Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T15:12:54.779Z Has data issue: false hasContentIssue false

13 - S. enterica-based antigen delivery systems

Published online by Cambridge University Press:  04 December 2009

Duncan Maskell
Affiliation:
University of Cambridge
José A. Chabalgoity
Affiliation:
Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Avda. A. Navarro 3051, Montevideo CP 11600, Uruguay
Pietro Mastroeni
Affiliation:
University of Cambridge
Get access

Summary

INTRODUCTION

Salmonella enterica has been proposed as a highly efficient vector for the delivery of heterologous molecules to the immune system of the host. For more than two decades recombinant live attenuated salmonellae expressing antigens from other pathogens have been extensively assessed as oral multivalent vaccines and tested in a great diversity of experimental models. More recently, it has been demonstrated that S. enterica can also be used as a vector for DNA vaccines. New emerging applications for recombinant S. enterica include its use in the treatment of cancer and possible applications in gene therapy.

Some distinctive features of S. enterica have strongly contributed to make it an attractive delivery system. Among them are features of the immunobiology of S. enterica infections and the genetics of the bacteria. S. enterica naturally enter the host by the oral route, elicit strong mucosal and systemic immune responses and are eventually cleared from the tissues leaving long lasting immunological memory. Once inside the host, S. enterica can be found within macrophages and dendritic cells (DC), which are professional antigen presenting cells (APC). Thus, oral administration of recombinant S. enterica can be an effective way of directing the expression of relevant molecules (antigens or immunomodulatory molecules) to APC.

The genetics of S. enterica are very similar to those of E. coli and the full genome sequences of several Salmonella species and serovars are available. Therefore, the molecular tools and techniques currently available enable the rational construction of vaccine vectors based on S. enterica.

Type
Chapter
Information
Salmonella Infections
Clinical, Immunological and Molecular Aspects
, pp. 337 - 370
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, A., Kumar, S., Jaffe, R.et al. (1990). Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T-cells. J Exp Med, 172, 1083–90.CrossRefGoogle ScholarPubMed
Ramadi, al- B. K., Al-Dhaheri, M. H., Mustafa, N.et al. (2001). Influence of vector-encoded cytokines on anti-Salmonella immunity: divergent effects of interleukin-2 and tumor necrosis factor alpha. Infect Immun, 69, 3980–8.CrossRefGoogle Scholar
Ascon, M. A., Hone, D. M., Walters, N. and Pascual, D. W. (1998). Oral immunization with a Salmonella typhimurium vaccine vector expressing recombinant enterotoxigenic Escherichia coli K99 fimbriae elicits elevated antibody titers for protective immunity. Infect Immun, 66, 5470–6.Google ScholarPubMed
Attridge, S. R., Davies, R. and LaBrooy, J. T. (1997). Oral delivery of foreign antigens by attenuated Salmonella: consequences of prior exposure to the vector strain. Vaccine, 15, 155–62.CrossRefGoogle ScholarPubMed
Avogadri, F., Martinoli, Ch.,Petrovska, L.et al. (2005). Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res., 65, 3920–7.CrossRefGoogle ScholarPubMed
Barry, E. M., Gomez-Duarte, O., Chatfield, S.et al. (1996). Expression and immunogenicity of pertussis toxin S1 subunit – tetanus toxin fragment C fusions in Salmonella typhi vaccine strain CVD 908. Infect Immun, 64, 4172–81.Google ScholarPubMed
Ben-Yedidia, T. and Arnon, R. (1998). Effect of pre-existing carrier immunity on the efficacy of synthetic influenza vaccine. Immunol Lett, 64, 9–15.CrossRefGoogle ScholarPubMed
