Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T19:46:22.233Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 August 2022

Wolfgang Moritz
Affiliation:
Ludwig-Maximilians-Universität Munchen
Michel A. Van Hove
Affiliation:
Hong Kong Baptist University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Friedrich, W., Knipping, P., and von Laue, M., “Interferenz-Erscheinungen bei Röntgenstrahlen” (transl.: “Interference Phenomena with X-rays”), Sitzungsberichte der Königlichen Bayerischen Akademie der Wissenschaften Math. Phys. Kl., Band 1912, 14, pp. 303322, 1912.Google Scholar
Bragg, W. L., “The Diffraction of Short Electromagnetic Waves by a Crystal”, Proc. Cambridge Philos. Soc., vol. 17, pp. 4357, 1913.Google Scholar
Golovchenko, J. A., Patel, J. R., Kaplan, D. R., Cowan, P. L., and Bedzyk, M. J., “Solution to the Surface Registration Problem Using X-ray Standing Waves”, Phys. Rev. Lett., vol. 49, pp. 560563, 1982.Google Scholar
Eisenberger, P. and Marra, W. C., “X-ray Diffraction Study of the Ge(001) Reconstructed Surface”, Phys. Rev. Lett., vol. 46, pp. 10811084, 1981.Google Scholar
Davisson, C. and Germer, L. H., “The Scattering of Electrons by a Single Crystal of Nickel”, Nature, vol. 119, pp. 558560, 1927.Google Scholar
Davisson, C. and Germer, L. H., “Diffraction of Electrons by a Crystal of Nickel”, Phys. Rev., vol. 30, pp. 705740, 1927.Google Scholar
Thomson, G. P. and Reid, A., “Diffraction of Cathode Rays by a Thin Film”, Nature, vol. 119, pp. 890890, 1927.Google Scholar
Pendry, J. B., Low Energy Electron Diffraction: The Theory and its Application to Determination of Surface Structure, Academic Press, London, 1974, out of print.Google Scholar
Clarke, L. J., Surface Crystallography: An Introduction to Low Energy Electron Diffraction, Wiley, Chichester, 1985, out of print.Google Scholar
Van Hove, M. A., Weinberg, W. H., and Chan, C.-M., Low-Energy Electron Diffraction: Experiment, Theory and Surface Structure Determination, Springer, Berlin, 1986, out of print.Google Scholar
Feidenhans’l, R., “Surface Structure Determination by X-ray Diffraction”, Surf. Sci. Rep., vol. 10, pp. 105188, 1989.Google Scholar
Robinson, I. K., “Surface Crystallography”, in Handbook on Synchrotron Radiation, eds. Moncton, D. E. and Brown, G. S., Elsevier, Amsterdam, 1991, vol. III, ch. 7, pp. 221266.Google Scholar
Stierle, A. and Vlieg, E., “Surface‐Sensitive X‐Ray Diffraction Methods”, in Modern Diffraction Methods, eds. Mittemeijer, E. J. and Welzel, U., Wiley-VCH, Weinheim, 2013, ch. 8, pp. 221257.Google Scholar
Zhou, X.-L. and Chen, S.-H., “Theoretical Foundation of X-ray and Neutron Reflectometry”, Phys. Rep., vol. 257, pp. 223348, 1995.Google Scholar
Symmetry Relations between Space Groups”, in International Tables of Crystallography, vol. A1, eds. Wondratschek, H. and Müller, U., Kluwer Academic Publishers, Dordrecht, 2004.Google Scholar
Giacovazzo, C., ed., Fundamentals of Crystallography, Oxford University Press, Oxford, 1992.Google Scholar
Shmueli, U., Theories and Techniques of Crystal Structure Determination, Oxford University Press, Oxford, 2007.Google Scholar
Clegg, W., ed., Crystal Structure Analysis, Principles and Practice, Oxford University Press, Oxford, 2009.Google Scholar
Glusker, J. P. and Trueblood, K. N., Crystal Structure Analysis, Oxford University Press, Oxford, 2010.Google Scholar
Hermann, K., Crystallography and Surface Structure: An Introduction for Surface Scientists and Nanoscientists, 2nd ed., Wiley, Weinheim, 2016.CrossRefGoogle Scholar
Grosse-Kunstleve, R. W., Sauter, N. K., and Adams, P. D., “Numerically Stable Algorithms for the Computation of Reduced Unit Cells”, Acta Cryst., vol. A60, pp. 16, 2004.Google Scholar
Wood, E. A., “Vocabulary of Surface Crystallography”, J. Appl. Phys., vol. 35, pp. 13061312, 1964.Google Scholar
Moritz, W., Landskron, J., and Deschauer, M., “Perspectives for Surface Structure Analysis with Low Energy Electron Diffraction”, Surf. Sci., vol. 603, pp. 13061314, 2009.Google Scholar
Meyerheim, H. L., Gloege, T., and Maltor, H., “Surface X-ray Diffraction on Large Organic Molecules: Thiouracil on Ag(111)”, Surf. Sci. Lett., vol. 442, pp. L1029L1035, 1999.Google Scholar
Lang, B., Joyner, R. W., and Somorjai, G. A., “Low Energy Electron Diffraction Studies of Chemisorbed Gases on Stepped Surfaces of Platinum”, Surf. Sci., vol. 30, pp. 454474, 1972.CrossRefGoogle Scholar
Van Hove, M. A. and Somorjai, G. A., “A New Microfacet Notation for High-Miller-Index Surfaces of Cubic Materials with Terrace, Step and Kink Structures”, Surf. Sci., vol. 92, pp. 489518, 1980.Google Scholar
Sands, D. E., Vectors and Tensors in Crystallography, Addison-Wesley, Boston, 1982.Google Scholar
Balsac program. Available at: www.fhi-berlin.mpg.de/KHsoftware/Balsac/index.html, last accessed 2 April 2022.Google Scholar
CRYSCON program. Available at: www.shapesoftware.com/00_Website_Homepage/, last accessed 2 April 2022.Google Scholar
Seah, M. P. and Dench, W. A., “Quantitative Electron Spectroscopy of Surfaces: A Standard Data Base for Electron Inelastic Mean Free Paths in Solids”, Surf. Interface Anal., vol. 1, pp. 211, 1979.Google Scholar
Ibach, H., “Surfaces in Ultrahigh Vacuum”, in Physics of Surfaces and Interfaces, Chapter 2.2, Springer-Verlag, Berlin, 2006.Google Scholar
Pentcheva, R., Moritz, W., Rundgren, J., Frank, S., Schrupp, D., and Scheffler, M., “A Combined DFT/LEED-Approach for Complex Oxide Surface Structure Determination: Fe3O4(001)”, Surf. Sci., vol. 602, pp. 12991305, 2008.CrossRefGoogle Scholar
Heilmann, P., Lang, E., Heinz, K., and Müller, K., “Fast LEED-Intensity Measurements with a Computer Controlled Television System”, Appl. Phys., vol. 9, pp. 247251, 1976.Google Scholar
Scheithauer, U., Meyer, G., and Henzler, M., “A New LEED Instrument for Quantitative Spot Profile Analysis”, Surf. Sci., vol. 178, pp. 441451, 1986.Google Scholar
Telieps, W. and Bauer, E., “An analytical reflection and emission UHV surface electron microscope”, Ultramicroscopy, vol. 17, pp. 5766, 1985.Google Scholar
Yu, D., Math, Ch., Meier, M., Escher, M., Rangelov, G., and Donath, M., “Characterisation and application of a SPLEED–based spin polarisation analyser”, Surf. Sci., vol. 601, pp. 58035808, 2007.Google Scholar
Dake, L. S., King, D. E., Pitts, J. R., and Czanderna, A. W., “Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis”, in Methods in Surface Characterisation, Czanderna, A. W., Madey, T. E. and Powell, C. J., eds., Kluwer Academic Publishers, New York, 2002, vol. 5, ch. 3, pp. 97273.Google Scholar
Becker, C., “UHV Surface Preparation Methods”, in Encyclopedia of Interfacial Chemistry: Surface Science, Wandelt, K., ed., Elsevier, Amsterdam, 2015, vol. 1.1, pp. 580590.Google Scholar
Crotti, C., Farnetti, E., Celestino, T., and Fontana, S., “Preparation of Solid-State Samples of a Transition Metal Coordination Compound for Synchrotron Radiation Photoemission Studies”, J. Electr. Spectr. Rel. Phen., vol. 128, pp. 141157, 2003.Google Scholar
Sterrer, M. and Freund, H.-J., “Surface Science Approach to Catalyst Preparation Using Thin Oxide Films as Substrates”, in Encyclopedia of Interfacial Chemistry: Surface Science, Wandelt, K., ed., Elsevier, Amsterdam, 2018, pp. 632642.Google Scholar
Lübbe, M. and Moritz, W., “A LEED Analysis of the Clean Surfaces of α-Fe2O3(0001) and α-Cr2O3(0001) Bulk Single Crystals”, J. Phys.: Condens. Matter, vol. 21, p. 134010, 2009.Google Scholar
Cunningham, S. L. and Weinberg, W. H., “Determining the Angles of Incidence in a LEED Experiment”, Rev. Sci. Instrum., vol. 49, pp. 752755, 1978.Google Scholar
Hove, M. A. Van, Weinberg, W. H., and Chan, C.-M., Low-Energy Electron Diffraction: Experiment, Theory and Surface Structure Determination, Berlin, Springer, 1986, ch. 2.6.Google Scholar
Price, G. P., “Techniques for Very Low Energy Electron Diffraction”, Rev. Sci. Instrum., vol. 51, pp. 605609, 1980.Google Scholar
Sobrero, A. C. and Weinberg, W. H., “Unified Approach to Photographic Methods for Obtaining the Angles of Incidence in Low-Energy Electron Diffraction”, Rev. Sci. Instrum., vol. 53, pp. 15661572, 1982.Google Scholar
Sojka, F., Meissner, M., Zwick, Ch., Forker, R., and Fritz, T., “Determination and Correction of Distortions and Systematic Errors in Low-Energy Electron Diffraction”, Rev. Sci. Instrum., vol. 84, p. 015111, 2013.Google Scholar
Sojka, F., Meissner, M., Zwick, Ch., Forker, R., Vyshnepolsky, M., Klein, C., Horn-von Hoegen, M., and Fritz, T., “To Tilt or Not to Tilt: Correction of the Distortion Caused by Inclined Sample Surfaces in Low-Energy Electron Diffraction”, Ultramicroscopy, vol. 133, pp. 3540, 2013.Google Scholar
Klein, C., Nabbefeld, T., Hattab, H., Meyer, D., Jnawali, G., Kammler, M., Meyer zu Heringdorf, F.-J., Golla-Franz, A., Müller, B. H., Schmidt, Th., Henzler, M., and Horn-von Hoegen, M., “Lost in Reciprocal Space? Determination of the Scattering Condition in Spot Profile Analysis Low-Energy Electron Diffraction”, Rev. Sci. Instrum., vol. 82, p. 035111, 2011.Google Scholar
Henzler, M., “LEED-Investigation of Step Arrays on Cleaved Germanium (111) Surfaces”, Surf. Sci., vol. 19, pp. 159171, 1970.Google Scholar
Schindler, K. M., Huth, M., and Widdra, W., “Improved Extraction of I–V Curves from Low-Energy Electron Diffraction Images”, Chem. Phys. Lett., vol. 532, pp. 116118, 2012.Google Scholar
Moritz, W., Landskron, J., and Deschauer, M., “Perspectives for Surface Structure Analysis with Low Energy Electron Diffraction”, Surf. Sci., vol. 603, pp. 13061314, 2009.CrossRefGoogle Scholar
Deschauer, M., “LEED-Strukturanalyse organischer Molekülschichten: 2-Thiouracil auf Ag(111)”, Dissertation, University of Munich, Dept. of Earth and Environmental Sciences, Germany, 2000.Google Scholar
Park, R. L., Houston, J. E., and Schreiner, D. G., “The LEED Instrument Response Function”, Rev. Sci. Instrum., vol. 42, pp. 6065, 1971.Google Scholar
Wang, G.-C. and Lagally, M. G., “Quantitative Island Size Determination in the Chemisorbed Layer: W(110)p(2 × 1)-O”, Surf. Sci., vol. 81, pp. 6989, 1979.CrossRefGoogle Scholar
Lu, T.-M. and Lagally, M.G., “The Resolving Power of a Low-Energy Electron Diffractometer and the Analysis of Surface Defects”, Surf. Sci., vol. 99, pp. 695713, 1980.Google Scholar
Welkie, D. G. and Lagally, M. G., “Investigation of the Instrumental Response of a Vidicon based Low Energy Electron Diffraction System”, Appl. Surf. Sci., vol. 3, pp. 272292, 1979.Google Scholar
Comsa, G., “Coherence Length and/or Transfer Width”, Surf. Sci., vol. 81, pp. 5768, 1979.Google Scholar
Henzler, M., “Atomic Steps on Single Crystals: Experimental Methods and Properties”, Appl. Phys., vol. 9, pp. 1117, 1976.Google Scholar
Henzler, M., “LEED Studies of Defects at Surfaces and Interfaces”, Surf. Sci., vol. 168, pp. 744750, 1986.Google Scholar
Specs GmbH, Berlin, Germany, ErLEED 100/150, Reverse View LEED Optics, https://www.specs-group.com/, last accessed 5 April 2022.Google Scholar
Scienta Omicron, Uppsala, Sweden and Taunusstein, Germany, Femto-LEED with Integral Shutter Model DLD-L800, www.scientaomicron.com/en/Components/LEED-RHEED/LEED-800-MCP, last accessed 2 April 2022.Google Scholar
OCI Vacuum Microengineering, Inc., Ontario, Canada. Femto-LEED with Integral Shutter Model DLD-L800, http://ocivm.com/leed_aes_spectrometers.html#Femto-LEED-ISH, last accessed 2 April 2022.Google Scholar
Seidel, C., Poppensieker, J., and Fuchs, H., “Real-Time Monitoring of Phase Transitions of Vacuum Deposited Organic Films by Molecular Beam Deposition LEED”, Surf. Sci., vol. 408, pp. 223231, 1998.Google Scholar
Horn-von Hoegen, M., “Growth of Semiconductor Layers Studied by Spot Profile Analysing Low Energy Electron Diffraction”, Z. Krist., vol. 214, pp. 591629 and 684–721, 1999.Google Scholar
Dr. Kury, Peter, out-of-the-box systems GmbH, Nierenhofer Strasse 68a, 45257 Essen, Germany, www.spa-leed.com, last accessed 2 April 2022.Google Scholar
Kirschbaum, P., Brendel, L., Roos, K. R., Horn-von Hoegen, M., and Meyer zu Heringdorf, F.-J., “Decay of Isolated Hills and Saddles on Si(001)”, Mater. Res. Express, vol. 3, p. 085011, 2016.Google Scholar
