Published online by Cambridge University Press: 05 July 2011
Abstract
We present a derivation of the continuous and discrete Painlevé equations and then proceed to establish a parallel between the special properties these equations possess, and which are related to their integrable character. The ultradiscrete forms of Painlevé equations are then derived and we show that their properties follow closely the ones of their continuous and discrete counterparts.
Introduction
Deriving integrable systems is a (very) delicate business. In the absence of a general, constructive theory the usual approach to discovering new integrable equations is to try to construct specific examples. Sometimes they are suggested by physical models, the KdV equation being the prototype of such a system. Once a sufficient number of examples are obtained one can formulate conjectures and proceed to propose integrability criteria. Painlevé equations are a minor exception to this approach. Their discovery is due to the inspired intuition of Painlevé [23]. He was faced with the problem of defining new functions from the solutions of differential equations, a challenge set by Picard [25], who thought that this would have been impossible for second-order equations. This pessimistic attitude was due to the fact that nonlinear differential equations possess multivaluedness-inducing singularities, the position of which depends on the initial conditions, thus making impossible any uniformisation treatment. The masterful solution of Painlevé was to look only for equations free of these “bad” singularities.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.