, R. F. 1970. On the precession of a resonant cylinder. J. Fluid Mech., 41, 865–872.
Gans, R. F. 1984. Dynamics of a near-resonant fluid-filled gyroscope. AIAA J., 22, 1465– 1471.
Gillet, N., and Jones, C. A. 2006. The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder. J. Fluid Mech., 554, 343–369.
Gillet, N., Brito, D., Jault, D., and Nataf, H. C. 2007. Experimental and numerical studies of convection in a rapidly rotating spherical shell. J. Fluid Mech., 580, 83–121.
Gilman, P. A. 1973. Convection in a rotating annulus uniformly heated from below. Part 2. Nonlinear results. J. Fluid Mech., 57, 381–400.
Goldstein, H. F., Knobloch, E., Mercader, I., and Net, M. 1993. Convection in a rotating cylinder. Part 1. Linear theory for moderate Prandtl numbers. J. Fluid Mech., 248, 58– 604.
Goldstein, H. F., Knobloch, E., Mercader, I., and Net, M. 1994. Convection in a rotating cylinder. Part 2. Linear theory for low Prandtl numbers. J. Fluid Mech., 262, 293–324.
Goto, S., Ishii, N., Kida, S., and Nishioka, M. 2007. Turbulence generator using a precessing sphere. Phys. Fluids, 19, 061705.
Gough, D. O. 1969. The anelastic approximation for thermal convection. J. Atmos. Sci., 26, 448–456.
Greenspan, H. P. 1964. On the transient motion of a contained rotating fluid. J. Fluid Mech., 20, 673–696.
Greenspan, H. P. 1968. The theory of rotating fluids. Cambridge: Cambridge University Press.
Greenspan, H. P. 1990. The Theory of Rotating Fluids. Brookline, MA: Breukelen Press.
Gubbins, D., and Roberts, P. H. 1987. Magnetohydrodynamics of the Earth's core. Pages 1–183 of: Jacobs, J. A. (ed.), Geomagnetism, vol. 2. London: Academic Press.
Heimpel, M., and Aurnou, J. 2007. Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn. Icarus, 187, 540–557.
Herrmann, J., and Busse, F. H. 1993. Asymptotic theory of wall-attached convection in a rotating fluid layer. J. Fluid Mech., 255, 183–194.
Hollerbach, R., and Kerswell, R. R. 1995. Oscillatory internal shear layers in rotating and precessing flows. J. Fluid Mech., 298, 327–339.
Hood, P., and Taylor, C. 1974. Finite element methods in flow problems. Huntsville, AL: UAH Press.
Ivers, D. J., Jackson, A., and Winch, D. 2015. Enumeration, orthogonality and completeness of the incompressible coriolis modes in a sphere. J. Fluid Mech., 766, 468–498.
Jackson, A., Constable, C. G., Walker, M. R., and Parker, R. L. 2007. Models of Earth's main magnetic field incorporating flux and radial vorticity constraints. Geophys. J. Int., 171, 133–144.
Jones, C. A. 2011. Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech., 43, 583–614.
Jones, C. A., Soward, A. M., and Mussa, A. I. 2000. The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech., 405, 157–179.
Kelvin, Lord. 1880. Vibrations of a columnar vortex. Phil. Mag., 10, 155–168.
Kerswell, R. R. 1996. Upper bounds on the energy dissipation in turbulent precession. J. Fluid Mech., 321, 335–370.
Kerswell, R. R. 1999. Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. J. Fluid Mech., 382, 283–306.
Kerswell, R. R. 2002. Elliptical instability. Annu. Rev. Fluid Mech., 34, 83–113.
Kerswell, R. R., and Barenghi, C. F. 1995. On the viscous decay-rates of inertial waves in a rotating circular cylinder. J. Fluid Mech., 285, 203–214.
Kida, S. 2011. Steady flow in a rapidly rotating sphere with weak precession. J. Fluid Mech., 680, 150–193.