Black, R. E.,Levine, M. M.,Clements, M. L. Losonskyet al. (1987). Prevention of shigellosis by a Salmonella typhi – Shigella sonnei bivalent vaccine. J Infect Dis, 155, 1260–5.CrossRefGoogle ScholarPubMed
Brayton, K. A., Walt, M., Vogel, S. W. and Allsopp, B. A. (1998). A partially protective clone from Cowdria ruminantium identified by using a Salmonella vaccine delivery system. Ann N Y Acad Sci, 849, 247–52.CrossRefGoogle ScholarPubMed
Brett, S. J., Dunlop, L., Liew, F. Y. and Tite, J. P. (1993). Influence of the antigen delivery system on immunoglobulin isotype selection and cytokine production in response to influenza A nucleoprotein. Immunology, 80, 306–12.Google ScholarPubMed
Brown, A., Hormaeche, C. E., Demarco-de-Hormaeche, R.et al. (1987). An attenuated aroA Salmonella typhimurium vaccine elicits humoral and cellular immunity to cloned beta-galactosidase in mice. J Infect Dis, 155, 86–92.CrossRefGoogle ScholarPubMed
Capozzo, A.V., Cuberos, L., Levine, M. M. and Pasetti, M. F. (2004). Mucosally delivered Salmonella live vector vaccines elicit potent immune responses against a foreign antigen in neonatal mice born to naive and immune mothers. Infect Immun, 72, 4637–46.CrossRefGoogle ScholarPubMed
Carrier, M. J., Chatfield, S. N., Dougan, G.et al. (1992). Expression of human IL1 beta in Salmonella typhimurium. A model system for the delivery of recombinant therapeutic proteins in vivo. J Immunol, 148, 1176–81.Google Scholar
Catmull, J., Wilson, M. E., Kirchhoff, L. V., Metwali, A. and Donelson, J. E. (1999). Induction of specific cell-mediated immunity in mice by oral immunization with Salmonella expressing Onchocerca volvulus glutathione S-transferase. Vaccine, 17, 31–9.CrossRefGoogle ScholarPubMed
Cattozzo, E. M., Stocker, B. A., Radaelli, A., Giuli Morghen, C. and Tognon, M. (1997). Expression and immunogenicity of V3 loop epitopes of HIV-1, isolates SC and WMJ2, inserted in Salmonella flagellin. J Biotechnol, 56, 191–203.CrossRefGoogle ScholarPubMed
Chabalgoity, J. A., Dougan, G., Mastroeni, P. and Aspinall, R. J. (2002). Live bacteria as the basis for immunotherapies against cancer. Expert Rev Vaccines, 1, 495–505.CrossRefGoogle ScholarPubMed
Chabalgoity, J. A., Harrison, J. A., Esteves, A.et al. (1997). Expression and immunogenicity of an Echinococcus granulosus fatty acid-binding protein in live attenuated Salmonella vaccine strains. Infect Immun, 65, 2402–12.Google ScholarPubMed
Chabalgoity, J. A., Khan, C. M., Nash, A. A. and Hormaeche, C. E. (1996). A Salmonella typhimurium htrA live vaccine expressing multiple copies of a peptide comprising amino acids 8–23 of herpes simplex virus glycoprotein D as a genetic fusion to tetanus toxin fragment C protects mice from herpes simplex virus infection. Mol Microbiol, 19, 791–801.CrossRefGoogle ScholarPubMed
Chabalgoity, J. A.,Moreno, M.,Carol, H.,Dougan, G. and Hormaeche, C. E. (2000). A dog-adapted Salmonella typhimurium strain as a basis for a Live oral Echinococcus granulosus vaccine. Vaccine, 19, 460–9.CrossRefGoogle Scholar
Chabalgoity, J. A., Villareal-Ramos, B., Khan, C. M.et al. (1995). Influence of preimmunization with tetanus toxoid on immune responses to tetanus toxin fragment C-guest antigen fusions in a Salmonella vaccine carrier. Infect Immun, 63, 2564–9.Google Scholar
Charbit, A., Martineau, P., Ronco, J.et al. (1993). Expression and immunogenicity of the V3 loop from the envelope of human immunodeficiency virus type 1 in an attenuated aroA strain of Salmonella typhimurium upon genetic coupling to two Escherichia coli carrier proteins. Vaccine, 11, 1221–8.CrossRefGoogle Scholar
Chatfield, S. N., Charles, I. G., Makoff, A. J.et al. (1992a). Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine. Biotechnology N Y, 10, 888–92.CrossRefGoogle Scholar