Held, G., Uremovic, S., Stellwag, C., and Menzel, D., “A Low-Energy Electron Diffraction Data Acquisition System for Very Low Electron Doses Based upon a Slow Scan Charge Coupled Device Camera”, Rev. Sci. Instr., vol. 67, pp. 378383, 1996.Google Scholar
Kubsky, S., Borucki, L., Gorris, F., Becker, H. W., Rolfs, C., Schulte, W. H., Baumvol, I. J. R., and Stedile, F. C., “Interconnected UHV Facilities for Materials Preparation and Analysis”, Nuclear Instr. Methods Phys. Res. A, vol. 435, pp. 514522, 1999.Google Scholar
Kakefuda, Y., Yamashita, Y., Mukai, K., and Yoshinobu, J., “Compact UHV System for Fabrication and In Situ Analysis of Electron Beam Deposited Structures Using a Focused Low Energy Electron Beam”, Rev. Sci. Instrum., vol. 77, p. 053702, 2006.Google Scholar
Pesty, F. and Garoche, P., “Improving the Coherence of a Low-Energy Electron Beam by Modulation”, Appl. Phys., vol. 94, pp. 79107913, 2003.Google Scholar
Mizuno, S., Rahman, F., and Iwanaga, M., “Low-Energy Electron Diffraction Patterns Using Field-Emitted Electrons from Tungsten Tips”, Jpn. J. Appl. Phys., vol. 45, pp. L178L209, 2006.Google Scholar
Janzen, A., Krenzer, B., Zhou, P., von der Linde, D., and Horn-von Hoegen, M., “Ultrafast Electron Diffraction at Surfaces after Laser Excitation”, Surf. Sci., vol. 600, pp. 40944098, 2006.Google Scholar
Wall, S., Krenzer, B., Wippermann, S., Sanna, S., Klasing, F., Hanisch-Blicharski, A., Kammler, M., Schmidt, W. G., and Horn-von Hoegen, M., “An Atomistic Picture of Charge Density Wave Formation at Surfaces”, Phys. Rev. Lett., vol. 109, p. 186101, 2012.Google Scholar
Hanisch-Blicharski, A., Janzen, A., Krenzer, B., Wall, S., Klasing, F., Kalus, A., Frigge, T., Kammler, M., and Horn-von Hoegen, M., “Ultra-fast Electron Diffraction at Surfaces: From Nanoscale Heat Transport to Driven Phase Transitions”, Ultramicroscopy, vol. 127, pp. 28, 2013.Google Scholar
Hafke, B., Witte, T., Brand, C., Duden, Th., and Horn-von Hoegen, M., “Pulsed Electron Gun for Electron Diffraction at Surfaces with Femtosecond Temporal Resolution and High Coherence Length”, Rev. Sci. Instr., vol. 90, p. 045119, 2019.Google Scholar
Gulde, M., Schweda, S., Storeck, G., Maiti, M., Yu, H. K., Wodtke, A. M., Schäfer, S., and Ropers, C., “Ultrafast Low-Energy Electron Diffraction in Transmission Resolves Polymer/Graphene Superstructure Dynamics”, Science, vol. 345, pp. 200204, 2014.Google Scholar
Nibbering, E. T. J., “Low-Energy Electron Diffraction at Ultrafast Speeds”, Science, vol. 345, pp. 137138, 2014.Google Scholar
Storeck, G., Vogelgesang, S., Sivis, M., Schäfer, S., and Ropersa, C., “Nanotip-based Photoelectron Microgun for Ultrafast LEED”, Struct. Dyn., vol. 4, p. 044024, 2017.Google Scholar
Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J., and Zamora, F., “2D Materials: To Graphene and Beyond”, Nanoscale, vol. 3, pp. 2030, 2011.Google Scholar
Stahl, U., Gador, D., Soukopp, A., Fink, R., and Umbach, E., “Coverage-Dependent Superstructures in Chemisorbed NTCDA Monolayers: A Combined LEED and STM Study”, Sur. Sci., vol. 414, pp. 423434, 1998.Google Scholar
LEEDpat, graphical LEED pattern simulator, PC-based software tool to visualize and analyze LEED spot patterns of well-ordered substrates and overlayers, available for download at www.fhi-berlin.mpg.de/KHsoftware/LEEDpat/ where more information is available (executable for Windows; by Hermann, K. and Van Hove, M. A.), last accessed 2 April 2022.Google Scholar
Sojka, F., Meissner, M., Zwick, Ch., Forker, R., and Fritz, T., “Determination and Correction of Distortions and Systematic Errors in Low-Energy Electron Diffraction”, Rev. Sci. Instr., vol. 84, p. 015111, 2013.Google Scholar
Sojka, F., Meissner, M., Zwick, Ch., Forker, R., Vyshnepolsky, M., Klein, C., Horn-von Hoegen, M., and Fritz, T., “To Tilt or Not to Tilt: Correction of the Distortion Caused by Inclined Sample Surfaces in Low-Energy Electron Diffraction”, Ultramicroscopy, vol. 133, pp. 3540, 2013.Google Scholar
Glöckler, K., Seidel, C., Soukopp, A., Sokolowski, M., Umbach, E., Böhringer, M., Berndt, R., and Schneider, W.-D., “Highly Ordered Structures and Submolecular Scanning Tunnelling Microscopy Contrast of PTCDA and DM-PBDCI Monolayers on Ag (111) and Ag (110)”, Surf. Sci., vol. 405, pp. 120, 1998.Google Scholar
Horn-von Hoegen, M., “Growth of Semiconductor Layers Studied by Spot Profile Analysing Low Energy Electron Diffraction”, Z. Krist., vol. 214, pp. 591629 and 684–721, 1999.Google Scholar
Chen, Q. and Richardson, N. V., “Surface Facetting Induced by Adsorbates”, Progr. Surf. Sci., vol. 73, pp. 5977, 2003.Google Scholar
Tegenkamp, C., “Vicinal Surfaces for Functional Nanostructures”, J. Phys.: Condens. Matter, vol. 21, p. 013002, 2009.Google ScholarPubMed
Madey, T. E., Nien, C.-H., Pelhos, K., Kolodziej, J. J., Abdelrehim, I. M., and Tao, H.-S., “Faceting Induced by Ultrathin Metal Films: Structure, Electronic Properties and Reactivity”, Surf. Sci., vol. 438, pp. 191206, 1999.Google Scholar
Hermann, K., Crystallography and Surface Structure: An Introduction for Surface Scientists and Nanoscientists, 2nd ed., Wiley, Weinheim, 2016, ch. 4.2, p. 205.Google Scholar
Reinecke, N. and Taglauer, E., “The Kinetics of Oxygen-Induced Faceting of Cu(115) and Cu(119) Surfaces”, Surf. Sci., vol. 454–456, pp. 94100, 2000.Google Scholar
Zeppenfeld, P., Kern, K., David, R., and Comsa, G., “Diffraction from Domain-Wall Systems”, Phys. Rev. B, vol. 38, pp. 39183924, 1988.Google Scholar
Timmer, F. and Wollschläger, J., “Effects of Domain Boundaries on the Diffraction Patterns of One-Dimensional Structures”, Condens. Matter, vol. 2, p. 7, 2017.Google Scholar
Hämäläinen, S. K., Boneschanscher, M. P., Jacobse, P. H., Swart, I., Pussi, K., Moritz, W., Lahtinen, J., Liljeroth, P., and Sainio, J.: “Structure and Local Variations of the Graphene Moiré on Ir(111)”, Phys. Rev. B, vol. 88, p. 201406(R), 2013.Google Scholar
Zhu, X., Guo, J., Zhang, J., and Plummer, E. W., “Misconceptions Associated with the Origin of Charge Density Waves”, Adv. Phys.: X, vol. 2, pp. 622640, 2017.Google Scholar
He, R., Okamoto, J., Ye, Z., Ye, G., Anderson, H., Dai, X., Wu, X., Hu, J., Liu, Y., Lu, W., Sun, Y., Pasupathy, A. N., and Tsen, A. W., “Distinct Surface and Bulk Charge Density Waves in Ultrathin 1T−TaS2”, Phys. Rev. B, vol. 94, p. 201108(R), 2016.Google Scholar
Pendry, J. B., Low Energy Electron Diffraction, Academic, London, 1974.Google Scholar
Tong, S. Y., “Theory of Low Energy Electron Diffraction”, Progr. Surf. Sci., vol. 7, pp. 148, 1975.Google Scholar
Van Hove, M. A., Weinberg, W. H., and Chan, C.-M., Low-Energy Electron Diffraction: Experiment, Theory and Structural Determination, Springer, Berlin, 1986.Google Scholar
Tuan, D. F.-T. and Loar, G. W., “Corrections of Overlapping Spheres in the Self-consistent Field Xα Scattered-Wave Method”, J. Mol. Struct., vol. 223, pp. 123148, 1990.Google Scholar
Rundgren, J., “Optimized Surface-Slab Excited-State Muffin-Tin Potential and Surface Core Level Shifts”, Phys. Rev. B, vol. 68, p. 125405, 2003.Google Scholar
Nagano, S. and Tong, S. Y., “Multiple-Scattering Theory of Low-Energy Electron Diffraction for a Nonspherical Scattering Potential”, Phys. Rev. B, vol. 32, pp. 65626570, 1985.Google Scholar
Peetz, J.-V. and Schattke, W., “Non-Muffin-Tin Atomic Scattering-Matrices for Semiconductor LEED-Calculations”, J. Electr. Spectr. Rel. Phen., vol. 68, pp. 167173, 1994.Google Scholar
Rubner, O., Kottcke, M., and Heinz, K., “Tensor LEED for the Approximation of Non-spherical Atomic Scattering”, Surf. Sci., vol. 340, pp. 172178, 1995.Google Scholar
Joly, Y., “Finite-Difference Method for the Calculation of Low Energy Electron Diffraction”, Phys. Rev. Lett., vol. 68, pp. 950953, 1992.Google Scholar
Gavaza, G. M., Yu, Z. X., Tsang, L., Chan, C. H., Tong, S. Y., and Van Hove, M. A., “Theory of Low-Energy Electron Diffraction for Detailed Structural Determination of Nanomaterials: Finite-Size and Disordered Structures”, Phys. Rev. B, vol. 75, p. 235403, 2007.CrossRefGoogle Scholar
Gavaza, G. M., Yu, Z. X., Tsang, L., Chan, C. H., Tong, S. Y., and Van Hove, M. A., “Efficient Calculation of Electron Diffraction for the Structural Determination of Nanomaterials”, Phys. Rev. Lett., vol. 97, p. 055505, 2006.Google Scholar
Gavaza, G. M., Yu, Z. X., Tsang, L., Chan, C. H., Tong, S. Y., and Van Hove, M. A., “Theory of Low-Energy Electron Diffraction for Detailed Structural Determination of Nanomaterials: Ordered Structures”, Phys. Rev. B, vol. 75, p. 014114, 2007.Google Scholar
Gavaza, G. M., Yu, Z. X., Van Hove, M. A., and Tong, S. Y., “Theory of Low-Energy Electron Diffraction for Nanomaterials: Subclusters, Automated Searches”, J. Phys. Condens. Matter, vol. 20, p. 304202, 2008.Google Scholar
Spence, J. C., Poon, H. C., and Saldin, D. K., “Convergent-Beam Low Energy Electron Diffraction (CBLEED) and the Measurement of Surface Dipole Layers”, Microsc. Microanal., vol. 10, pp. 128133, 2004.Google Scholar
Steinwand, E., Longchamp, J.-N., and Fink, H.-W., “Coherent Low-Energy Electron Diffraction on Individual Nanometer Sized Objects”, Ultramicroscopy, vol. 111, pp. 282284, 2011.Google Scholar
Telieps, W. and Bauer, E., “An Analytical Reflection and Emission UHV Surface Electron Microscope”, Ultramicroscopy, vol. 17, pp. 5766, 1985. See https://elmitec.de/Users_List for installed instruments and applications, last accessed 2 April 2022.Google Scholar
Kakefuda, Y., Yamashita, Y., Mukai, K., and Yoshinobu, J., “Compact UHV System for Fabrication and In Situ Analysis of Electron Beam Deposited Structures Using a Focused Low Energy Electron Beam”, Rev. Sci. Instrum., vol. 77, p. 053702, 2006.Google Scholar
Mizuno, S., Rahman, F., and Iwanaga, M., “Low-Energy Electron Diffraction Patterns Using Field-Emitted Electrons from Tungsten Tips”, Jpn. J. Appl. Phys., part 2, vol. 45, p. L178, 2006.Google Scholar
Barret, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and Van der Vorst, H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed., SIAM, Philadelphia, PA, 1994, vol. 1, ch. 2.3.1, p. 14.Google Scholar
Tsang, L. and Li, Q., “Wave Scattering with UV Multilevel Partitioning Method for Volume Scattering by Discrete Scatterers”, Microwave Opt. Technol. Lett., vol. 41, pp. 354360, 2004.Google Scholar
Saldin, D. K. and Pendry, J. B., “The Cluster Approach to LEED Calculations”, Surf. Sci., vol. 162, pp. 941944, 1985.Google Scholar
Van Hove, M. A., Moritz, W., Over, H., Rous, P. J., Wander, A., Barbieri, A., Materer, N., Starke, U., and Somorjai, G. A., “Automated Determination of Complex Surface Structures by LEED”, Surf. Sci. Rep., vol. 19, pp. 191229, 1993.Google Scholar
Kambe, K., “Theory of Low-Energy Electron Diffraction I. Application of the Cellular Method to Monatomic Layers”, Z. Naturforsch., vol. 22a, pp. 322330, 1967.Google Scholar
Kambe, K., “Theory of Electron Diffraction by Crystals I. Green’s Function and Integral Equation”, Z. Naturforsch., vol. 22a, pp. 422431, 1967.Google Scholar
Kambe, K., “Theory of Low-Energy Electron Diffraction II. Cellular Method for Complex Monolayers and Multilayer”, Z. Naturforsch., vol. 23a, pp. 12801294, 1968.Google Scholar
Rous, P. J. and Pendry, J. B., “Diffuse LEED from Simple Stepped Surfaces”, Surf. Sci., vol. 173, pp. 119, 1986.Google Scholar
Jepsen, D. W., “New Transfer-Matrix Method for Low-Energy-Electron Diffraction and Other Surface Electronic-Structure Problems”, Phys. Rev. B, vol. 22, pp. 57015715, 1980.Google Scholar
Pinkava, P. and Crampin, S., “On the Calculation of LEED Spectra from Stepped Surfaces”, Surf. Sci., vol. 233, pp. 2734, 1990.Google Scholar
Zhang, X.-G. and Gonis, A., “New, Real-Space, Multiple-Scattering-Theory Method for the Determination of Electronic Structure”, Phys. Rev. Lett., vol. 62, 11611164, 1989.Google Scholar
MacLaren, J. M., Zhang, X.-G., and Gonis, A., “Multiple-Scattering Solutions to the Schrödinger Equation for Semi-infinite Layered Materials”, Phys. Rev. B, vol. 40, pp. 99559958, 1989.Google Scholar
Zhang, X.-G., Van Hove, M. A., Somorjai, G. A., Rous, P. J., Tobin, D., Gonis, A., MacLaren, J. M., Heinz, K., Michl, M., Lindner, H., Müller, K., Ehsasi, M., and Block, J. H., “Efficient Determination of Multilayer Relaxation in the Pt(210) Stepped and Densely Kinked Surface”, Phys. Rev. Lett., vol. 67, pp. 12981301, 1991.Google Scholar