King, E. M., and Aurnou, J. M. 2013. Turbulent convection in liquid metal with and without rotation. Proc. Natl Acad. Sci. USA, 110, 6688–6693.
Kobine, J. J. 1995. Inertial wave dynamics in a rotating and precessing cylinder. J. Fluid Mech., 303, 233–252.
Kobine, J. J. 1996. Azimuthal flow associated with inertial wave resonance in a precessing cylinder. J. Fluid Mech., 319, 387–406.
Kong, D., Liao, X., and Zhang, K. 2014. The sidewall-localized mode in a resonant precessing cylinder. Phys. Fluids, 26, 051703.
Kong, D., Cui, Z., Liao, X., and Zhang, K. 2015. On the transition from the laminar to disordered flow in a precessing spherical-like cylinder. Geophys. Astrophys. Fluid Dyn., 109, 62–83.
Kudlick, M. D. 1966. On transient motions in a contained, rotating fluid. PhD thesis, Massachusetts Institute of Technology. MIT, USA.
Kuppers, G., and Lortz, D. 1969. Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech., 35, 609–620.
Lagrange, R., Eloy, C., Nadal, F., and Meunier, P. 2008. Instability of a fluid inside a precessing cylinder. Phys. Fluids, 20, 081701.
Lamb, H. 1932. Hydrodynamics. Cambridge: Cambridge University Press.
Li, L., Liao, X., Chan, K. H., and Zhang, K. 2008. Linear and nonlinear instabilities in rotating cylindrical Rayleigh–Bénard convection. Phys. Rev. E, 78, 056303.
Li, L., Liao, X., Chan, K. H., and Zhang, K. 2010. On nonlinear multiarmed spiral waves in slowly rotating fluid systems. Phys. Fluids, 22, 011701.
Liao, X., and Zhang, K. 2006. On the convective excitation of torsional oscillations in rotating system. Astrophys. J., 638, L113–L116.
Liao, X., and Zhang, K. 2009. Inertial oscillation, inertial wave and initial value problem in rotating annular channels. Geophys. Astrophys. Fluid Dyn., 103, 199–222.
Liao, X., and Zhang, K. 2010. A new Legendre-type polynomial and its application to geostrophic flow in rotating fluid spheres. Proc. R. Soc. A, 466, 2203–2217.
Liao, X., and Zhang, K. 2012. On flow in weakly precessing cylinders: The general asymptotic solution. J. Fluid Mech., 709, 610–621.
Liao, X., Zhang, K., and Earnshaw, P. 2001. On the viscous damping of inertial oscillation in planetary fluid interiors. Phys. Earth Planet. Int., 128, 125–136.
Liao, X., Zhang, K., and Chang, Y. 2005. Convection in rotating annular channels heated from below: Part 1. Linear stability and weakly nonlinear mean flows. Geophys. Astrophys. Fluid Dyn., 99, 445–465.
Liao, X., Zhang, K., and Chang, Y. 2006. On boundary-layer convection in a rotating fluid layer. J. Fluid Mech., 549, 375–384.
Lin, Y., Noir, J., and Jackson, A. 2014. Experimental study of fluid flows in a precessing cylindrical annulus. Phys. Fluids, 26, 046604.
Livermore, P., Bailey, L., and Hollerbach, R. 2016. A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell. Nature Sci. Rep., 6, 22812.
Lorenzani, S., and Tilgner, A. 2001. Fluid instabilities in precessing spheroidal cavities. J. Fluid Mech., 447, 111–128.
Lyttleton, R. A. 1953. The stability of rotating liquid masses. Cambridge: Cambridge University Press.
Malkus, W. V. R. 1968. Precession of the Earth as the cause of geomagnetism. Science, 160, 259–264.
Malkus, W. V. R. 1989. An experimental study of global instabilities due to the tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn., 48, 123–134.
Manasseh, R. 1992. Breakdown regimes of inertia waves in a precessing cylinder. J. Fluid Mech., 243, 261–296.
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A., and Holin, I. V. 2007. Large longitude libration of Mercury reveals a molten core. Science, 316, 710–714.