Chatfield, S. N., Fairweather, N., Charles, I.et al. (1992b). Construction of a genetically defined Salmonella typhi Ty2 aroA, aroC mutant for the engineering of a candidate oral typhoid–tetanus vaccine. Vaccine, 10, 53–60.CrossRefGoogle Scholar
Chen, H. and Schifferli, D. M. (2001). Enhanced immune responses to viral epitopes by combining macrophage-inducible expression with multimeric display on a Salmonella vector. Vaccine, 19, 3009–18.CrossRefGoogle ScholarPubMed
Chen, H. and Schifferli, D. M. (2003). Construction, characterization, and immunogenicity of an attenuated Salmonella enterica serovar Typhimurium pgtE vaccine expressing fimbriae with integrated viral epitopes from the spiC promoter. Infect Immun, 71, 4664–73.CrossRefGoogle ScholarPubMed
Cicin-Sain, L., Brune, W., Bubic, I., Jonjic, S. and Koszinowski, U. H. (2003). Vaccination of mice with bacteria carrying a cloned herpes virus genome reconstituted in vivo. J Virol, 77, 8249–55.CrossRefGoogle ScholarPubMed
Clairmont, C., Lee, K. C., Pike, J.et al. (2000). Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis, 181, 1996–2002.CrossRefGoogle ScholarPubMed
Cochlovius, B., Stassar, M. J., Schreurs, M. W., Benner, A. and Adema, G. J. (2002). Oral DNA vaccination: antigen uptake and presentation by dendritic cells elicits protective immunity. Immunol Lett, 80, 89–96.CrossRefGoogle ScholarPubMed
Coulson, N. M., Fulop, M. and Titball, R. W. (1994a). Bacillus anthracis protective antigen, expressed in Salmonella typhimurium SL 3261, affords protection against anthrax spore challenge. Vaccine, 12, 1395–401.CrossRefGoogle Scholar
Coulson, N. M., Fulop, M. and Titball, R. W. (1994b). Effect of different plasmids on colonization of mouse tissues by the aromatic amino acid dependent Salmonella typhimurium SL 3261. Microb Pathog, 16, 305–11.CrossRefGoogle Scholar
Covone, M. G., Brocchi, M., Palla, E.et al. (1998). Levels of expression and immunogenicity of attenuated Salmonella enterica serovar Typhimurium strains expressing Escherichia coli mutant heat-labile enterotoxin. Infect Immun, 66, 224–31.Google ScholarPubMed
Darji, A., Guzman, C. A., Gerstel, B.et al. (1997). Oral somatic transgene vaccination using attenuated S. typhimurium. Cell, 91, 765–75.CrossRefGoogle ScholarPubMed
Darji, A., Lage, zur S., Garbe, A. I., Chakraborty, T. and Weiss, S. (2000). Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier. FEMS Immunol Med Microbiol, 27, 341–9.CrossRefGoogle ScholarPubMed
Denich, K., Borlin, P., Hanley, O' P. D., Howard, M. and Heath, A. W. (1993). Expression of the murine interleukin-4 gene in an attenuated aroA strain of Salmonella typhimurium: persistence and immune response in BALB/c mice and susceptibility to macrophage killing. Infect Immun, 61, 4818–27.Google Scholar
Dietrich, G., Spreng, S., Favre, D., Viret, J. F. and Guzman, C. A. (2003). Live attenuated bacteria as vectors to deliver plasmid DNA vaccines. Curr Opin Mol Ther, 5, 10–19.Google ScholarPubMed
Dunne, M., Ramadi, al- B. K., Barthold, S. W., Flavell, R. A. and Fikrig, E. (1995). Oral vaccination with an attenuated Salmonella typhimurium strain expressing Borrelia burgdorferi OspA prevents murine Lyme borreliosis. Infect Immun, 63, 1611–14.Google ScholarPubMed
Dunstan, S. J., Simmons, C. P. and Strugnell, R. A. (1999). Use of in vivo-regulated promoters to deliver antigens from attenuated Salmonella enterica var. Typhimurium. Infect Immun, 67, 5133–41.Google ScholarPubMed
Dusek, D. M., Progulske-Fox, A. and Brown, T. A. (1994). Systemic and mucosal immune responses in mice orally immunized with avirulent Salmonella typhimurium expressing a cloned Porphyromonas gingivalis hemagglutinin. Infect Immun, 62, 1652–7.Google Scholar
Ervin, S. E., Small, P. Jr. and Gulig, P. A. (1993). Use of incompatible plasmids to control expression of antigen by Salmonella typhimurium and analysis of immunogenicity in mice. Microb Pathog, 15, 93–101.CrossRefGoogle ScholarPubMed