Zhang, X.-G., Rous, P. J., MacLaren, J. M., Gonis, A., Van Hove, M. A., and Somorjai, G. A., “A Real-Space Multiple Scattering Theory of Low-Energy Electron Diffraction: A New Approach for the Structure Determination of Stepped Surfaces”, Surf. Sci., vol. 239, pp. 103118, 1990.Google Scholar
Moritz, W., “Effective Calculation of LEED Iintensities Using Symmetry Adapted Functions”, J. Phys. C, vol. 17, pp. 353362, 1984.Google Scholar
Bradley, C. J. and Cracknell, A. P., The Mathematical Theory of Symmetry in Solids, Clarendon, Oxford, 1972.Google Scholar
Heinz, K., Kottcke, M., Löffler, U., and Döll, R., “Recent Advances in LEED Surface Crystallography”, Surf. Sci., vol. 357–358, pp. 19, 1996.Google Scholar
Rous, P. J. and Pendry, J. B., “Tensor LEED I: A Technique for High Speed Surface Structure Determination by Low Energy Electron Diffraction. TLEED l”, Comp. Phys. Comm., vol. 54, pp. 137156, 1989.Google Scholar
Rous, P. J. and Pendry, J. B., “Tensor LEED II: A Technique for High Speed Surface Structure Determination by Low Energy Electron Diffraction. TLEED 2”, Comp. Phys. Comm., vol. 54, pp. 157166, 1989.Google Scholar
Yu, Z. X. and Tong, S. Y., “Surface Structure Determination by a One-Stop Search Method for the Deepest Minimum”, Phys. Rev. B, vol. 71, p. 161404(R), 2005.CrossRefGoogle Scholar
Pendry, J. B. and Saldin, D. K., “SEXAFS without X-rays”, Surf. Sci., vol. 145, pp. 3347, 1984.Google Scholar
Van Hove, M. A., “Solving Complex and Disordered Surface Structures with Electron Diffraction”, in Chemistry and Physics of Solid Surfaces VII, eds. Howe, R. F. and Vanselow, R., Springer-Verlag, Berlin, 1988, Springer Series in Surface Sciences, vol. 10, pp. 513546.Google Scholar
Starke, U., Pendry, J. B., and Heinz, K., “Diffuse Low-Energy Electron Diffraction”, Progr. Surf. Sci., vol. 52, pp. 53124, 1996.Google Scholar
Barnes, C. J., AlShamaileh, E., Pitkänen, T., and Lindroos, M., “Early Stages of Surface Alloy Formation: A Diffuse LEED I(V) Study”, Surf. Sci., vol. 482, pp. 14251430, 2001.Google Scholar
Poon, H. C., Weinert, M., Saldin, D. K., Stacchiola, D., Zheng, T., and Tysoe, W. T., “Structure Determination of Disordered Organic Molecules on Surfaces from the Bragg Spots of Low-Energy Electron Diffraction and Total Energy Calculations”, Phys. Rev. B, vol. 69, p. 035401, 2004.Google Scholar
Heinz, K., Starke, U., Van Hove, M. A., and Somorjai, G. A., “The Angular Dependence of Diffuse LEED Intensities and Its Structural Information Content”, Surf. Sci., vol. 261, pp. 5763, 1992.Google Scholar
Ogletree, D. F., Blackman, G. S., Hwang, R. Q., Starke, U., Somorjai, G. A., and Katz, J. E., “A New Pulse Counting Low‐Energy Electron Diffraction System Based on a Position Sensitive Detector”, Rev. Sci. Instrum., vol. 63, pp. 104113, 1992.Google Scholar
Ibach, H. and Lehwald, S., “Elastic Diffuse and Inelastic Electron Scattering from Surfaces with Disordered Overlayers”, Surf. Sci., vol. 176, pp. 629634, 1986.Google Scholar
Saldin, D. K., Pendry, J. B., Van Hove, M. A., and Somorjai, G. A., “Interpretation of Diffuse Low-Energy Electron Diffraction Intensities”, Phys. Rev. B, vol. 31, pp. 12161218, 1985.Google Scholar
Van Hove, M. A., Lin, R. F., and Somorjai, G. A., “Efficient Scheme for LEED Calculations in the Presence of Large Superlattices, with Application to the Structural Analysis of Benzene Adsorbed on Rh(111)”, Phys. Rev. Lett., vol. 51, pp. 778781, 1983.Google Scholar
Wei, C. M. and Tong, S. Y., “Direct Atomic Structure by Holographic Diffuse LEED”, Surf. Sci., vol. 274, pp. L577L582, 1992.Google Scholar
Heinz, K., “LEED and DLEED As Modern Tools for Quantitative Surface Structure Determination”, Rep. Prog. Phys., vol. 58, pp. 637704, 1995.Google Scholar
Hu, P. J. and King, D. A., “A Direct Inversion Method for Surface Structure Determination from LEED Intensities”, Nature, vol. 360, pp. 655658, 1992.Google Scholar
Mendez, M. A., Gluck, C., and Heinz, K., “Holography with Conventional LEED”, J. Phys.: Cond. Matt., vol. 4, pp. 9991006, 1992.Google Scholar
Saldin, D. K. and Chen, X., “Three-Dimensional Reconstruction by Holographic LEED: Proper Identification of the Reference Wave”, Phys. Rev. B, vol. 52, pp. 29412948, 1995.Google Scholar
Saldin, D. K., Reuter, K., de Andres, P. L., Wedler, H., Chen, X., Pendry, J. B., and Heinz, K., “Direct Reconstruction of Three-Dimensional Atomic Adsorption Sites by Holographic LEED”, Phys. Rev., vol. B, 54, pp. 81728176, 1996.Google Scholar
Tong, S. Y., Huang, H., and Guo, X. Q., “Low-Energy Electron and Low-Energy Positron Holography”, Phys. Rev. Lett., vol. 69, pp. 36543657, 1992.Google Scholar
Heinz, K., Saldin, D. K., and Pendry, J. B., “Diffuse LEED and Surface Crystallography”, Phys. Rev. Lett., vol. 55, pp. 23122315, 1985.Google Scholar
Rous, P. J., Pendry, J. B., Saldin, D. K., Heinz, K., Müller, K., and Bickel, N., “Tensor LEED: A Technique for High-Speed Surface-Structure Determination”, Phys. Rev. Lett., vol. 57, pp. 29512954, 1986.Google Scholar
Oed, W., Starke, U., Heinz, K., Müller, K., and Pendry, J. B., “Ordered and Disordered Oxygen and Sulfur on Ni(100)”, Surf. Sci., vol. 251, pp. 488492, 1991.Google Scholar
Ri, C. S. and Watson, P. R., “Surface Structure of the Disordered Cl/Ti(0001) System Determined by Diffuse Low‐Energy Electron Diffraction”, J. Vac. Sci. Technol., vol. A10, pp. 25352539, 1992.Google Scholar
Ri, C.-S. and Watson, P. R., “Identification of the Bonding Site of Chlorine on the Ti(0001) Surface”, Solid St. Comm., vol. 81, pp. 541543, 1992.Google Scholar
Hu, P., Barnes, C. J., and King, D. A., “Dominance of Short-Range-Order Effects in Low-Energy Electron-Diffraction Intensity Spectra”, Phys. Rev. B, vol. 45, pp. 1359513598, 1992.Google Scholar
Wedler, H., Mendez, M. A., Bayer, P., Löffler, U., Heinz, K., Fritzsche, V., and Pendry, J. B., “Coverage-Dependent DLEED Analysis of the Adsorption Structure of K on Ni(100)”, Surf. Sci., vol. 293, pp. 4756, 1993.Google Scholar
Mapledoram, L. D., Wander, A., and King, D. A., “Islanding or Random Growth? The Low Coverage Growth Modes and Structure of NO on Ni{111} Studied by Diffuse ATLEED”, Surf. Sci., vol. 312, pp. 5461, 1994.Google Scholar
Barnes, C. J., Wander, A., and King, D. A., “A Tensor LEED Structural Study of the Coverage-Dependent Bonding of Iodine Adsorbed on Rh{111}”, Surf. Sci., vol. 281, pp. 3341, 1993.Google Scholar
Sporn, M., Platzgummer, E., Forsthuber, S., Schmid, M., Hofer, W., and Varga, P., “The Accuracy of Quantitative LEED in Determining Chemical Composition Profiles of Substitutionally Disordered Alloys: A Case Study”, Surf. Sci., vol. 416, pp. 423429, 1998.Google Scholar
Zasada, I., “On the Disordered Adsorption of CO on Pt(111) by Diffuse SPLEED”, Surf. Sci., vol. 498, pp. 293306, 2002.Google Scholar
Zasada, I. and Rychtelska, T., “Theoretical Studies of Spin-Polarized DLEED Rotation Curves: Disordered CO Overlayer on Pt(111)”, Solid St. Comm., vol. 123, pp. 267272, 2002.Google Scholar
Zasada, I. and Rychtelska, T., “Coverage-Dependent Diffuse Spin-Polarized Electron Diffraction Analysis of CO on Pt(111)”, Surf. Sci., vol. 507, pp. 362367, 2002.Google Scholar
Wander, A., Held, G., Hwang, R. Q., Blackman, G. S., Xu, M. L., de Andres, P., Van Hove, M. A., and Somorjai, G. A., “A Diffuse LEED Study of the Adsorption Structure of Disordered Benzene on Pt(111)”, Surf. Sci., vol. 249, pp. 2134, 1991.Google Scholar
Döll, R., Gerken, C. A., Van Hove, M. A., and Somorjai, G. A., “Structure of Disordered Ethylene Adsorbed on Pt(111) Analyzed by Diffuse LEED: Asymmetrical di-σ Bonding Favored”, Surf. Sci., vol. 374, pp. 151161, 1997.Google Scholar
Starke, U., Heinz, K., Materer, N., Wander, A., Michl, M., Döll, R., Van Hove, M. A., and Somorjai, G. A., “Low-Energy Electron Diffraction Study of a Disordered Monolayer of H2O on Pt(111) and an Ordered Thin Film of Ice Grown on Pt(111)”, J. Vac. Sci. Technol., vol. A10, pp. 25212528, 1992.Google Scholar
Starke, U., Materer, N., Barbieri, A., Döll, R., Heinz, K., Van Hove, M. A., and Somorjai, G. A., “A Low-Energy Electron Diffraction Study of Oxygen, Water and Ice Adsorption on Pt(111)”, Surf. Sci., vol. 287/288, pp. 432437, 1993.Google Scholar
Desjonquères, M. C. and Spanjaard, D., Concepts in Surface Physics, Springer, Berlin, 1993.Google Scholar
Kuhs, F. W., “Generalized Atomic Displacements in Crystallographic Structure Analysis”, Acta Cryst., vol. A48, pp. 8098, 1992.Google Scholar
Ibach, H. and Mills, D. L., Electron Energy Loss Spectroscopy and Surface Vibrations, Academic Press, New York, 1982.Google Scholar
Landskron, J., Moritz, W., Narloch, B., Held, G., and Menzel, D., “Analysis of Thermal Vibrations by Temperature-Dependent Low Energy Electron Diffraction: Comparison of Soft Modes of Pure and O-Coadsorbed CO on Ru(0001)”, Surf. Sci., vol. 441, pp. 91106, 1999.Google Scholar
Meyerheim, H. L., Moritz, W., Schulz, H., Eng, P. J., and Robinson, I. K., “Anharmonic Thermal Vibrations Observed by Surface X-ray Diffraction for Cs/Cu(001)”, Surf. Sci., vol. 331–333, pp. 14221429, 1995.Google Scholar
Willis, B. T. M. and Pryor, A. W., Thermal Vibrations in Crystallography, Cambridge University Press, London, 1975.Google Scholar
Trueblood, K. N., Bürgi, H.-B., Burzlaff, H., Dunitz, J. D., Gramaccioli, C. M., Schulz, H. H., Shmueli, U., and Abrahams, S. C., “Atomic Displacement Parameter Nomenclature”, Acta Cryst., vol. A52, pp. 770781, 1996.Google Scholar
Krivoglaz, M. A., The Theory of X-ray and Thermal Neutron Diffraction by Real Crystals, Plenum Press, London, 1969.Google Scholar
McKinney, J. T., Jones, E. R., and Webb, M. B., “Surface Lattice Dynamics of Silver. II. Low-Energy Electron Thermal Diffuse Scattering”, Phys. Rev., vol. 160, pp. 523530, 1967.Google Scholar
Zielasek, V., Büssenschütt, A., and Henzler, M., “Low-Energy Electron Thermal Diffuse Scattering from Al(111) Individually Resolved in Energy and Momentum”, Phys. Rev. B, vol. 55, pp. 53985403, 1997.Google Scholar
Piccini, G. M. and Sauer, J., “Effect of Anharmonicity on Adsorption Thermodynamics”, J. Chem. Theory Comput., vol. 10, pp. 2479−2487, 2014.Google Scholar
Brune, H., “Thermal Dynamics at Surfaces”, Ann. Phys., vol. 18, pp. 675698, 2009.Google Scholar
Prince, E., Mathematical Techniques in Crystallography and Materials Science, Springer-Verlag, New York, 1982.Google Scholar
Schmueli, U., Theories and Techniques of Crystal Structure Determination, Oxford University Press, Oxford, 2007.Google Scholar
Gierer, M., Bludau, H., Over, H., and Ertl, G., “The Bending Mode Vibration of CO on Ru(0001) Studied with Low-Energy Electron-Diffraction”, Surf. Sci., vol. 346, pp. 6472, 1996.Google Scholar
Duke, C. B. and Laramore, G. E., “Effect of Lattice Vibrations in a Multiple-Scattering Description of Low-Energy Electron Diffraction. I. Formal Perturbation Theory”, Phys. Rev. B, vol. 2, pp. 47654782, 1970. Laramore, G. E. and Duke, C. B., “Effect of Lattice Vibrations in a Multiple-Scattering Description of Low-Energy Electron Diffraction. II. Double-Diffraction Analysis of the Elastic Scattering Cross Section”, Phys. Rev. B, vol. 2, pp. 4783–4795, 1970.CrossRefGoogle Scholar
Landskron, J., “Analyse thermischer Schwingungen an Oberflächen mittels Beugung langsamer Elektronen”, Dissertation, University of Munich, Dept. of Earth and Environmental Sciences, Germany, 1996.Google Scholar
Moritz, W. and Landskron, J., “Anisotropic Temperature Factors in the Calculation of Low-Energy Electron Diffraction Intensities”, Surf. Sci., vol. 337, pp. 278284, 1995.Google Scholar
Moritz, W. and Landskron, J., “Thermal Vibrations at Surfaces Analysed with LEED”, in Solid-State Photoemission and Related Methods, eds. Schattke, W. and Van Hove, M. A., Wiley-VCH, Weinheim, 2003, pp. 433459.Google Scholar
de Andres, P. L. and King, D. A., “Anisotropic and Anharmonic Effects through the t-Matrix for Low-Energy Electron Diffraction (TMAT V1.1)”, Comp.Phys. Commun., vol. 138, pp. 281301, 2001.Google Scholar
Messiah, A., Quantum Mechanics, Dover, Mineola, NY, vols. I & II, 2014.Google Scholar
Blanco-Rey, M., de Andres, P. L., Held, G., and King, D. A., “A Molecular T-Matrix Approach to Calculating Low-Energy Electron Diffraction Intensities for Ordered Molecular Adsorbates”, Surf. Sci., vol. 579, p. 8999, 2005.Google Scholar