Marqués, F. 1990. On boundary conditions for velocity potentials in confined flows: Application to Couette flow. Phys. Fluids, 2, 729–737.
Mason, R. M., and Kerswell, R. R. 2002. Chaotic dynamics in a strained rotating flow: A precessing plane fluid layer. J. Fluid Mech., 471, 71–106.
Matthews, P. C. 2003. Pattern formation on a sphere. Phys. Rev. E, 67, 036206.
McEwan, A. D. 1970. Inertial oscillations in a rotating fluid cylinder. J. Fluid Mech., 40, 603–640.
Meunier, P., Eloy, C., Lagrange, R., and Nadal, F. 2008. A rotating fluid cylinder subject to weak precession. J. Fluid Mech., 599, 405–440.
Moffatt, H. K. 1978. Magnetic field generation in electrically conducting fluids. Cambridge: Cambridge University Press.
Net, M., Garcia, F., and Sanchez, J. 2008. On the onset of low-Prandtl-number convection in rotating spherical shells: non-slip boundary conditions. J. Fluid Mech., 601, 317–337.
Noir, J., Jault, D., and Cardin, P. 2001. Numerical study of the motions within a slowly precessing sphere at low Ekman number. J. Fluid Mech., 437, 283–299.
Noir, J., Cardin, P., Jault, D., and Masson, J. P. 2003. Experimental evidence of nonlinear resonance effects between retrograde precession and the tilt-over mode within a spheroid. Geophys. J. Int., 154, 407–416.
Noir, J., Hemmerlin, F., Wicht, J., Baca, S. M., and Aurnou, J. M. 2009. An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Phys. Earth Planet. Int., 173, 141–152.
Oberbeck, A. 1888. On the phenomenon of motion in the atmosphere. Pages 261–275 of: Sitz. K Önig. Preuss. Akad. Wiss. English translation in Saltzman,1962.
Ogura, Y. and Phillips, N. A. 1962. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173–179.
Poincaré, H. 1885. Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation. Acta Mathematica, 7, 259–380.
Poincaré, H. 1910. Sur la précession des corps déformables. Bull. Astron., 27, 321–356.
Proudman, J. 1916. On the motion of solids in liquids possessing vorticity. Proc. R. Soc. A, 92, 408–424.
Rayleigh, Lord. 1916. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag., 32, 529–546.
Rieutord, M. 1991. Linear theory of rotating fluids using spherical harmonics part II, time-periodic flows. Geophys. Astrophys. Fluid Dyn., 59, 185–208.
Roberts, P. H. 1968. On the thermal instability of a rotating-fluid sphere containing heat sources. Philos. Trans. R. Soc. London Ser. A, 263, 93–117.
Roberts, P. H., and Soward, A. M. 1978. Rotating Fluids in Geophysics. New York: Academic Press.
Roberts, P. H., and Soward, A. M. 1992. Dynamo theory. Annu. Rev. Fluid Mech., 24, 459–512.
Roberts, P. H., and Stewartson, K. 1965. On the motion of a liquid in a spheroidal cavity of a precessing rigid body. II. Proc. Camb. Phil. Soc., 61, 279–288.
Sanchez, J., Garcia, F., and Net, M. 2016. Critical torsional modes of convection in rotating fluid spheres at high Taylor numbers. J. Fluid Mech., 791, R1.
Soward, A. M. 1977. On the finite amplitude thermal instability of a rapidly rotating fluid sphere. Geophys. Astrophys. Fluid Dyn., 9, 19–74.
Spiegel, E. A., and Veronis, G. 1960. On the Boussinesq approximation for a compressible fluid. Astrophys. J., 131, 442–447.
Stewartson, K., and Roberts, P. H. 1963. On the motion of liquid in a spheroidal cavity of a precessing rigid body. J. Fluid Mech., 17, 1–20.
Taylor, G. I. 1921. Experiments with rotating fluids. Proc. R. Soc. A, 100, 114–121.