Evans, D. T., Chen, L. M., Gillis, J.et al. (2003). Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system. J Virol, 77, 2400–9.CrossRefGoogle ScholarPubMed
Everest, P., Frankel, G., Li, J.et al. (1995). Expression of LacZ from the htrA, nirB and groE promoters in a Salmonella vaccine strain: influence of growth in mammalian cells. FEMS Microbiol Lett, 126, 97–101.CrossRefGoogle Scholar
Fagan, P. K., Djordjevic, S. P., Chin, J., Eamens, G. J. and Walker, M. J. (1997). Oral immunization of mice with attenuated Salmonella typhimurium aroA expressing a recombinant Mycoplasma hyopneumoniae antigen (NrdF). Infect Immun, 65, 2502–7.Google Scholar
Ferguson, A. and Sallam, J. (1992). Mucosal immunity to oral vaccines. Lancet, 339, 179.CrossRefGoogle ScholarPubMed
Flo, J., Tisminetzky, S. and Baralle, F. (2001). Oral transgene vaccination mediated by attenuated salmonellae is an effective method to prevent Herpes simplex virus-2 induced disease in mice. Vaccine, 19, 1772–82.CrossRefGoogle ScholarPubMed
Flynn, J. L., Weiss, W. R., Norris, K. A.et al. (1990). Generation of a cytotoxic T-lymphocyte response using a Salmonella antigen-delivery system. Mol Microbiol, 4, 2111–18.CrossRefGoogle ScholarPubMed
Forbes, N. S., Munn, L. L., Fukumura, D. and Jain, R. K. (2003). Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res, 63, 5188–93.Google ScholarPubMed
Forrest, B. D. (1992). Impairment of immunogenicity of Salmonella typhi Ty21a due to preexisting cross-reacting intestinal antibodies. J Infect Dis, 166, 210–12.CrossRefGoogle ScholarPubMed
Fouts, T. R., DeVico, A. L., Onyabe, D. Y.et al. (2003). Progress toward the development of a bacterial vaccine vector that induces high-titer long-lived broadly neutralizing antibodies against HIV-1. FEMS Immunol Med Microbiol, 37, 129–34.CrossRefGoogle ScholarPubMed
Galan, J. E., Nakayama, K. and Curtiss, R. III (1990). Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene, 94, 29–35.CrossRefGoogle ScholarPubMed
Galen, J. E., Nair, J., Wang, J. Y.et al. (1999). Optimization of plasmid maintenance in the attenuated live vector vaccine strain Salmonella typhi CVD 908-htrA. Infect Immun, 67, 6424–33.Google ScholarPubMed
Gentschev, I., Glaser, I., Goebel, W.et al. (1998). Delivery of the p67 sporozoite antigen of Theileria parva by using recombinant Salmonella dublin: secretion of the product enhances specific antibody responses in cattle. Infect Immun, 66, 2060–4.Google ScholarPubMed
Gentschev, I., Mollenkopf, H., Sokolovic, Z.et al. (1996). Development of antigen-delivery systems, based on the Escherichia coli hemolysin secretion pathway. Gene, 179, 133–40.CrossRefGoogle ScholarPubMed
Gomez-Duarte, O. G., Galen, J., Chatfield, S. N.et al. (1995). Expression of fragment C of tetanus toxin fused to a carboxyl-terminal fragment of diphtheria toxin in Salmonella typhi CVD 908 vaccine strain. Vaccine, 13, 1596–602.CrossRefGoogle ScholarPubMed
Gomez-Duarte, O. G., Lucas, B., Yan, Z. X.et al. (1998). Protection of mice against gastric colonization by Helicobacter pylori by single oral dose immunization with attenuated Salmonella typhimurium producing urease subunits A and B. Vaccine, 16, 460–71.CrossRefGoogle ScholarPubMed
Goñi, F.,Knudsen, E.,Schreiber, F.et al. (2005). Mucosal vaccination delays or prevents prion infection via an oral route. Neuroscience, 133 (2), 413–21.CrossRefGoogle ScholarPubMed
Guzman, C. A., Brownlie, R. M., Kadurugamuwa, J., Walker, M. J. and Timmis, K. N. (1991). Antibody responses in the lungs of mice following oral immunization with Salmonella typhimurium aroA and invasive Escherichia coli strains expressing the filamentous hemagglutinin of Bordetella pertussis. Infect Immun, 59, 4391–7.Google ScholarPubMed
Haddad, D., Liljeqvist, S., Kumar, S.et al. (1995). Surface display compared to periplasmic expression of a malarial antigen in Salmonella typhimurium and its implications for immunogenicity. FEMS Immunol Med Microbiol, 12, 175–86.CrossRefGoogle ScholarPubMed