Blanco-Rey, M., de Andres, P., Held, G., and King, D. A., “Molecular t-Matrices for Low-Energy Electron Diffraction (TMOL v1.1)”, Comp. Phys. Commun., vol. 161, pp. 166178, 2004.Google Scholar
Riedl, W. and Menzel, D., “ESDIAD Beam Widths”, Surf. Sci., vol. 207, pp. 494451, 1989.Google Scholar
Watson, P. R., Van Hove, M. A., and Hermann, K., NIST Surface Structure Database Ver. 5.0, NIST Standard Reference Data Program, Gaithersburg, MD, USA, 2004.Google Scholar
Van Hove, M. A., Watson, P. R., and Hermann, K., “Adsorbate-Induced Changes in Surface Structure on Metals and Semiconductors”, in Landolt-Börnstein, Group III: Condensed Matter, Vol. 42: Physics of Covered Solid Surfaces, Springer, Berlin, 2002, subvol. A, part 2, ch. 4.1, pp. 4.1-434.1-164.Google Scholar
Moritz, W., “Elastic Scattering and Diffraction of Electrons and Positrons”, in Landolt-Börnstein, Group III: Condensed Matter, Vol. 45: Physics of Solid Surfaces, Springer, Berlin, 2015, subvol. A, ch. 5, pp. 5.1-1345.8-243.Google Scholar
Giacovazzo, C., Direct Phasing in Crystallography, Fundamentals and Applications, Oxford University Press, Oxford, 1998.Google Scholar
Clegg, W., Blake, A. J., Gould, R. O., and Main, P., Crystal Structure Analysis, Principles and Practice, Oxford University Press, Oxford, 2001.Google Scholar
Oszlányi, G. and Sütő, A., “Ab Initio Structure Solution by Charge Flipping”, Acta Cryst. A, vol. 60, pp. 134141, 2004.Google Scholar
Van Hove, M. A., Cerdá, J., Sautet, P., Bocquet, M.-L., and Salmeron, M., “Surface Structure Determination by STM vs. LEED”, Progr. Surf. Sci., vol. 54, pp. 315329, 1997.Google Scholar
Heinz, K., Hammer, L., and Müller, S., “The Power of Joint Application of LEED and DFT in Quantitative Surface Structure Determination”, J. Phys.: Condens. Matter, vol. 20, p. 304204, 2008.Google Scholar
Soares, E. A., de Castilho, C. M. C., and de Carvalho, V. E., “Advances on Surface Structural Determination by LEED”, J. Phys.: Condens. Matter, vol. 23, p. 303001, 2011.Google Scholar
Lagally, M. G., Ngoc, T. C., and Webb, M. B., “Kinematic Low-Energy Electron-Diffraction Intensities from Averaged Data: A Method for Surface Crystallography”, Phys. Rev. Lett., vol. 26, pp. 15571559, 1971.Google Scholar
Adams, D. L. and Landman, U., “Further Evaluation of the Transform-Deconvolution Method for Surface-Structure Determination by Analysis of Low-Energy Electron-Diffraction Intensities”, Phys. Rev. B, vol. 15, pp. 37753787, 1977.Google Scholar
Wu, H. and Tong, S. Y., “Surface Patterson Function by Inversion of Low-Energy Electron Diffraction I–V Spectra at Multiple Incident Angles”, Phys. Rev. Lett., vol. 87, p. 036101, 2001.Google Scholar
Tong, S. Y. and Wu, H., “Direct Inversion of Low-Energy Electron Diffraction (LEED) IV Spectra: The Surface Patterson Function”, J. Phys.: Condens. Matter, vol. 14, pp. 12311236, 2002.Google Scholar
Wang, J., Wu, H. S., So, R., Liu, Y., Xie, M. H., and Tong, S. Y., “Structure Determination of Indium-Induced Si(111)-In-4×1 Surface by LEED Patterson Inversion”, Phys. Rev. B, vol. 72, p. 245324, 2005.Google Scholar
Abukawa, T., Yamazaki, T., and Kono, S., “Fully Performed Constant-Momentum-Transfer-Averaging in Low-Energy Electron Diffraction Demonstrated for a Single-Domain Si(111)4×1-In Surface”, e-J. Surf. Sci. Nanotechn., vol. 4, pp. 661668, 2006.Google Scholar
Rogero, C., Martin-Gago, J.-A., and de Andres, P. L., “Patterson Function from Low-Energy Electron Diffraction Measured Intensities and Structural Discrimination”, Phys. Rev. B, vol. 67, p. 073402, 2003.Google Scholar
Kuzushita, T., Murata, A., Yamamoto, A., and Urano, A., “Surface Structure Analysis of Metal Adsorbed Si(111) Surfaces by Patterson Function with LEED I–V Curves”, Appl. Surf. Sci., vol. 254, pp. 78247826, 2008.Google Scholar
Chang, C. Y., Lin, Z. C., Chou, Y. C., and Wei, C. M., “Direct Three-Dimensional Patterson Inversion of Low-Energy Electron Diffraction I(E) Curves”, Phys. Rev. Lett., vol. 83, pp. 25802583, 1999.Google Scholar
Wang, J., So, R., Liu, Y., Wu, H., Xie, M. H., and Tong, S. Y., “Observation of a (√3×√3)-R30° Reconstruction on GaN(0001) by RHEED and LEED”, Surf. Sci., vol. 600, pp. L169L174, 2006.Google Scholar
Xu, S. H., Wu, H. S., Dai, X. Q., Lau, W. P., Zheng, L. X., Xie, M. H., and Tong, S. Y., “Direct Observation of a Ga Adlayer on a GaN(0001) Surface by LEED Patterson Inversion”, Phys. Rev. B, vol. 67, p. 125409, 2003.Google Scholar
Gabor, D., “A New Microscopic Principle”, Nature, vol. 161, pp. 777778, 1948.Google Scholar
Tong, S. Y., “Inversion of Low-Energy Electron Diffraction Data with No Pre-knowledge Factor beyond Optical Holography”, Adv. Phys., vol. 48, pp. 135165, 1999.Google Scholar
Heinz, K., Starke, U., and Bernhardt, J., “Surface Holography with LEED Electrons”, Progr. Surf. Sci., vol. 64, pp. 163178, 2000.Google Scholar
Barton, J. J., “Photoelectron Holography”, Phys. Rev. Lett., vol. 61, pp. 13561359, 1988.Google Scholar
Fadley, C. S., Van Hove, M. A., Kaduwela, A., Omori, S., Zhao, L., and Marchesini, S., “Photoelectron and X-ray Holography by Contrast: Enhancing Image Quality and Dimensionality”, J. Phys.: Condens. Matter, vol. 13, pp. 1051710532, 2001.Google Scholar
Daimon, H., “Overview of Three-Dimensional Atomic-Resolution Holography and Imaging Techniques: Recent Advances in Local-Structure Science”, J. Phys. Soc. Jpn., vol. 87, p. 061001, 2018.Google Scholar
Omori, S., Nihei, Y., Rotenberg, E., Denlinger, J. D., Kevan, S. D., Tonner, B. P., Van Hove, M. A., and Fadley, C. S., “Differential Photoelectron Holography: A New Approach for Three-Dimensional Atomic Imaging”, Phys. Rev. Lett., vol. 88, p. 055504, 2002.Google Scholar
Suzuki, A., Hashimoto, A., Nojima, M., Owari, M., and Nihei, Y., “Holographic Imaging of TiO2 (110) Surface Structure by Differential Photoelectron Holography”, Surf. Interface Anal., vol. 40, pp. 16271630, 2008.Google Scholar
Saldin, D. K. and de Andres, P. L., “Holographic LEED”, Phys. Rev. Lett., vol. 64, pp. 12701273, 1990.Google Scholar
Saldin, D. K., Harp, G. R., Chen, B. L., and Tonner, B. P., “Theoretical Principles of Holographic Crystallography”, Phys. Rev. B, vol. 44, pp. 24802494, 1991.Google Scholar
Mendez, M. A., Gluck, C., and Heinz, K., “Holography with Conventional LEED”, J. Phys.: Condens. Matter, vol. 4, pp. 9991006, 1992.Google Scholar
Hu, P. J. and King, D. A., “A Direct Inversion Method for Surface Structure Determination from LEED Intensities”, Nature, vol. 360, pp. 655658, 1992.Google Scholar
Wei, C. M. and Tong, S. Y., “Direct Atomic Structure by Holographic Diffuse LEED”, Surf. Sci., vol. 274, pp. L577L582, 1992.Google Scholar
Saldin, D. K. and Chen, X., “Three-Dimensional Reconstruction by Holographic LEED: Proper Identification of the Reference Wave”, Phys. Rev. B, vol. 52, pp. 29412948, 1995.Google Scholar
Saldin, D. K., Reuter, K., de Andres, P. L., Wedler, H., Chen, X., Pendry, J. B., and Heinz, K., “Direct Reconstruction of Three-Dimensional Atomic Adsorption Sites by Holographic LEED”, Phys. Rev. B, vol. 54, pp. 81728176, 1996.Google Scholar
Reuter, K., Schardt, J., Bernhardt, J., Wedler, K., Starke, U., and Heinz, K., “LEED Holography Applied to a Complex Superstructure: A Direct View of the Adatom Cluster on SiC(111)-(3×3)”, Phys. Rev. B, vol. 58, pp. 1080610814, 1998.Google Scholar
Schardt, J., Bernhardt, J., Starke, U., and Heinz, K., “Crystallography of the (3×3) Surface Reconstruction of 3C-SiC(111), 4H-SiC(0001), and 6H-SiC(0001) Surfaces Retrieved by Low-Energy Electron Diffraction”, Phys. Rev. B, vol. 62, pp. 1033510344, 2000.Google Scholar
Starke, U., Pendry, J. B., and Heinz, K., “Diffuse Low-Energy Electron Diffraction”, Progr. Surf. Sci., vol. 52, pp. 53123, 1996.Google Scholar
Seubert, A. and Heinz, K., “Iterative Image Recovery in Holographic LEED”, Surf. Rev. Lett., vol. 9, pp. 14131423, 2002.Google Scholar
Seubert, A., Heinz, K., and Saldin, D. K., “Direct Determination by Low-Energy Electron Diffraction of the Atomic Structure of Surface Layers on a Known Substrate”, Phys. Rev. B, vol. 67, p. 125417, 2003.Google Scholar
Kolthoff, D., Schwennicke, C., and Pfnür, H., “Holographic Diffuse LEED Image Reconstruction for Simultaneous Occupation of Different Oxygen Adsorption Sites on Ni(111)”, Surf. Sci., vol. 529, pp. 443454, 2003.Google Scholar
Wu, H., Xu, S., Ma, S., Lau, W. P., Xie, M. H., and Tong, S. Y., “Surface Atomic Arrangement Visualization via Reference-Atom-Specific Holography”, Phys. Rev. Lett., vol. 89, p. 216101, 2002.Google Scholar
Abukawa, T. and Kono, S., “Semi-direct Method for Surface Structure Analysis Using Correlated Thermal Diffuse Scattering”, Progr. Surf. Sci., vol. 72, pp. 1951, 2003.Google Scholar
Kleinle, G., Moritz, W., and Ertl, G., “An Efficient Method for Surface Crystallography”, Surf. Sci., vol. 238, pp. 119131, 1990.Google Scholar
Pendry, J. B., “Reliability Factors for LEED Calculations”, J. Phys. C: Solid State Phys., vol. 13, pp. 937944, 1980.Google Scholar
Sirtl, Th., Jelic, J., Meyer, J., Das, K., Heckl, W. M., Moritz, W., Rundgren, J., Schmittel, M., Reuter, K., and Lackinger, M., “Adsorption Structure Determination of a Large Polyaromatic Trithiolate on Cu(111): Combination of LEED-I(V) and DFT-vdW”, Phys. Chem. Chem. Phys., vol. 15, pp. 1105411060, 2013,Google Scholar
Pussi, K., Li, H. I., Shin, H., Serkovic Loli, L. N., Shukla, A. K., Ledieu, J., Fournée, V., Wang, L. L., Su, S. Y., Marino, K. E., Snyder, M. V., and Diehl, R. D., “Elucidating the Dynamical Equilibrium of C60 Molecules on Ag(111)”, Phys. Rev. B, vol. 86, p. 205406, 2012.Google Scholar
Primorac, E., Kuhlenbeck, H., and Freund, H.-J., “LEED I/V Determination of the Structure of a MoO3 Monolayer on Au(111): Testing the Performance of the CMA-ES Evolutionary Strategy Algorithm, Differential Evolution, a Genetic Algorithm and Tensor LEED Based Structural Optimization”, Surf. Sci., vol. 649, pp. 90100, 2016.Google Scholar
Zanazzi, E. and Jona, F., “A Reliability Factor for Surface Structure Determination by Low Energy Electron Diffraction”, Surf. Sci., vol. 62, pp. 6180, 1977.Google Scholar
Philip, J. and Rundgren, J., “Metric Distance between LEED Spectra”, in Determination of Surface Structure by LEED, eds. Marcus, P. M. and Jona, F., Plenum, New York, 1984, pp. 409437.Google Scholar
Rundgren, J., “Electron Inelastic Mean Free Path, Electron Attenuation Length, and Low-Energy Electron-Diffraction Theory”, Phys. Rev. B, vol. 59, pp. 51065114, 1999.Google Scholar
Tanuma, S., Powell, C. J., and Penn, D. R., “Calculations of Electron Inelastic Mean Free Paths. IX. Data for 41 Elemental Solids over the 0 eV to 30 keV Range”, Surf. Interface Anal., vol. 43, pp. 689713, 2011.Google Scholar
Adams, D. L., “A Simple and Effective Procedure for the Refinement of Surface Structure in LEED”, Surf. Sci., vol. 519, pp. 157172, 2002.Google Scholar
Duke, C. B., Lazarides, A., Paton, A., and Wang, Y. R., “Statistical Error Analysis of Surface-Structure Parameters Determined by Low-Energy Electron and Positron Diffraction: Data Errors”, Phys. Rev. B, vol. 52, pp. 1487814894, 1995.Google Scholar
Mulakaluri, N., Pentcheva, R., Wieland, M., Moritz, W., and Scheffler, M., “Partial Dissociation of Water on Fe3O4(001): Adsorbate Induced Charge and Orbital Order”, Phys. Rev. Lett., vol. 103, p. 176102, 2009.Google Scholar
Hofmann, J. P., Rohrlack, S. F., Heß, F., Goritzka, J. C., Krause, P. P. T., Seitsonen, A. P., Moritz, W., and Over, H., “Adsorption of Chlorine on Ru(0001): A Combined Density Functional Theory and Quantitative Low Energy Electron Diffraction Study”, Surf. Sci., vol. 606, pp. 297304, 2012.Google Scholar
Li, H. I., Pussi, K., Hanna, K. J., Wang, L.-L., Johnson, D. D., Cheng, H.-P., Shin, H., Curtarolo, S., Moritz, W., Smerdon, J. A., McGrath, R., and Diehl, R. D., “Surface Geometry of C60 on Ag(111)”, Phys. Rev. Lett., vol. 103, p. 056101, 2009.Google Scholar
Wyrwich, R., Jones, T. E., Günther, S., Moritz, W., Ehrensperger, M., Böcklein, S., Zeller, P., Lünser, A., Locatelli, A., Menteş, T. O., Niño, M. Á., Knop-Gericke, A., Schlögl, R., Piccinin, S., and Wintterlin, J., “LEED‑I(V) Structure Analysis of the (7×√3)rect SO4 Phase on Ag(111): Precursor to the Active Species of the Ag-Catalyzed Ethylene Epoxidation”, J. Phys. Chem. C, vol. 122, pp. 2699827004, 2018.Google Scholar
