Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T20:17:54.879Z Has data issue: false hasContentIssue false

Simulating the Interaction of Convection with Magnetic Fields in the Sun

Published online by Cambridge University Press:  11 May 2010

P.A. Fox
Affiliation:
High Altitude Observatory, National Center for Atmospheric Research Boulder, CO 80307-3000 USA
M.L. Theobald
Affiliation:
Center for Solar and Space Research, Yale University New Haven, CT 06511-6666 USA
S. Sofia
Affiliation:
Center for Solar and Space Research, Yale University New Haven, CT 06511-6666 USA
M. R. E. Proctor
Affiliation:
University of Cambridge
P. C. Matthews
Affiliation:
University of Cambridge
A. M. Rucklidge
Affiliation:
University of Cambridge
Get access

Summary

The detailed dynamics of the Solar dynamo presents a significant challenge to our understanding of the interaction of convection and magnetic fields in the Solar interior. In this paper we discuss certain aspects of this interaction, such as modification of convective energy transport, and turbulent dissipation of magnetic fields. The latter controls the spatial distribution of the magnetic field and its time dependence. We also discuss how these results may influence current Solar dynamo calculations.

MOTIVATION

Solar activity manifests itself in many forms but perhaps most importantly through the presence of a magnetic field. The topic of this meeting is that of dynamos, in Solar and planetary contexts. In the case of the Sun the dynamo, which seems likely to be responsible for at least part of the Solar activity we observe, acts on a global scale. That is, the period of the dynamo is 22 years (a timescale distinct from those usually encountered on the Sun), sunspots appear within latitude bands and their numbers (in terms of monthly or yearly running means) increase and decrease over one cycle. There is however, a strong asymmetry of the Solar cycle in time, i.e. the growth phase is shorter (and dependent of the amount of activity) than the decay, or descending phase. In addition, the polar field of the Sun is observed to reverse around Solar maximum, again with a distinct asymmetry between hemispheres. Despite these global-scale features, the Solar magnetic field has many spatial components (Stenflo 1991) and the majority of the magnetic flux appears in small elements.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×