Hahn, H. P., Hess, C., Gabelsberger, J., Domdey, H. and Specht, B. U. (1998). A Salmonella typhimurium strain genetically engineered to secrete effectively a bioactive human interleukin (hIL)-6 via the Escherichia coli hemolysin secretion apparatus. FEMS Immunol Med Microbiol, 20, 111–19.CrossRefGoogle ScholarPubMed
Hayes, L. J., Conlan, J. W., Everson, J. S., Ward, M. E. and Clarke, I. N. (1991). Chlamydia trachomatis major outer membrane protein epitopes expressed as fusions with LamB in an attenuated aroA strain of Salmonella typhimurium; their application as potential immunogens. J Gen Microbiol, 137, 1557–64.CrossRefGoogle Scholar
Hess, J., Gentschev, I., Miko, D.et al. (1996). Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proc Natl Acad Sci USA, 93, 1458–63.CrossRefGoogle ScholarPubMed
Hohmann, E. L., Oletta, C. A., Loomis, W. P. and Miller, S. I. (1995). Macrophage-inducible expression of a model antigen in Salmonella typhimurium enhances immunogenicity. Proc Natl Acad Sci USA, 92, 2904–8.CrossRefGoogle ScholarPubMed
Hone, D., Attridge, S., Bosch, van-den- L. and Hackett, J. (1988). A chromosomal integration system for stabilization of heterologous genes in Salmonella based vaccine strains. Microb Pathog, 5, 407–18.CrossRefGoogle ScholarPubMed
Hopkins, S., Kraehenbuhl, J. P., Schodel, F.et al. (1995). A recombinant Salmonella typhimurium vaccine induces local immunity by four different routes of immunization. Infect Immun, 63, 3279–86.Google ScholarPubMed
Houde, M., Bertholet, S., Gagnon, E.et al. (2003). Phagosomes are competent organelles for antigen cross-presentation. Nature, 425, 402–6.CrossRefGoogle ScholarPubMed
Ianaro, A., Xu, D., Donnell, O' C. A., Di-Rosa, M. and Liew, F. Y. (1995). Expression of TGF-beta in attenuated Salmonella typhimurium: oral administration leads to the reduction of inflammation, IL2 and IFNγ, but enhancement of IL10, in carrageenin-induced oedema in mice. Immunology, 84, 8–15.Google Scholar
Igwe, E. I., Geginat, G. and Russmann, H. (2002). Concomitant cytosolic delivery of two immunodominant listerial antigens by Salmonella enterica serovar Typhimurium confers superior protection against murine listeriosis. Infect Immun, 70, 7114–19.CrossRefGoogle ScholarPubMed
Jagusztyn-Krynicka, E. K., Clark-Curtiss, J. E. and Curtiss, R., III (1993). Escherichia coli heat-labile toxin subunit B fusions with Streptococcus sobrinus antigens expressed by Salmonella typhimurium oral vaccine strains: importance of the linker for antigenicity and biological activities of the hybrid proteins. Infect Immun, 61, 1004–15.Google ScholarPubMed
Kang, H. Y. and Curtiss, R., III (2003). Immune responses dependent on antigen location in recombinant attenuated Salmonella typhimurium vaccines following oral immunization. FEMS Immunol Med Microbiol, 37, 99–104.CrossRefGoogle ScholarPubMed
Karem, K. L., Bowen, J., Kuklin, N. and Rouse, B. T. (1997). Protective immunity against herpes simplex virus (HSV) type 1 following oral administration of recombinant Salmonella typhimurium vaccine strains expressing HSV antigens. J Gen Virol, 78, 427–34.CrossRefGoogle ScholarPubMed
Karem, K. L., Chatfield, S., Kuklin, N. and Rouse, B. T. (1995). Differential induction of carrier antigen-specific immunity by Salmonella typhimurium live-vaccine strains after single mucosal or intravenous immunization of BALB/c mice. Infect Immun, 63, 4557–63.Google ScholarPubMed
Khan, C. M., Villarreal-Ramos, B., Pierce, R. J.et al. (1994a). Construction, expression, and immunogenicity of multiple tandem copies of the Schistosoma mansoni peptide 115–131 of the P28 glutathione S-transferase expressed as C-terminal fusions to tetanus toxin fragment C in a live aro-attenuated vaccine strain of Salmonella. J Immunol, 153, 5634–42.Google Scholar