Over, H., Ketterl, U., Moritz, W., and Ertl, G., “Optimisation Methods and Their Use in Low-Energy Electron-Diffraction Calculations”, Phys. Rev. B, vol. 46, pp. 1543815446, 1992.Google Scholar
Marquardt, D. W., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, J. Soc. Indust. Appl. Math., vol. 11, pp. 431441, 1963.Google Scholar
Reichelt, R., Günther, S., Wintterlin, J., Moritz, W., Aballe, L., and Mentes, T. O., “Low Energy Electron Diffraction and Low Energy Electron Microscopy Microspot I/V Analysis of the (4×4) O Structure on Ag(111): Surface Oxide or Reconstruction”, J. Chem. Phys., vol. 127, p. 134706, 2007.Google Scholar
Lübbe, M. and Moritz, W., “A LEED Analysis of the Clean Surfaces of α-Fe2O3(0001) and α-Cr2O3(0001) Bulk Single Crystals”, J. Phys.: Condens. Matter, vol. 21, p. 134010, 2009.Google Scholar
Rous, P. J., “The Tensor LEED Approximation and Surface Crystallography by Low-Energy Electron Diffraction”, Progr. Surf. Sci., vol. 39, pp. 363, 1992.Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes, Cambridge University Press, Cambridge, 1986.Google Scholar
Brent, R. P., Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, NJ, 1973.Google Scholar
Rosenbrook, H. H., “An Automatic Method for Finding the Greatest or Least Value of a Function”, Comput. J., vol. 3, pp. 175184, 1960.Google Scholar
Stout, G. H. and Jensen, L. H., X-ray Structure Determination, MacMillan, New York, 1968.Google Scholar
Cowell, P. G. and de Carvalho, V. E., “Unconstrained Optimisation in Surface Crystallography by LEED: Preliminary Results of its Application to CdTe(110)”, Surf. Sci., vol. 187, pp. 175193, 1987.Google Scholar
Powell, M. J. D., “The BOBYQA Algorithm for Bound Constrained Optimization without Derivatives” (Report), Department of Applied Mathematics and Theoretical Physics, Cambridge University, DAMTP 2009/NA06, www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf, last accessed 2 April 2022.Google Scholar
Rous, P. J., “A Global Approach to the Search Problem in Surface Crystallography by Low-Energy Electron Diffraction”, Surf. Sci., vol. 296, pp. 358373, 1993.Google Scholar
Szu, H. and Hartley, R., “Fast Simulated Annealing”, Phys. Lett. A, vol. 122, pp. 157162, 1987.Google Scholar
Tsallis, C., “Possible Generalization of Boltzmann-Gibbs Statistics”, J. Stat. Phys., vol. 52, pp. 479487, 1988.Google Scholar
Nascimento, V. B., de Carvalho, V. E., de Castilho, C. M. C., Costa, B. V., and Soares, E. A., “The Fast Simulated Annealing Algorithm Applied to the Search Problem in LEED”, Surf. Sci., vol. 487, pp. 1527, 2001.Google Scholar
Correia, E. dos R., Nascimento, V. B., de Castilho, C. M. C., Soares, E. A., and de Carvalho, V. E., “The Generalized Simulated Annealing Algorithm in the Low Energy Electron Diffraction Search Problem”, J. Phys.: Condens. Matter, vol. 17, pp. 116, 2005.Google Scholar
Kottcke, M. and Heinz, K., “A New Approach to Automated Structure Optimization in LEED Intensity Analysis”, Surf. Sci., vol. 376, pp. 352366, 1997.Google Scholar
Viana, M. L., dos Reis, D. D., Soares, E. A., Van Hove, M. A., Moritz, W., and de Carvalho, V. E., “Novel Genetic Algorithm Searching Procedure for LEED Surface Structure Determination”, J. Phys.: Condens. Matter, vol. 26, p. 225005, 2014.Google Scholar
Döll, R. and Van Hove, M. A., “Global Optimization in LEED Structure Determination Using Genetic Algorithms”, Surf. Sci., vol. 355, pp. L393L398, 1996.Google Scholar
Viana, M. L., Diez Muiño, R., Soares, E. A., Van Hove, M. A., and de Carvalho, V. E., “Global Search in Photoelectron Diffraction Structure Determination Using Genetic Algorithms”, J. Phys.: Condens. Matter, vol. 19, p. 446002, 2007.Google Scholar
Viana, M. L., Simões e Silva, W., Soares, E. A., de Carvalho, V. E., de Castilho, C. M. C., and Van Hove, M. A., “Scaling Behavior of Genetic Algorithms Applied to Surface Structural Determination by LEED”, Surf. Sci., vol. 602, pp. 33953402, 2008.Google Scholar
Storn, R. and Price, K., “Differential Evolution: A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces”, J. Global Optimization, vol. 11, pp. 341359, 1997.Google Scholar
Hansen, N., “The CMA Evolution Strategy: A Comparing Review”, in Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms, eds. Lozano, J. A., Larranaga, P., Inza, I., and Bengoetxea, E., Springer, Berlin, 2006, pp. 75102.Google Scholar
Nascimento, V. B. and Plummer, E. W., “Differential Evolution: Global Search Problem in LEED-IV Surface Structural Analysis”, Mater. Charact., vol. 100, pp. 143151, 2015.Google Scholar
Zhao, Z. J., Meza, J. C., and Van Hove, M., “Using Pattern Search Methods for Surface Structure Determination of Nanomaterials”, J. Phys.: Condens. Matter, vol. 18, pp. 86938706, 2006.Google Scholar
Audet, C. and Dennis, J. E. Jr., “Pattern Search Algorithms for Mixed Variable Programming”, SIAM J. Optim., vol. 11, pp. 573594, 1999.Google Scholar
Kolda, T. G., Lewis, R. M., and Torczon, V., “Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods”, SIAM Rev., vol. 45, pp. 385482, 2003.Google Scholar
Abramson, M. A., Audet, C., Chrissis, J. W., and Walston, J. G., “Mesh Adaptive Direct Search Algorithms for Mixed Variable Optimization”, Optim. Lett., vol. 3, pp. 3547, 2009.Google Scholar
Jiang, H., Mizuno, S., and Tochihara, H., “Adsorption Mode Change from Adlayer- to Restructuring-Type with Increasing Coverage, Evidenced by Structural Determination of c(2×2)→(4×4)→(5×5) Sequence Formed on Ni(001) by Li Deposition”, Surf. Sci., vol. 380, pp. L506L512, 1997.Google Scholar
Schwarz, K., “DFT Calculations of Solids with LAPW and WIEN2k”, J. Solid State Chem., vol. 176, pp. 319328, 2003.Google Scholar
Loucks, T. L., Augmented Plane Wave Method, Benjamin, New York, 1967.Google Scholar
Mattheiss, L. F., “Energy Bands for Solid Argon”, Phys. Rev. A, vol. 133, pp. A1399A1403, 1964.Google Scholar
Pendry, J. B., Titterington, D. J., Gurman, S. J., and Aers, G., MUFPOT code, Daresbury, 1970. No longer available.Google Scholar
Barbieri, A. and Van Hove, M. A., phase shift code, https://www.icts.hkbu.edu.hk/VanHove_files/leed/phshift2007.zip, last accessed 2 April 2022.Google Scholar
Kinniburgh, C. G., “A LEED Study of MgO(100). II. Theory at Normal Incidence”, J. Phys. C: Solid State Phys., vol. 8, pp. 23822394, 1975.Google Scholar
Kinniburgh, C. G. and Walker, J. A., “LEED Calculations for the NiO(100) Surface”, Surf. Sci., vol. 63, pp. 274282, 1977.Google Scholar
Lindsay, R., Wander, A., Ernst, A., Montanari, B., Thornton, G., and Harrison, N. M., “Revisiting the Surface Structure of TiO2(110): A Quantitative Low-Energy Electron Diffraction Study”, Phys. Rev. Lett., vol. 94, p. 246102, 2005.Google Scholar
Chamberlin, S. E., Hirschmugl, C. J., Poon, H. C., and Saldin, D. K., “Geometric Structure of TiO2(011)(2×1) Surface by Low Energy Electron Diffraction (LEED)”, Surf. Sci., vol. 603, pp. 33673373, 2009.Google Scholar
Rundgren, J., “Optimized Surface-Slab Excited-State Muffin-Tin Potential and Surface Core Level Shifts”, Phys. Rev. B, vol. 68, p. 125405, 2003.Google Scholar
Rundgren, J., “Elastic Electron-Atom Scattering in Amplitude-Phase Representation with Application to Electron Diffraction and Spectroscopy”, Phys. Rev. B, vol. 76, p. 195441, 2007.Google Scholar
Hedin, L. and Lundqvist, B. I., “Explicit Local Exchange-Correlation Potentials”, J. Phys. C, vol. 4, pp. 20642083, 1971.Google Scholar
Mahan, G. D. and Sernelius, B. E., “Electron–Electron Interactions and the Band Width of Metals”, Phys. Rev. Lett., vol. 62, pp. 27182721, 1989.Google Scholar
Nascimento, V. B., Moore, R. G., Rundgren, J., Zhang, J., Cai, L., Jin, R., Mandrus, D. G., and Plummer, E. W., “Procedure for LEED I–V Structural Analysis of Metal Oxide Surfaces: Ca1.5Sr0.5RuO4(001)”, Phys. Rev. B, vol. 75, p. 035408, 2007.Google Scholar
NIST Electron Inelastic-Mean-Free-Path Database 71, Version 1.1: https://www.nist.gov/srd/nist-standard-reference-database-71, last accessed 5 April 2022.Google Scholar
Ruf, J. P., King, P. D. C., Nascimento, V. B., Schlom, D. G., and Shen, K. M., “Surface Atomic Structure of Epitaxial LaNiO3 Thin Films Studied by in situ LEED-I(V)”, Phys. Rev. B, vol. 95, p. 115418, 2017.Google Scholar
Rundgren, J., Sernelius, B. E., and Moritz, W., “Low-Energy Electron Diffraction with Signal Electron Carrier-Wave Wavenumber Modulated by Signal Exchange–Correlation Interaction”, J. Phys. Commun., vol. 5, p. 105012, 2021.Google Scholar
Saldin, D. K. and Spence, J. C. H., “On the Mean Inner Potential in High- and Low-Energy Electron Diffraction”, Ultramicroscopy, vol. 55, pp. 397406, 1994.Google Scholar
Tuan, D. F.-T. and Loar, G. W., “Corrections of Overlapping Spheres in the Self-Consistent Field Xα Scattered-Wave Method”, J. Mol. Struct., vol. 223, pp. 123148, 1990.Google Scholar
Tuan, D. F.-T. and Loar, G. W., “Corrections of Overlapping Spheres in the Self-Consistent Field Xα Scattered-Wave Method”, J. Mol. Struct., vol. 228, pp. 167180, 1991.Google Scholar
Vitos, L., Skriver, H. L., Johansson, B., and Kollár, J., “Application of the Exact Muffin-Tin Orbitals Theory: The Spherical Cell Approximation”, Comp. Mat. Sci., vol. 18, pp. 2438, 2000.Google Scholar
Watson, R. E., Herbst, J. F., Hodges, L., Lundqvist, B. I., and Wilkins, J. W., “Effect of Ground-State and Excitation Potentials on Energy Levels of Ni Metal”, Phys. Rev. B, vol. 13, pp. 14631467, 1976.Google Scholar
Moritz, W., unpublished.Google Scholar
Walter, S., Blum, V., Hammer, L., Müller, S., Heinz, K., and Giesen, M., “The Role of an Energy-Dependent Inner Potential in Quantitative Low-Energy Electron Diffraction”, Surf. Sci., vol. 458, pp. 155161, 2000.Google Scholar
Vuorinen, J., Pussi, K., Diehl, R. D., and Lindroos, M., “Correlation of Electron Self-Energy with Geometric Structure in Low-Energy Electron Diffraction”, J. Phys.: Condens. Matter, vol. 24, p. 015003, 2012.Google Scholar
Seah, M. P. and Dench, W. A., “Quantitative Electron Spectroscopy of Surfaces: A Standard Data Base for Electron Inelastic Mean Free Paths in Solids”, Surf. Interface Anal., vol. 1, pp. 211, 1979.Google Scholar
Jablonski, A. and Powell, C. J., “The Electron Attenuation Length Revisited”, Surf. Sci. Rep., vol. 47, pp. 3391, 2002.Google Scholar
Powell, C. J. and Jablonski, A., “Evaluation of Calculated and Measured Electron Inelastic Mean Free Paths Near Solid Surfaces”, J. Phys. Chem. Ref. Data, vol. 28, pp. 1962, 1999.Google Scholar
de Vera, P. and Garcia-Molina, R., “Electron Inelastic Mean Free Paths in Condensed Matter Down to a Few Electronvolts”, J. Phys. Chem. C, vol. 123, pp. 20752083, 2019.Google Scholar
Tanuma, S., Powell, C. J., and Penn, D. R., “Calculations of Electron Inelastic Mean Free Paths. IX. Data for 41 Elemental Solids over the 50 eV to 30 keV Range”, Surf. Interface Anal., vol. 43, pp. 689713, 2011.Google Scholar
Yu. Ridzel, O., Astašauskas, V., and Werner, W. S. M., “Low Energy (1–100 eV) Electron Inelastic Mean Free Path (IMFP) Values Determined from Analysis of Secondary Electron Yields (SEY) in the Incident Energy Range of 0.1–10 keV”, J. Electr. Spectr. Rel. Phen., vol. 241, p. 146824, 2020.Google Scholar
Zielasek, V., Büssenschütt, A., and Henzler, M., “Low-Energy Electron Thermal Diffuse Scattering from Al(111) Individually Resolved in Energy and Momentum”, Phys. Rev. B, vol. 55, pp. 53985403, 1997.Google Scholar
van Smaalen, S., “Incommensurate Crystal Structures”, Cryst. Rev., vol. 4, pp. 19202, 1995.Google Scholar
Steurer, W. and Haibach, T., “Reciprocal-Space Images of Aperiodic Crystals”, in International Tables for Crystallography, Kluwer Academic Publishers, Dordrecht, vol. B, ch. 4.6, pp. 486532, 2006.Google Scholar
Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., “Metallic Phase with Long-Range Orientational Order and No Translational Symmetry”, Phys. Rev. Lett., vol. 53, pp. 19511954, 1984.Google Scholar
Janot, C., Quasicrystals: A Primer, Clarendon Press, Oxford, 1994.Google Scholar
Steurer, W., “Twenty Years of Structure Research on Quasicrystals. Part I. Pentagonal, Octagonal, Decagonal and Dodecagonal Quasicrystals”, Z. Kristallogr., vol. 219, pp. 391446, 2004.Google Scholar
Trebin, H.-R., ed., Quasicrystals, Structure and Physical Properties, Wiley-VCH, Weinheim, 2003.Google Scholar