Tilgner, A. 1999. Driven inertial oscillations in spherical shells. Phys. Rev. E, 59, 1789– 1794.
Tilgner, A. 2005. Precession driven dynamos. Phys. Fluids, 17, 034104.
Tilgner, A. 2007a. Kinematic dynamos with precession driven flow in a sphere. Geophys. Astrophys. Fluid Dyn., 10, 1–9.
Tilgner, A. 2007b. Rotational dynamics of the core. Pages 207–243 of: Schubert, G. (ed.), Treatise on geophysics, vol. 8. Amsterdam: Elsevier B.V.
Tilgner, A., and Busse, F. H. 2001. Fluid flows in precessing spherical shells. J. Fluid Mech., 426, 387–396.
Triana, S. A., Zimmerman, D. S., and Lathrop, D. P. 2012. Precessional states in a laboratory model of the Earth's core. J. Geophys. Res., 117, B04103.
Vantieghem, S. 2014. Inertial modes in a rotating triaxial ellipsoid. Proc. R. Soc. A, 470, doi:10.1098/rspa.2014.0093.
Vantieghem, S., Cebron, D., and Noir, J. 2015. Latitudinal libration driven flows in triaxial ellipsoids. J. Fluid Mech., 771, 193–228.
Vanyo, J. P. 1993. Rotating Fluids in Engineering and Science. Toronto: General Publishing Company.
Vanyo, J., Wilde, P., Cardin, P., and Olson, P. 1995. Experiments on precessing flows in the Earth's liquid core. Geophys. J. Int., 121, 136–142.
Veronis, G. 1959. Cellular convection with finite amplitude in a rotating fluid. J. Fluid Mech., 5, 401–435.
Veronis, G. 1966. Motions at subcritical values of the Rayleigh number in a rotating fluid. J. Fluid Mech., 24, 545–554.
Wei, X., and Tilgner, A. 2013. Stratified precessional flow in spherical geometry. J. Fluid Mech., 718, R2.
Wood, W.W. 1966. An oscillatory disturbance of rigidly rotating fluid. Proc. R. Soc. Lond. A, 293, 181–212.
Wu, C. C., and Roberts, P. H. 2008. A precesionally-driven dynamo in a plane layer. Geophys. Astrophys. Fluid Dyn., 102, 1–19.
Wu, C. C., and Roberts, P. H. 2009. On a dynamo driven by topographic precession. Geophys. Astrophys. Fluid Dyn., 103, 467–501.
Zatman, S., and Bloxham, J. 1997. Torsional oscillations and the magnetic field within the Earth's core. Nature, 388, 760–763.
Zhan, X., Liao, X., Zhu, R., and Zhang, K. 2009. Convection in rotating annular channels heated from below: Part 3. Experimental boundary conditions. Geophys. Astrophys. Fluid Dyn., 103, 443–466.
Zhang, K. 1992. Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech., 236, 535–556.
Zhang, K. 1993. On equatorially trapped boundary inertial waves. J. Fluid Mech., 248, 203–217.
Zhang, K. 1994. On coupling between the Poincaré equation and the heat equation. J. Fluid Mech., 268, 211–229.
Zhang, K. 1995. On coupling between the Poincaré equation and the heat equation: Nonslip boundary condition. J. Fluid Mech., 284, 239–256.
Zhang, K., and Busse, F. H. 1987. On the onset of convection in rotating spherical shells. Geophys. Astrophys. Fluid Dyn., 39, 119–147.
Zhang, K., and Greed, G. 1998. Convection in a rotating annulus: an asymptotic theory and numerical solutions. Phys. Fluids, 10, 2396–2404.
Zhang, K., and Gubbins, D. 1993. Convection in a rotating spherical fluid shell with an inhomogeneous temperature boundary condition at infinite Prandtl number. J. Fluid Mech., 250, 209–232.
Zhang, K., and Liao, X. 2004. A new asymptotic method for the analysis of convection in a rapidly rotating sphere. J. Fluid Mech., 518, 319–346.