Khan, C. M., Villarreal-Ramos, B., Pierce, R. J. (1994b). Construction, expression, and immunogenicity of the Schistosoma mansoni P28 glutathione S-transferase as a genetic fusion to tetanus toxin fragment C in a live aro attenuated vaccine strain of Salmonella. Proc Natl Acad Sci USA, 91, 11261–5.CrossRefGoogle Scholar
Khan, S. A., Everest, P., Servos, S.et al. (1998). A lethal role for lipid A in Salmonella infections. Mol Microbiol, 29, 571–9.CrossRefGoogle ScholarPubMed
Kochi, S. K., Killeen, K. P. and Ryan, U. S. (2003). Advances in the development of bacterial vector technology. Expert Rev Vaccines, 2, 31–43.Google ScholarPubMed
Leary, S. E. C., Griffin, K. F., Garmory, H. S., Williamson, E. D. and Titball, R. W. (1997). Expression of an F1/V fusion protein in attenuated Salmonella typhimurium and protection of mice against plague. Microb Pathog, 23, 167–79.CrossRefGoogle ScholarPubMed
Lo, W. F., Dunn, C. D., Ong, H., Metcalf, E. S. and Soloski, M. J. (2004). Bacterial and host factors involved in the major histocompatibility complex class Ib-restricted presentation of Salmonella Hsp 60: novel pathway. Infect Immun, 72, 2843–9.CrossRefGoogle ScholarPubMed
Londono, L. P., Chatfield, S., Tindle, R. W.et al. (1996). Immunisation of mice using Salmonella typhimurium expressing human papillomavirus type 16 E7 epitopes inserted into hepatitis B virus core antigen. Vaccine, 14, 545–52.CrossRefGoogle ScholarPubMed
Low, K. B., Ittensohn, M., Le, T.et al. (1999). Lipid A mutant Salmonella with suppressed virulence and TNFγ induction retain tumor-targeting in vivo. Nat Biotechnol, 17, 37–41.CrossRefGoogle Scholar
Low, K. B., Ittensohn, M., Luo, X.et al. (2004). Construction of VNP20009: a novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol Med, 90, 47–60.Google ScholarPubMed
Marshall, D. G., Haque, A., Fowler, R.et al. (2000). Use of the stationary phase inducible promoters, spv and dps, to drive heterologous antigen expression in Salmonella vaccine strains. Vaccine, 18, 1298–306.CrossRefGoogle ScholarPubMed
Maskell, D. J., Sweeney, K. J., Callaghan, O' D.et al. (1987). Salmonella typhimurium aroA mutants as carriers of the Escherichia coli heat-labile enterotoxin B subunit to the murine secretory and systemic immune systems. Microb Pathog, 2, 211–21.CrossRefGoogle ScholarPubMed
Mastroeni, P., Chabalgoity, J. A., Dunstan, S. J., Maskell, D. J. and Dougan, G. (2001). Salmonella: immune responses and vaccines. Vet J, 161, 132–64.CrossRefGoogle ScholarPubMed
McKelvie, N. D., Stratford, R., Wu, T.et al. (2004). Expression of heterologous antigens in Salmonella typhimurium vaccine vectors using the in vivo-inducible, SPI-2 promoter, ssaG. Vaccine, 22, 3243–55.CrossRefGoogle ScholarPubMed
McSorley, S. J., Xu, D. and Liew, F. Y. (1997). Vaccine efficacy of Salmonella strains expressing glycoprotein 63 with different promoters. Infect Immun, 65, 171–8.Google ScholarPubMed
Molina, N. C. and Parker, C. D. (1990). Murine antibody response to oral infection with live aroA recombinant Salmonella dublin vaccine strains expressing filamentous hemagglutinin antigen from Bordetella pertussis. Infect Immun, 58, 2523–8.Google ScholarPubMed
Nakayama, K., Kelly, S. M. and Curtiss, , , R. III (1988). Construction of an Asd+ expression cloning vector: stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Bio/Technology, 6, 693–7.Google Scholar
Nardelli-Haefliger, D., Kraehenbuhl, J. P., Curtiss, R.et al. (1996). Oral and rectal immunization of adult female volunteers with a recombinant attenuated Salmonella typhi vaccine strain. Infect Immun, 64, 5219–24.Google ScholarPubMed
Nardelli-Haefliger, D., Roden, R. B., Benyacoub, J.et al. (1997). Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice. Infect Immun, 65, 3328–36.Google ScholarPubMed