Suck, B., Schreiber, M., and Haussler, P., eds., Quasicrystals: An Introduction to Structure, Physical Properties and Applications, Springer, Berlin, 2002.Google Scholar
Dubois, J. M., Useful Quasicrystals, World Scientific Press, Singapore, 2005.Google Scholar
Steurer, W. and Deloudi, S., Crystallography of Quasicrystals: Concepts, Methods and Structures, Springer, Berlin, 2009.Google Scholar
Boettinger, W. J., Biancaniello, F. S., Kalonji, G. M., and Cahn, J. W., “Eutectic Solidification and the Formation of Metallic Glasses”, in Proceedings of the Second International Conference on Rapid Solidification Processing: Principles and Technologies, II, ed. Mehrabian, R., Kear, B. H. and Cohen, M., Claitor’s Publishing Division, Baton Rouge, 1980, pp. 5055.Google Scholar
Gille, P., Dreier, P., Gräber, M., and Scholpp, T., “Large Single-Grain AlCoNi Quasicrystals Grown by the Czochralski Method”, J. Cryst. Growth, vol. 207, pp. 95101, 1999.Google Scholar
McGrath, R., Ledieu, J., Cox, E. J., and Diehl, R. D., “Quasicrystal Surfaces: Structure and Potential as Templates”, J. Phys.: Condens. Matter, vol. 14, pp. R119R144, 2002.Google Scholar
Diehl, R. D., Ledieu, J., Ferralis, N., Szmodis, A. W., and McGrath, R., “Low-Energy Electron Diffraction from Quasicrystal Surfaces”, J. Phys.: Condens. Matter, vol. 15, pp. R63R81, 2003.Google Scholar
Penrose, R., “The Role of Aesthetics in Pure and Applied Mathematical Research”, Bull. Inst. Math. & Appl., vol. 10, pp. 266271, 1974.Google Scholar
Hermann, K., Crystallography and Surface Structure: An Introduction for Surface Scientists and Nanoscientists, 2nd ed., Wiley, Weinheim, 2016.Google Scholar
Cai, T., Shi, F., Shen, Z., Gierer, M., Goldman, A. I., Kramer, M. J., Jenks, C. J., Lograsso, T. A., Delaney, D. W., Thiel, P. A., and Van Hove, M. A., “Structural Aspects of the Fivefold Quasicrystalline Al-Cu-Fe Surface from STM and Dynamical LEED Studies”, Surf. Sci., vol. 495, pp. 1934, 2001.Google Scholar
MacKay, A. L., “Crystallography and the Penrose Pattern”, Physica, vol. 114A, pp. 609613, 1982.Google Scholar
Steurer, W., Haibach, T., Zhang, B., Kek, S., and Lück, R., “The Structure of Decagonal Al70Ni15Co15”, Acta Cryst. B, vol. 49, pp. 661675, 1993.Google Scholar
Gierer, M., Van Hove, M. A., Goldman, A. I., Shen, Z., Chang, S.-L., Jenks, C. J., Zhang, C.-M., and Thiel, P. A., “Structural Analysis of the Fivefold Symmetric Surface of the Al70Pd21Mn9 Quasicrystal by Low Energy Electron Diffraction”, Phys. Rev. Lett., vol. 78, pp. 467470, 1997.Google Scholar
Gierer, M., Van Hove, M. A., Goldman, A. I., Shen, Z., Chang, S.-L., Pinhero, P. J., Jenks, C. J., Anderegg, J. W., Zhang, C.-M., and Thiel, P. A., “Fivefold Surface of Quasicrystalline AlPdMn: Structure Determination Using Low-Energy-Electron Diffraction”, Phys. Rev. B, vol. 57, pp. 76287641, 1998.Google Scholar
Gierer, M., “Struktur und Fehlordnung an periodischen und aperiodischen Kristalloberflächen”, Habilitation, Faculty of Geosciences, University of Munich, 2000.Google Scholar
Gierer, M., Mikkelsen, A., Gräber, M., Gille, P., and Moritz, W., “Quasicrystalline Surface Order on Decagonal Al72.1Ni11.5Co16.4: An Investigation with Spot Profile Analysis LEED”, Surf. Sci. Lett., vol. 463, pp. L654L660, 2000.Google Scholar
Schaub, T. M., Bürgler, D. E., Güntherodt, H. J., and Suck, J. B., “Quasicrystalline Structure of Icosahedral Al68Pd23Mn9 Resolved by Scanning Tunneling Microscopy”, Phys. Rev. Lett., vol. 73, pp. 12551258, 1994.Google Scholar
Ledieu, J., Munz, A., Parker, T., McGrath, R., Diehl, R. D., Delaney, D. W., and Lograsso, T. A., “Structural Study of the Five-fold Surface of the Al70Pd21Mn9 Quasicrystal”, Surf. Sci., vol. 433–435, pp. 666671, 1999.Google Scholar
Ledieu, J., McGrath, R., Diehl, R. D., Lograsso, T. A., Delaney, D. W., Papadopolos, Z., and Kasner, G., “Tiling of the Surface of Al70Pd21Mn9”, Surf. Sci., vol. 492, pp. L729L734, 2001.Google Scholar
Wu, X., Kycia, S. W., Olson, C. G., Benning, P. J., Goldman, A. I., and Lynch, D. W., “Electronic Band Dispersion and Pseudogap in Quasicrystals: Angular-Resolved Photoemission Studies on Icosahedral Al70Pd21.5Mn8.5”, Phys. Rev. Lett., vol. 75, pp. 45404543, 1995.Google Scholar
Shen, Z., Raberg, W., Heinzig, M., Jenks, C. J., Fournée, V., Van Hove, M. A., Lograsso, T. A., Delaney, D., Cai, T., Canfield, P. C., Fisher, I. R., Goldman, A. I., Kramer, M. J., and Thiel, P. A., “A LEED Comparison of Structural Stabilities of the Three High-Symmetry Surfaces of Al-Pd-Mn Bulk Quasicrystals”, Surf. Sci., vol. 450, pp. 111, 2000.Google Scholar
Kortan, A. R., Becker, R. S., Thiel, F. A., and Chen, H. S., “Real-Space Atomic Structure of a Two-Dimensional Decagonal Quasicrystal”, Phys. Rev. Lett., vol. 64. pp. 200203, 1990.Google Scholar
Erbudak, M., Nissen, H.-U., Wetli, E., Hochstrasser, M., and Ritsch, S., “Real-Space Imaging of Pentagonal Symmetry Elements by 2-keV Electrons in the Icosahedral Quasicrystal Al70Mn9Pd21”, Phys. Rev. Lett., vol. 72, pp. 30373040, 1994.Google Scholar
Thiel, P. A., “Quasicrystal Surfaces”, Annu. Rev. Phys. Chem., vol. 59, pp. 129152, 2008.Google Scholar
Ferralis, N., Pussi, K., Cox, E. J., Gierer, M., Ledieu, J., Fisher, I. R., Jenks, C. J., Lindroos, M., McGrath, R., and Diehl, R. D., “Structure of the Tenfold d-Al-Ni-Co Quasicrystal Surface”, Phys. Rev. B, vol. 69, p. 153404, 2004.Google Scholar
Pussi, K., Ferralis, N., Mihalkovic, M., Widom, M., Curtarolo, S., Gierer, M., Jenks, C. J., Canfield, P., Fisher, I. R., and Diehl, R. D., “Use of Periodic Approximants in a Dynamical LEED Study of the Quasicrystalline Tenfold Surface of Decagonal Al-Ni-Co”, Phys. Rev. B, vol. 73, p. 184203, 2006.Google Scholar
Chang, S.-L., Chin, W. B., Zhang, C.-M., Jenks, C. J., and Thiel, P. A., “Oxygen Adsorption on a Single-Grain, Quasicrystal Surface”, Surf. Sci., vol. 337, pp. 135146, 1995.Google Scholar
Gierer, M. and Over, H., “Complex Surface Structures Studied by Low-Energy Electron Diffraction”, Z. Kristallogr., vol. 214, pp. 1456, 1999.Google Scholar
Steurer, W., “Reflections on Symmetry and Formation of Axial Quasicrystals”, Z. Kristallogr., vol. 221, pp. 402411, 2006.Google Scholar
Steurer, W., “Quasicrystals: What Do We Know? What Do We Want to Know? What Can We Know?Acta Cryst. A, vol. 74, pp. 111, 2018.Google Scholar
Moritz, W., Günther, S., and Pussi, K., “Quantitative LEED Studies on Graphene”, in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, ed. Wandelt, K., Elsevier, Amsterdam, 2018, vol. 4, pp. 370377.Google Scholar
Hagstrom, S., Lyon, H. B., and Somorjai, G. A., “Surface Structures of the Clean Platinum (100) Surface”, Phys. Rev. Lett., vol. 15, pp. 491493, 1965.Google Scholar
Fedak, D. G. and Gjostein, N. A., “Structure and Stability of the (100) Surface of Gold”, Phys. Rev. Lett., vol. 16, pp. 171174, 1966.Google Scholar
Heilmann, P., Heinz, K., and Müller, K., “The Superstructures of the Clean Pt(100) and Ir(100) Surfaces”, Surf. Sci., vol. 83, pp. 487497, 1979.Google Scholar
Heinz, K., Lang, E., Strauss, K., and Müller, K., “Metastable 1×5 Structure of Pt(100)”, Surf. Sci., vol. 120, pp. L401L404, 1982.Google Scholar
Gibbs, D., Grübel, G., Zehner, D. M., Abernathy, D. L., and Mochrie, S. G. J., “Orientational Epitaxy of the Hexagonally Reconstructed Pt(001) Surface”, Phys. Rev. Lett., vol. 67, pp. 31173120, 1991.Google Scholar
Kuhnke, K., Kern, K., Comsa, G., and Moritz, W., “Top-Layer Superstructures of the Reconstructed Pt(100) Surface”, Phys. Rev. B, vol. 45, pp. 1438814392, 1992.Google Scholar
Ritz, G., Schmid, M., Varga, P., Borg, A., and Rønning, M., “Pt(100) Quasihexagonal Reconstruction: A Comparison between Scanning Tunneling Microscopy Data and Effective Medium Theory Simulation Calculations”, Phys. Rev. B, vol. 56, pp. 1051810526, 1997.Google Scholar
Hammer, R., Meinel, K., Krahn, O., and Widdra, W., “Surface Reconstruction of Pt(001) Quantitatively Revisited”, Phys. Rev. B, vol. 94, p. 195406, 2016.Google Scholar
Van Hove, M. A., Koestner, R. J., Stair, P. C., Bibérian, J. P., Kesmodel, L. L., Bartoš, I., and Somorjai, G. A., “The Surface Reconstructions of the (100) Crystal Faces of Iridium, Platinum and Gold: I. Experimental Observations and Possible Structural Models”, Surf. Sci., vol. 103, pp. 189217, 1981.Google Scholar
Gibbs, D., Ocko, B. M., Zehner, D. M., and Mochrie, S. G. J., “Structure and Phases of the Au(001) Surface: In-Plane Structure”, Phys. Rev. B, vol. 42, pp. 73307344, 1990.Google Scholar
Ocko, B. M., Gibbs, D., Huang, K. G., Zehner, D. M., and Mochrie, S. G. J., “Structure and Phases of the Au(001) Surface: Absolute X-ray Reflectivity”, Phys. Rev. B, vol. 44, pp. 6429, 1991.Google Scholar
Abernathy, D. L., Mochrie, S. G. J., Zehner, D. M., Grübel, G., and Gibbs, D., “Orientational Epitaxy and Lateral Structure of the Hexagonally Reconstructed Pt(001) and Au(001) Surfaces”, Phys. Rev. B, vol. 45, pp. 92729291, 1992.Google Scholar
Hammer, R., Sander, A., Förster, S., Kiel, M., Meinel, K., and Widdra, W., “Surface Reconstruction of Au(001): High-Resolution Real-Space and Reciprocal-Space Inspection”, Phys. Rev. B, vol. 90, p. 035446, 2014.Google Scholar
Perdereau, J., Bibérian, J. P., and Rhead, G. E., “Adsorption and Surface Alloying of Lead Monolayers on (111) and (110) Faces of Gold”, J. Phys. F: Met. Phys., vol. 4, pp. 798806, 1974.Google Scholar
Sandy, A. R., Mochrie, S. G. J., Zehner, D. M., Huang, K. G., and Gibbs, D., “Structure and Phases of the Au(111) Surface: X-ray-Scattering Measurements”, Phys. Rev. B, vol. 43, pp. 46674687, 1991.Google Scholar
Besenbacher, F., Lauritsen, J. V., Linderoth, T. R., Lægsgaard, E., Vang, R. T., and Wendt, S., “Atomic-Scale Surface Science Phenomena Studied by Scanning Tunneling Microscopy”, Surf. Sci., vol. 603, pp. 13151327, 2009.Google Scholar
Zajonz, H., Baddorf, A. P., Gibbs, D., and Zehner, D. M., “Structure of Pseudomorphic and Reconstructed Thin Cu Films on Ru(0001)”, Phys. Rev. B, vol. 62, pp. 1043610444, 2000.Google Scholar
Zajonz, H., Gibbs, D., Baddorf, A. P., and Zehner, D. M., “Nanoscale Strain Distribution at the Ag/Ru(0001) Interface”, Phys. Rev. B, vol. 67, p. 155417, 2003.Google Scholar
Narloch, B. and Menzel, D., “The Geometry of Xenon and Krypton on Ru(001): A LEED IV Investigation”, Surf. Sci., vol. 412/413, pp. 562579, 1998.Google Scholar
Diehl, R. D. and McGrath, R., “Structural Studies of Alkali Metal Adsorption and Coadsorption on Metal Surfaces”, Surf. Sci. Rep., vol. 23, pp. 43171, 1996.Google Scholar
Li, H. I., Franke, K. J., Pascual, J. I., Bruch, L. W., and Diehl, R. D., “Origin of Moiré Structures in C60 on Pb(111) and Their Effect on Molecular Energy Levels”, Phys. Rev. B, vol. 80, p. 085415, 2009.Google Scholar
Marchini, S., Günther, S., and Wintterlin, J., “Scanning Tunneling Microscopy of Graphene on Ru(0001)”, Phys. Rev. B, vol. 76, p. 075429, 2007.Google Scholar
Martoccia, D., Willmott, P. R., Brugger, T., Björck, M., Günther, S., Schlepütz, C. M., Cervellino, A., Pauli, S. A., Patterson, B. D., Marchini, S., Wintterlin, J., Moritz, W., and Greber, T., “Graphene on Ru(0001): A 25 × 25 Supercell”, Phys. Rev. Lett., vol. 101, p. 126102, 2008.Google Scholar
Moritz, W., Wang, B., Bocquet, M.-L., Brugger, T., Greber, T., Wintterlin, J., and Günther, S., “Structure Determination of the Coincidence Phase of Graphene on Ru(0001)”, Phys. Rev. Lett., vol. 104, p. 136102, 2010.Google Scholar
Hämäläinen, S. K., Boneschanscher, M. P., Jacobse, P. H., Swart, I., Pussi, K., Moritz, W., Lahtinen, J., Liljeroth, P., and Sainio, J.: “Structure and Local Variations of the Graphene Moiré on Ir(111)”, Phys. Rev. B, vol. 88, p. 201406(R), 2013.Google Scholar
Fabien, J., Zhou, T., Blanc, N., Felici, R., Coraux, J., and Renaud, G., “Topography of the Graphene/Ir(111) Moiré Studied by Surface X-ray Diffraction”, Phys. Rev. B, vol. 91, p. 245424, 2015.Google Scholar
van Smaalen, S., Incommensurate Crystallography, Oxford University Press, New York, 2007.Google Scholar
Zeller, P. and Günther, S., “What Are the Possible Moiré Patterns of Graphene on Hexagonally Packed Surfaces? Universal Solution for Hexagonal Coincidence Lattices, Derived by a Geometric Construction”, New J. Phys., vol. 16, p. 083028, 2014.Google Scholar