Zhang, K., and Liao, X. 2008. On the initial value problem in a rotating circular cylinder. J. Fluid Mech., 610, 425–443.
Zhang, K., and Liao, X. 2009. The onset of convection in rotating circular cylinders with experimental boundary conditions. J. Fluid Mech., 622, 63–73.
Zhang, K., and Roberts, P. H. 1997. Thermal inertial waves in a rotating fluid layer: exact and asymptotic solutions. Phys. Fluids, 9, 1980–1987.
Zhang, K., and Roberts, P. H. 1998. A note on stabilising/destabilising effects of Ekman boundary layers. Geophys. Astrophys. Fluid Dyn., 88, 215–223.
Zhang, K., and Schubert, G. 2000. Magnetohydrodynamics in rapidly rotating spherical systems. Annu. Rev. Fluid Mech., 32, 409–443.
Zhang, K., Earnshaw, P., Liao, X., and Busse, F. H. 2001. On inertial waves in in a rotating fluid sphere. J. Fluid Mech., 437, 103–119.
Zhang, K., Liao, X., and Earnshaw, P. 2004a. On inertial waves and oscillations in a rapidly rotating spheroid. J. Fluid Mech., 504, 1–40.
Zhang, K., Liao, X., and Earnshaw, P. 2004b. The Poincare equation: A new polynomial and its unusual properties. J. Mathe. Phy., 45, 4777–4790.
Zhang, K., Liao, X., and Schubert, G. 2005. Pore water convection within carbonaceous chondrite parent bodies: Temperature-dependent viscosity and flow structure. Phys. Fluids, 17, 086602.
Zhang, K., Liao, X., Zhan, X., and Zhu, R. 2006. Convective instabilities in a rotating vertical Hele-Shaw cell. Phys. Fluids, 18, 124102.
Zhang, K., Liao, X., and Busse, F. H. 2007a. Asymptotic solutions of convection in rapidly rotating non-slip spheres. J. Fluid Mech., 578, 371–380.
Zhang, K., Liao, X., and Busse, F. H. 2007b. Asymptotic theory of inertial convection in a rotating cylinder. J. Fluid Mech., 575, 449–471.
Zhang, K., Liao, X., Zhan, X., and Zhu, R. 2007c. Nonlinear convection in rotating systems: Slip-stick three-dimensional travelling waves. Phys. Rev. E, 75, 055302(R).
Zhang, K., Kong, D., and Liao, X. 2010a. On fluid flows in precessing narrow annular channels: Asymptotic analysis and numerical simulation. J. Fluid Mech., 656, 116–146.
Zhang, K., Chan, K., and Liao, X. 2010b. On fluid flows in precessing spheres in the mantle frame of reference. Phys. Fluids, 22, 116604.
Zhang, K., Chan, K., and Liao, X. 2011. On fluid motion in librating ellipsoids with moderate equatorial eccentricity. J. Fluid Mech., 673, 468–479.
Zhang, K., Chan, K., and Liao, X. 2012. Asymptotic theory of resonant flow in a spheroidal cavity driven by latitudinal libration. J. Fluid Mech., 692, 420–445.
Zhang, K., Chan, K., Liao, X, and Aurnou, J. M. 2013. The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration. J. Fluid Mech., 720, 212–235.
Zhang, K., Chan, K., and Liao, X. 2014. On precessing flow in an oblate spheroid of arbitrary eccentricity. J. Fluid Mech., 743, 358–384.
Zhang, K., Liao, X., and Kong, D. 2015. Inertial convection in a rotating narrow annulus: Asymptotic theory and numerical simulation. Phys. Fluids, 27, 106604.
Zhang, K., Lam, K. and Kong, D. 2017. Asymptotic theory for torsional convection in rotating fluid spheres. J. Fluid Mech., 813. doi: 10.1017/jfm.2017.9.
Zhong, F., Ecke, R. E., and Steinberg, V. 1991. Asymmetric modes and the transition to vortex structure in rotating Rayleigh–Benard convection. Phys. Rev. Lett., 67, 2473– 2476.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.