Nayak, A. R., Tinge, S. A., Tart, R. C.et al. (1998). A live recombinant avirulent oral Salmonella vaccine expressing pneumococcal surface protein A induces protective responses against Streptococcus pneumoniae. Infect Immun, 66, 3744–51.Google ScholarPubMed
Nemunaitis, J., Cunningham, C., Senzer, N.et al. (2003). Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther, 10, 737–44.CrossRefGoogle Scholar
Newton, S. M., Jacob, C. O. and Stocker, B. A. (1989). Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science, 244, 70–2.CrossRefGoogle ScholarPubMed
Newton, S. M., Joys, T. M., Anderson, S. A.et al. (1995). Expression and immunogenicity of an 18-residue epitope of HIV1 gp41 inserted in the flagellar protein of a Salmonella live vaccine. Res Microbiol, 146, 203–16.CrossRefGoogle ScholarPubMed
Newton, S. M., Kotb, M., Poirier, T. P., Stocker, B. A. and Beachey, E. H. (1991). Expression and immunogenicity of a streptococcal M protein epitope inserted in Salmonella flagellin. Infect Immun, 59, 2158–65.Google ScholarPubMed
Niethammer, A. G., Xiang, R., Becker, J. C.et al. (2002). A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med, 8, 1369–75.CrossRefGoogle ScholarPubMed
Niethammer, A. G., Xiang, R., Ruehlmann, J. M.et al. (2001). Targeted interleukin 2 therapy enhances protective immunity induced by an autologous oral DNA vaccine against murine melanoma. Cancer Res, 61, 6178–84.Google ScholarPubMed
Orr, N., Galen, J. E. and Levine, M. M. (1999). Expression and immunogenicity of a mutant diphtheria toxin molecule, CRM(197), and its fragments in Salmonella typhi vaccine strain CVD 908-htrA. Infect Immun, 67, 4290–4.Google Scholar
Orr, N., Galen, J. E. and Levine, M. M. (2001). Novel use of anaerobically induced promoter, dmsA, for controlled expression of fragment C of tetanus toxin in live attenuated Salmonella enterica serovar Typhi strain CVD 908-htrA. Vaccine, 19, 1694–700.CrossRefGoogle ScholarPubMed
Oyston, P. C., Williamson, E. D., Leary, S. E.et al. (1995). Immunization with live recombinant Salmonella typhimurium aroA producing F1 antigen protects against plague. Infect Immun, 63, 563–8.Google ScholarPubMed
Paglia, P., Medina, E., Arioli, I., Guzman, C. A. and Colombo, M. P. (1998). Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood, 92, 3172–6.Google ScholarPubMed
Paglia, P., Terrazzini, N., Schulze, K., Guzman, C. A. and Colombo, M. P. (2000). In vivo correction of genetic defects of monocyte/macrophages using attenuated Salmonella as oral vectors for targeted gene delivery. Gene Ther, 7, 1725–30.CrossRefGoogle ScholarPubMed
Pascual, D. W., Hone, D. M., Hall, S.et al. (1999). Expression of recombinant enterotoxigenic Escherichia coli colonization factor antigen I by Salmonella typhimurium elicits a biphasic T-helper cell response. Infect Immun, 67, 6249–56.Google ScholarPubMed
Pasetti, M. F., Anderson, R. J., Noriega, F. R., Levine, M. M. and Sztein, M. B. (1999). Attenuated ΔguaBA Salmonella typhi vaccine strain CVD 915 as a live vector utilizing prokaryotic or eukaryotic expression systems to deliver foreign antigens and elicit immune responses. Clin Immunol, 92, 76–89.CrossRefGoogle ScholarPubMed
Pasetti, M. F., Barry, E. M., Losonsky, G.et al. (2003). Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats. J Virol, 77, 5209–17.CrossRefGoogle ScholarPubMed
Pawelek, J. M., Low, K. B. and Bermudes, D. (1997). Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res, 57, 4537–44.Google ScholarPubMed
Pawelek, J. M., Low, K. B. and Bermudes, D. (2003). Bacteria as tumour-targeting vectors. Lancet Oncol, 4, 548–56.CrossRefGoogle ScholarPubMed
Pawelek, J. M., Sodi, S., Chakraborty, A. K.et al. (2002). Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther, 9, 813–18.CrossRefGoogle ScholarPubMed