Zeller, P., Ma, X., and Günther, S., “Indexing Moiré Patterns of Metal-Supported Graphene and Related Systems: Strategies and Pitfalls”, New. J. Phys., vol. 19, p. 013015, 2017.Google Scholar
Günther, S. and Zeller, P., “Moiré Patterns of Graphene on Metals”, in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, ed. Wandelt, K., Elsevier, Amsterdam, vol. 4, pp. 295307, 2018.Google Scholar
Hermann, K., “Periodic Overlayers and Moiré Patterns: Theoretical Studies of Geometric Properties”, J. Phys.: Condens. Matter, vol. 24, p. 314210, 2012.Google Scholar
International Tables of Crystallography, Kluwer Academic Publishers, Dordrecht, 2004, vol. C, 3rd ed., ch. 9.8: Incommensurate and commensurate modulated structures.Google Scholar
Steurer, W., “3 + D-Dimensional Patterson and Fourier Methods for the Determination of One-Dimensionally Modulated Structures”, Acta Cryst. A, vol. 43, pp. 3642, 1987.Google Scholar
Robinson, I. K., “Surface Crystallography”, in Handbook on Synchrotron Radiation, eds. Brown, G. S. and Moncton, D. E.. Amsterdam, Elsevier, 1991, vol. 3, ch. 7, pp. 221266.Google Scholar
Robinson, I. K., Eng, P., and Schuster, R., “Origin of the Surface Sensitivity in Surface X-ray Diffraction”, Acta Physica Polonica A, vol. 86, pp. 513520, 1994.Google Scholar
Feidenhans’l, R., “Surface Structure Determination by X-ray Diffraction”, Surf. Sci. Rep., vol. 10, pp. 105188, 1989.Google Scholar
Stierle, A. and Vlieg, E., “Surface‐Sensitive X‐ray Diffraction Methods”, in Modern Diffraction Methods, eds. Mittemeijer, E. J. and Welzel, U., Wiley-VCH, Weinheim, 2013, ch. 8, pp. 221257.Google Scholar
Sauvage-Simkin, M., “X-ray Diffraction of Surface Structures”, in Landolt-Börnstein, Group III: Condensed Matter, Landolt-Börnstein, Heidelberg, 2015, vol. 45, Physics of Solid Surfaces, subvol. A, ch. 4, pp. 100132.Google Scholar
Dosch, H., Critical Phenomena at Surfaces and Interfaces: Evanescent X-ray and Neutron Scattering, Springer Verlag, Heidelberg, 1992.Google Scholar
Disa, A. S., Walker, F. J., and Ahn, Ch. H., “High-Resolution Crystal Truncation Rod Scattering: Application to Ultrathin Layers and Buried Interfaces”, Adv. Mater. Interfaces, vol. 7, p. 1901772, 2020.Google Scholar
Zegenhagen, J. and Kazimirov, A., eds., Review articles on the X-ray standing wave technique, principles and applications, in Series on Synchrotron Radiation Techniques and Applications, World Scientific, Singapore, 2013, vol. 7, parts I and II.Google Scholar
Renaud, G., Lazzari, R., and Leroy, F., “Probing Surface and Interface Morphology with Grazing Incidence Small Angle X-ray Scattering”, Surf. Sci. Rep., vol. 64, pp. 255380, 2009.Google Scholar
Li, T., Senesi, A. J., and Lee, B., “Small Angle X‑ray Scattering for Nanoparticle Research”, Chem. Rev., vol. 116, pp. 1112811180, 2016.Google Scholar
Chason, E. and Mayer, T. M., “Thin Film and Surface Characterization by Specular X-ray Reflectivity”, Crit. Rev. Solid State Mater. Sci., vol. 22, pp. 167, 1997.Google Scholar
Tolan, M. and Press, W., “X-ray and Neutron Reflectivity”, Z. Kristallogr., vol. 213, pp. 319336, 1998.Google Scholar
Als-Nielsen, J., Jacquemain, D., Kjaer, K., Leveiller, E., Lahav, M., and Leiserowitz, L., “Principles and Applications of Grazing-Incidence X-ray and Neutron-Scattering from Ordered Monolayers at the Air-Water-Interface”, Phys. Rep., vol. 246, pp. 252313, 1994.Google Scholar
Stöhr, J., “Geometry and Bond Lengths of Chemisorbed Atoms and Molecules: NEXAFS and SEXAFS”, Z. Physik B - Condensed Matter, vol. 61, pp. 439445, 1985.Google Scholar
Eisenberger, P., Citrin, P., Hewitt, R., and Kincaid, B., “Sexafs: New Horizons in Surface Structure Determinations”, Crit. Rev. Solid State Mater. Sci., vol. 10, pp. 191207, 1981.Google Scholar
Koningsberger, D. C., X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, Wiley InterScience, Weinheim, 1988.Google Scholar
Haase, J., “Surface Structure Determinations Using X-ray Absorption Spectroscopy”, J. Chem. Soc., Faraday Trans., vol. 92, pp. 16531667, 1996.Google Scholar
Hähner, G., “Near Edge X-ray Absorption Fine Structure Spectroscopy As a Tool to Probe Electronic and Structural Properties of Thin Organic Films and Liquids”, Chem. Soc. Rev., vol. 35, pp. 12441255, 2006.Google Scholar
Ade, H. and Hitchcock, A. P., “NEXAFS Microscopy and Resonant Scattering: Composition and Orientation Probed in Real and Reciprocal Space”, Polymer, vol. 49, pp. 643675, 2008.Google Scholar
Fadley, C. S., Chen, Y., Couch, R. E., Daimon, H., Denecke, R., Denlinger, J. D., Galloway, H., Hussain, Z., Kaduwela, A. P., Kim, Y. J., Len, P. M., Liesegang, J., Menchero, J., Morais, J., Palomares, J., Ruebush, S. D., Rotenberg, E., Salmeron, M. B., Scalettar, R., Schattke, W., Singh, R., Thevuthasan, S., Tober, E. D., Van Hove, M. A., Wang, Z., and Ynzunza, R. X., “Diffraction and Holography with Photoelectrons and Fluorescent X-rays”, Progr. Surf. Sci., vol. 54, pp. 341387, 1997.Google Scholar
Bansmann, J., Baker, S. H., Binns, C., Blackman, J.A., Bucher, J.-P., Dorantes-Dávila, J., Dupuis, V., Favre, L., Kechrakos, D., Kleibert, A., Meiwes-Broer, K.-H., Pastor, G. M., Perez, A., Toulemonde, O., Trohidou, K. N., Tuaillon, J., and Xie, Y., “Magnetic and Structural Properties of Isolated and Assembled Clusters”, Surf. Sci. Rep., vol. 56, pp. 189275, 2005.Google Scholar
Sander, D., “The Magnetic Anisotropy and Spin Reorientation of Nanostructures and Nanoscale Films”, J. Phys.: Condens. Matter, vol. 16, pp. R603R636, 2004.Google Scholar
Stirling, W. G. and Cooper, M. J., “X-ray Magnetic Scattering”, J. Magn. Magn. Mat., vol. 200, pp. 755773, 1999.Google Scholar
Comin, R. and Damascelli, A., “Resonant X-ray Scattering Studies of Charge Order in Cuprates”, Annu. Rev. Condens. Matter Phys., vol. 7, pp. 369405, 2016.Google Scholar
Fink, J., Schierle, E., Weschke, E., and Geck, J., “Resonant Elastic Soft X-ray Scattering”, Rep. Prog. Phys., vol. 76, p. 056502, 2013.Google Scholar
X-ray Data Booklet. Compiled and edited by Thompson, A. C., Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, http://xdb.lbl.gov, last accessed 2 April 2022.Google Scholar
NIST, tables of X-ray scattering factors, www.nist.gov/pml/xcom-photon-cross-sections-database, last accessed 2 April 2022.Google Scholar
Zhou, X.-L. and Chen, S.-H., “Theoretical Foundation of X-ray and Neutron Reflectometry”, Phys. Rep., vol. 257, pp. 223348, 1995.Google Scholar
International Tables of Crystallography, “Dispersion Corrections for Forward Scattering”, in Mathematical, Physical and Chemical Tables, Kluwer Academic Publishers, Dordrecht, 2004, vol. C, 3rd ed., ch. 4.2, pp. 191258, table 4.2.6.8.Google Scholar
Born, M. and Wolf, E., Principles of Optics, 5th ed., Pergamon, New York, 1986.Google Scholar
Vineyard, G. H., “Grazing-Incidence Diffraction and the Distorted-Wave Born Approximation for the Study of Surfaces”, Phys. Rev. B, vol. 26, pp. 41464159, 1982.Google Scholar
Robach, O., Garreau, Y., Aïd, K., and Véron-Jolliot, M. B., “Corrections for Surface X-ray Diffraction Measurements Using the Z-axis Geometry: Finite Size Effects in Direct and Reciprocal Space”, J. Appl. Cryst., vol. 33, pp. 10061018, 2000.Google Scholar
Robinson, I. K., “Crystal Truncation Rods and Surface Roughness”, Phys. Rev. B, vol. 33, pp. 38303836, 1986.Google Scholar
Brennan, S. and Eisenberger, P., “A Novel X-ray Scattering Diffractometer for Studying Surface Structures under UHV Conditions”, Nuclear Instr. Methods Phys. Res., vol. 222, pp. 164167, 1984.Google Scholar
Fuoss, P. H. and Robinson, I. K., “Apparatus for X-ray Diffraction in Ultrahigh Vacuum”, Nuclear Instr. Methods Phys. Res., vol. 222, pp. 171176, 1984.Google Scholar
Fister, T. T., Fuoss, P. H., Fong, D. D., Eastman, J. A., Folkman, C. M., Hruszkewycz, S. O., Highland, M. J., Zhou, H., and Fenter, P., “Surface Diffraction on a ψ-Circle Diffractometer Using the χ-Axis Geometry”, J. Appl. Cryst., vol. 46, pp. 639643, 2013.Google Scholar
Vlieg, E., “Integrated Intensities Using a Six-Circle Surface X-ray Diffractometer”, J. Appl. Cryst., vol. 30, pp. 532543, 1997.Google Scholar
Evans-Lutterodt, K. W. and Tang, M.-T., “Angle Calculations for a ‘2+2’ Surface X-ray Diffractometer”, J. Appl. Cryst., vol. 28, pp. 318326, 1995.Google Scholar
Vlieg, E., “A (2 + 3)-Type Surface Diffractometer: Mergence of the z-Axis and (2 + 2)-Type Geometries”, J. Appl. Cryst., vol. 31, pp. 198203, 1998.Google Scholar
Takahasi, M. and Mizuki, J., “An Additional Axis for the Surface X-ray Diffractometer”, J. Synchrotron Rad., vol. 5, pp. 893895, 1998.Google Scholar
Bunk, O. and Nielsen, M. M., “Angle Calculations for a z‐Axis/(2S+2D) Hybrid Diffractometer”, J. Appl. Cryst., vol. 37, pp. 216222, 2004.Google Scholar
Schlepütz, C. M., Mariager, S. O., Pauli, S. A., Feidenhans’l, R., and Willmott, P. R., “Angle Calculations for a (2+3)-Type Diffractometer: Focus on Area Detectors”, J. Appl. Cryst., vol. 44, pp. 7383, 2011.Google Scholar
Willmott, P. R., Meister, D., Leake, S. J., Lange, M., Bergamaschi, A., Böge, M., Calvi, M., Cancellieri, C., Casati, N., Cervellino, A., Chen, Q., David, C., Flechsig, U., Gozzo, F., Henrich, B., Jäggi-Spielmann, S., Jakob, B., Kalichava, I., Karvinen, P., Krempasky, J., Lüdeke, A., Lüscher, R., Maag, S., Quitmann, C., Reinle-Schmitt, M. L., Schmidt, T., Schmitt, B., Streun, A., Vartiainen, I., Vitins, M., Wang, X., and Wullschleger, R., “The Materials Science Beamline Upgrade at the Swiss Light Source”, J. Synchrotron Rad., vol. 20, pp. 667682, 2013.Google Scholar
Warren, B. E., X-ray Diffraction, Dover, New York, 1990.Google Scholar
Clegg, W., ed., Various articles, in Crystal Structure Analysis, Principles and Practice, 2nd ed., Oxford University Press, Oxford, 2009.Google Scholar
Shayduk, R., “Use of Linear Scans to Obtain |Fhkl|2 and the Integrated Intensity”, J. Appl. Cryst., vol. 43, pp. 11211123, 2010.Google Scholar
Schamper, C., Meyerheim, H. L., and Moritz, W., “Resolution Correction for Surface X-ray Diffraction at High Beam Exit Angles”, J. Appl. Cryst., vol. 26, pp. 687696, 1993.Google Scholar
Jedrecy, N., “Coupling between Spatial and Angular Variables in Surface X-ray Diffraction: Effects on the Line Shapes and Integrated Intensities”, J. Appl. Cryst., vol. 33, pp. 13651375, 2000.Google Scholar
Torrelles, X. and Rius, J., “Faster Acquisition of Structure-Factor Amplitudes in Surface X-ray Diffraction Experiments Instruments”, J. Appl. Cryst., vol. 37, pp. 395398, 2004.Google Scholar
Schlepütz, C. M., Herger, R., Willmott, P. R., Patterson, B. D., Bunk, O., Brönnimann, Ch., Henrich, B., Hülsen, G., and Eikenberry, E. F., “Improved Data Acquisition in Grazing-Incidence X-ray Scattering Experiments Using a Pixel Detector”, Acta Cryst. A, vol. 61, pp. 418425, 2005.Google Scholar
Mariager, S. O., Lauridsen, S. L., Dohn, A., Bovet, N., Sørensen, C. B., Schlepütz, C. M., Willmott, P. R., and Feidenhans’l, R., “High-Resolution Three-Dimensional Reciprocal-Space Mapping of InAs Nanowires”, J. Appl. Cryst., vol. 42, pp. 369375, 2009.Google Scholar
Drnec, J., Zhou, T., Pintea, S., Onderwaater, W., Vlieg, E., Renaud, G., and Felici, R., “Integration Techniques for Surface X-ray Diffraction Data Obtained with a Two-Dimensional Detector”, J. Appl. Cryst., vol. 47, pp. 365377, 2014.Google Scholar
Leake, S. J., Reinle-Schmitt, M. L., Kalichava, I., Pauli, S. A., and Willmott, P. R., “Cluster Method for Analysing Surface X-ray Diffraction Data Sets Using Area Detectors”, J. Appl. Cryst., vol. 47, pp. 207214, 2014.Google Scholar
Roobol, S., Onderwaater, W., Drnec, J., Felici, R., and Frenken, J., “BINoculars: Data Reduction and Analysis Software for Two-Dimensional Detectors in Surface X-ray Diffraction”, J. Appl. Cryst., vol. 48, pp. 13241329, 2015.Google Scholar
Nicklin, C., “Capturing Surface Processes”, Science, vol. 343, pp. 739740, 2014.Google Scholar
Gustafson, J., Shipilin, M., Zhang, C., Stierle, A., Hejral, U., Ruett, U., Gutowski, O., Carlsson, P.-A., Skoglundh, M., and Lundgren, E., “High-Energy Surface X-ray Diffraction for Fast Surface Structure Determination”, Science, vol. 343, pp. 758761, 2014.Google Scholar
Lee, J. H., Tung, I. C., Chang, S.-H., Bhattacharya, A., Fong, D. D., Freeland, J. W., and Hong, H., “In Situ Surface/Interface X-ray Diffractometer for Oxide Molecular Beam Epitaxy”, Rev. Sci. Instr., vol. 87, p. 013901, 2016.Google Scholar
Hong, H. and Chiang, T.-C., “A Six-Circle Diffractometer System for Synchrotron X-ray Studies of Surfaces and Thin Film Growth by Molecular Beam Epitaxy”, Nuclear Instr. Methods Phys. Res. A, vol. 572, pp. 942947, 2007.Google Scholar
Rubio-Zuazo, J., Ferrer, P., López, A., Gutiérrez-León, A., da Silva, I., and Castro, G. R., “The Multipurpose X-ray Diffraction End-Station of the BM25B-SpLine Synchrotron Beamline at the ESRF”, Nuclear Instr. Methods Phys. Res. A, vol. 716, pp. 2328, 2013.Google Scholar
Rubio-Zuazo, J. and Castro, G. R., “Beyond Hard X-ray Photoelectron Spectroscopy: Simultaneous Combination with X-ray Diffraction”, J. Vac. Sci. Technol. A, vol. 31, p. 031103, 2013.Google Scholar
Saint-Lager, M.-C., Bailly, A., Dolle, P., Baudoing-Savois, R., Taunier, P., Garaudée, S., Cuccaro, S., Douillet, S., Geaymond, O., Perroux, G., Tissot, O., Micha, J.-S., Ulrich, O., and Rieutord, F., “New Reactor Dedicated to In Operando Studies of Model Catalysts by Means of Surface X-ray Diffraction and Grazing Incidence Small Angle X-ray Scattering”, Rev. Sci. Instrum., vol. 78, p. 083902, 2007.Google Scholar
Seeck, O. H., Deiter, C. Pflaum, K., Bertam, F., Beerlink, A., Franz, H., Horbach, J., Schulte-Schrepping, H., Murphy, B. M., Greve, M., and Magnussen, O., “The High-Resolution Diffraction Beamline P08 at PETRA III”, J. Synchrotron Rad., vol. 19, pp. 3038, 2012.Google Scholar
Murphy, B. M., Greve, M., Runge, B., Koops, C. T., Elsen, A., Stettner, J., Seeck, O. H., and Magnussen, O. M., “A Novel X-ray Diffractometer for Studies of Liquid–Liquid Interfaces”, J. Synchrotron Rad., vol. 21, pp. 4556, 2014.Google Scholar
Nicklin, C., Arnold, T., Rawle, J., and Warne, A., “Diamond Beamline I07: A Beamline for Surface and Interface Diffraction”, J. Synchrotron Rad., vol. 23, pp. 12451253, 2016.Google Scholar
Website of SPring-8, beamline BL13XU, www.spring8.or.jp/wkg/BL13XU/instrument/lang-en/INS-0000000396/instrument_summary_view, last accessed 2 April 2022.Google Scholar
Eisenberger, P. and Marra, W. C., “X-ray Diffraction Study of the Ge(001) Reconstructed Surface”, Phys. Rev. Lett., vol. 46, pp. 10811085, 1981.Google Scholar
Fujii, Y., Yoshida, K., Nakamura, T., and Yoshida, K., “A Compact Ultrahigh Vacuum X-ray Diffractometer for Surface Glancing Scattering Using a Rotating-Anode Source”, Rev. Sci. Instrum., vol. 68, pp. 19751979, 1997.Google Scholar
Albrecht, M., Antesberger, H., Moritz, W., Plöckl, H., Sieber, M., and Wolf, D., “Six-Circle Diffractometer for Surface Diffraction Using an In-vacuum X-ray Detector”, Rev. Sci. Instrum., vol. 70, pp. 32393243, 1999.Google Scholar
The diffractometer was developed by Meyerheim, H. L. at the Max-Planck-Institut für Mikrostrukturphysik, www.mpi-halle.mpg.de, last accessed 2 April 2022.Google Scholar
List of Synchrotron Radiation Facilities, https://en.wikipedia.org/wiki/List_of_synchrotron_radiation_facilities, last accessed 2 April 2022.Google Scholar
Tajiri, H., “Progress in Surface X-ray Crystallography and the Phase Problem”, Jpn. J. Appl. Phys., vol. 59, p. 020503, 2020.Google Scholar
Vlieg, E., “ROD: A Program for Surface X-ray Crystallography”, J. Appl. Cryst., vol. 33, pp. 401405, 2000. The program is available at www.esrf.fr, last accessed 2 April 2022.Google Scholar
Shmueli, U., Theories and Techniques of Crystal Structure Determination, Oxford University Press, Oxford, 2007.Google Scholar
Giacovazzo, C., ed., Fundamentals of Crystallography, Oxford University Press, Oxford, 1992.Google Scholar
Giacovazzo, C., Direct Phasing in Crystallography, Fundamentals and Applications, Oxford University Press, Oxford, 1998.Google Scholar
Wu, J. S. and Spence, J. C. H., “Phase Extension in Crystallography Using the Iterative Fienup-Gerchberg-Saxton Algorithm and Hilbert Transforms”, Acta Cryst. A, vol. 59, pp. 577583, 2003.Google Scholar
van der Lee, A., “Charge Flipping for Routine Structure Solution”, J. Appl. Cryst., vol. 46, pp. 13061315, 2013.Google Scholar
Rius, J., Miravitlles, C., and Allmann, R., “A Tangent Formula Derived from Patterson-Function Arguments. IV. The Solution of Difference Structures Directly from Superstructure Reflections”, Acta Cryst. A, vol. 52, pp. 634639, 1996.Google Scholar
Takeuchi, Y., “The Investigation of Superstructures by Means of Partial Patterson Functions”, Z. Kristallogr., vol. 135, pp. 120136, 1972.Google Scholar
Buerger, M. J., Vector Space and its Application in Crystal-Structure Investigation, Wiley, New York, 1959, pp. 310329.Google Scholar
Takahashi, T., Sumitani, K., and Kusano, S., “Holographic Imaging of Surface Atoms Using X-ray Diffraction”, Surf. Sci., vol. 493, pp. 3641, 2001.Google Scholar
Marks, L. D., Erdman, N., and Subramanian, A., “Crystallographic Direct Methods for Surfaces”, J. Phys.: Condens. Matter, vol. 13, p. 10677, 2001.Google Scholar
Marks, L. D., Sinkler, W., and Landree, E., “A Feasible Set Approach to the Crystallographic Phase Problem”, Acta Cryst. A, vol. 55, pp. 601612, 1999.Google Scholar
Kumpf, C., Marks, L. D., Ellis, D., Smilgies, D., Landemark, E., Nielsen, M., Feidenhans’l, R., Zegenhagen, J., Bunk, O., Zeysing, J. H., Su, Y., and Johnson, R. L., “Subsurface Dimerization in III-V Semiconductor (001) Surfaces”, Phys. Rev. Lett., vol. 86, pp. 35863589, 2001.Google Scholar
Yacoby, Y., Pindak, R., MacHarrie, R., Pfeiffer, L., Berman, L., and Clarke, R., Direct Structure Determination of Systems with Two-Dimensional Periodicity, J. Phys.: Condens. Matter, vol. 12, pp. 39293938, 2000.Google Scholar
Rius, J., Miravitlles, C., and Allmann, R., “A Tangent Formula Derived from Patterson–Function Arguments. IV. The Solution of Difference Structures Directly from Superstructure Reflections”, Acta Cryst. A, vol. 52, pp. 634639, 1996.Google Scholar
Rius, J., “Derivation of a New Tangent Formula from Patterson–Function Arguments”, Acta Cryst. A, vol. 49, pp. 406409, 1993.Google Scholar
Vogler, H., “Röntgenstrukturanalysen der Ge(113)-c(3×1)- und InSb(111)-(2×2)-Oberflächen und Anwendung der Maximum Entropie Methode zur Oberflächenstrukturanalyse”, Dissertation, University of Munich, Department of Earth and Environmental Sciences, Germany, 1997.Google Scholar
Saldin, D. K., Harder, R., Vogler, H., Moritz, W., and Robinson, I. K., “Solving the Structure Completion Problem in Surface Crystallography”, Comp. Phys. Commun., vol. 137, pp. 1224, 2001.Google Scholar
Björck, M., Schlepütz, C. M., Pauli, S. A., Martoccia, D., Herger, R., and Willmott, P. R., “Atomic Imaging of Thin Films with Surface X-ray Diffraction: Introducing DCAF”, J. Phys.: Condens. Matter, vol. 20, p. 445006, 2008.Google Scholar
Robinson, I. K., Tabuchi, M., Hisadome, S., Oga, R., and Takeda, Y., “Perturbation Method of Analysis of Crystal Truncation Rod Data”, J. Appl. Cryst., vol. 38, pp. 299305, 2005.Google Scholar
Pauli, S. A., Leake, S. J., Björck, M., and Willmott, P. R., “Atomic Imaging and Direct Phase Retrieval Using Anomalous Surface X-ray Diffraction”, J. Phys.: Condens. Matter, vol. 24, p. 305002, 2012.Google Scholar
Kaganer, V. M., Albrecht, M., Hirnet, A., Gierer, M., Moritz, W., Jenichen, B., and Ploog, K. H., “Solving the Phase Problem for Surface Crystallography: Indirect Excitation via Bulk Reflection”, Phys. Rev. B, vol. 61, pp. R16355R16358, 2000.Google Scholar
Yacoby, Y., Brooks, C., Schlom, D., Cross, J. O., Walko, D. A., Cionca, C. N., Husseini, N. S., Riposan, A., and Clarke, R., “Structural Changes Induced by Metal Electrode Layers on Ultrathin BaTiO3 Films”, Phys. Rev. B, vol. 77, p. 195426, 2008.Google Scholar
Yacoby, Y., Zhou, H., Pindak, R., and Božović, I., “Atomic-Layer Synthesis and Imaging Uncover Broken Inversion Symmetry in La2−xSrxCuO4 Films”, Phys. Rev. B, vol. 87, p. 014108, 2013.Google Scholar
Sowwan, M., Yacoby, Y., Pitney, J., MacHarrie, R., Hong, M., Cross, J., Walko, D. A., Clarke, R., Pindak, R., and Stern, E. A., “Direct Atomic Structure Determination of Epitaxially Grown Films: Gd2O3 on GaAs(100)”, Phys. Rev. B, vol. 66, p. 205311, 2002.Google Scholar
Baltes, H., Yacoby, Y., Pindak, R., Clarke, R., Pfeiffer, L., and Berman, L., “Measurement of the X-ray Diffraction Phase in a 2D Crystal”, Phys. Rev. Lett., vol. 79, pp. 12851288, 1997.Google Scholar
Torrelles, X., Rius, J., Hirnet, A., Moritz, W., Pedio, M., Felici, R., Rudolf, P., Capozi, M., Boscherini, F., Heun, S., Mueller, B. H., and Ferrer, S., “Real Examples of Surface Reconstructions Determined by Direct Methods”, J. Phys.: Condens. Matter, vol. 14, pp. 40754086, 2002.Google Scholar
Torrelles, X., Rius, J., Boscherini, F., Heun, S., Mueller, B. H., Ferrer, S., Alvarez, J., and Miravitlles, C., “Application of X-ray Direct Methods to Surface Reconstructions: The Solution of Projected Superstructures”, Phys. Rev. B, vol. 57, pp. R4281R4284, 1998.Google Scholar
Hirnet, A., Schroeder, K., Blügel, S., Torrelles, X., Albrecht, M., Jenichen, B., Gierer, M., and Moritz, W., “Novel Sb Induced Reconstruction of the (113) Surface of Ge”, Phys. Rev. Lett., vol. 88, p. 226102, 2002.Google Scholar
Pedio, M., Felici, R., Torrelles, X., Rudolf, P., Capozi, M., Rius, J., and Ferrer, S., “Study of C60/Au(110)-p(6×5) Reconstruction from In-Plane X-ray Diffraction Data”, Phys. Rev. Lett., vol. 85, pp. 10401043, 2000.Google Scholar
Saldin, D. K., Harder, R. J., Shneerson, V. L., and Moritz, W., “Phase Retrieval Methods for Surface X-ray Diffraction”, J. Phys.: Condens. Matter, vol. 13, pp. 1068910707, 2001.Google Scholar
Saldin, D. K., Harder, R. J., Shneerson, V. L., and Moritz, W., “Surface X-ray Crystallography with Alternating Constraints in Real and Reciprocal Space: The Case of Mixed Domains”, J. Phys.: Condens. Matter, vol. 14, pp. 40874100, 2002.Google Scholar
Saldin, D. K. and Shneerson, V. L., “Direct Methods for Surface Crystallography”, J. Phys.: Condens. Matter, vol. 20, pp. 304208, 2008.Google Scholar
Lyman, P. F., Shneerson, V. L., Fung, R., Harder, R. J., Lu, E. D., Parihar, S. S., and Saldin, D. K., “Atomic-Scale Visualization of Surfaces with X-rays”, Phys. Rev. B, vol. 71, p. 081402(R), 2005.Google Scholar
Fienup, J. R., “Phase Retrieval Algorithms: A Comparison”, Appl. Opt., vol. 21, pp. 27582769, 1982.Google Scholar
Lyman, P. F., Shneerson, V. L., Fung, R., and Parihar, S. S., “Structure and Stability of Sb/Au (1 1 0)-c (2×2) Surface Phase”, Surf. Sci., vol. 600, pp. 424435, 2006.Google Scholar
Fung, R., Shneerson, V. L., Lyman, P. F., Parihar, S. S., Johnson-Steigelman, H. T., and Saldin, D. K., “Phase and Amplitude Recovery and Diffraction Image Generation Method: Structure of Sb/Au(110)–(√3×√3)R54.7° from Surface X-ray Diffraction”, Acta Cryst. A, vol. 63, pp. 239250, 2007.Google Scholar
Torrelles, X., Zegenhagen, J., Rius, J., Gloege, T., Cao, L. X., and Moritz, W., “Atomic Structure of a Long-Range Ordered Vicinal Surface of SrTiO3”, Surf. Sci., vol. 589, pp. 184191, 2005.Google Scholar
Elser, V., “Solution of the Crystallographic Phase Problem by Iterated Projections”, Acta Cryst. A, vol. 59, pp. 201209, 2003.Google Scholar
Schlepütz, C. M., Björck, M., Koller, E., Pauli, S. A., Martoccia, D., Fischer, Ø., and Willmott, P. R., “Structure of Ultrathin Heteroepitaxial Superconducting YBa2Cu3O7−x Films”, Phys. Rev. B, vol. 81, p. 174520, 2010.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Wolfgang Moritz, Ludwig-Maximilians-Universität Munchen, Michel A. Van Hove, Hong Kong Baptist University
  • Book: Surface Structure Determination by LEED and X-rays
  • Online publication: 18 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781108284578.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Wolfgang Moritz, Ludwig-Maximilians-Universität Munchen, Michel A. Van Hove, Hong Kong Baptist University
  • Book: Surface Structure Determination by LEED and X-rays
  • Online publication: 18 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781108284578.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Wolfgang Moritz, Ludwig-Maximilians-Universität Munchen, Michel A. Van Hove, Hong Kong Baptist University
  • Book: Surface Structure Determination by LEED and X-rays
  • Online publication: 18 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781108284578.021
Available formats
×