Pertl, U., Wodrich, H., Ruehlmann, J. M.et al. (2003). Immunotherapy with a posttranscriptionally modified DNA vaccine induces complete protection against metastatic neuroblastoma. Blood, 101, 649–54.CrossRefGoogle ScholarPubMed
Pistor, S. and Hobom, G. (1990). OmpA-Haemagglutinin fusion proteins for oral immunization with live attenuated Salmonella. Res Microbiol, 141, 879–81.CrossRefGoogle ScholarPubMed
Platt, J., Sodi, S., Kelley, M.et al. (2000). Antitumour effects of genetically engineered Salmonella in combination with radiation. Eur J Cancer, 36, 2397–402.CrossRefGoogle ScholarPubMed
Poirier, T. P., Kehoe, M. A. and Beachey, E. H. (1988). Protective immunity evoked by oral administration of attenuated aroA Salmonella typhimurium expressing cloned streptococcal M protein. J Exp Med, 168, 25–32.CrossRefGoogle ScholarPubMed
Redman, T. K., Harmon, C. C., Lallone, R. L. and Michalek, S. M. (1995). Oral immunization with recombinant Salmonella typhimurium expressing surface protein antigen A of Streptococcus sobrinus: dose response and induction of protective humoral responses in rats. Infect Immun, 63, 2004–11.Google ScholarPubMed
Redman, T. K., Harmon, C. C. and Michalek, S. M. (1996). Oral immunization with recombinant Salmonella typhimurium expressing surface protein antigen A (SpaA) of Streptococcus sobrinus: effects of the Salmonella virulence plasmid on the induction of protective and sustained humoral responses in rats. Vaccine, 14, 868–78.CrossRefGoogle ScholarPubMed
Reisfeld, R. A., Niethammer, A. G., Luo, Y. and Xiang, R. (2004). DNA vaccines suppress tumor growth and metastases by the induction of anti-angiogenesis. Immunol Rev, 199, 181–90.CrossRefGoogle ScholarPubMed
Rescigno, M., Valzasina, B., Bonasio, R., Urbano, M. and Ricciardi-Castagnoli, P. (2001). Dendritic cells, loaded with recombinant bacteria expressing tumor antigens, induce a protective tumor-specific response. Clin Cancer Res, 7, 865s–870s.Google ScholarPubMed
Roberts, M., Bacon, A., Li, J. and Chatfield, S. (1999). Prior immunity to homologous and heterologous Salmonella serotypes suppresses local and systemic anti-fragment C antibody responses and protection from tetanus toxin in mice immunized with Salmonella strains expressing fragment C. Infect Immun, 67, 3810–15.Google ScholarPubMed
Roberts, M., Li, J., Bacon, A. and Chatfield, S. (1998). Oral vaccination against tetanus: comparison of the immunogenicities of Salmonella strains expressing fragment C from the nirB and htrA promoters [published erratum appears in Infect Immun (1999), 67, 468]. Infect Immun, 66, 3080–7.Google Scholar
Rosenberg, S. A., Spiess, P. J. and Kleiner, D. E. (2002). Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J Immunother, 25, 218–25.CrossRefGoogle ScholarPubMed
Rosenkranz, C. D., Chiara, D., Agorio, C.et al. (2003). Towards new immunotherapies: targeting recombinant cytokines to the immune system using live attenuated Salmonella. Vaccine, 21, 798–801.CrossRefGoogle ScholarPubMed
Russmann, H. (2004). Inverted pathogenicity: the use of pathogen-specific molecular mechanisms for prevention or therapy of disease. Int J Med Microbiol, 293, 565–9.CrossRefGoogle ScholarPubMed
Russmann, H., Igwe, E. I., Sauer, J.et al. (2001). Protection against murine listeriosis by oral vaccination with recombinant Salmonella expressing hybrid Yersinia type III proteins. J Immunol, 167, 357–65.CrossRefGoogle ScholarPubMed
Russmann, H., Shams, H., Poblete, F.et al. (1998). Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science, 281, 565–8.Google ScholarPubMed
Sadoff, J. C., Ballou, W. R., Baron, L. S.et al. (1988). Oral Salmonella typhimurium vaccine expressing circumsporozoite protein protects against malaria. Science, 240, 336–8.CrossRefGoogle ScholarPubMed
Schodel, F. and Will, H. (1990). Expression of hepatitis B virus antigens in attenuated salmonellae for oral immunization. Res Microbiol, 141, 831–7.CrossRefGoogle ScholarPubMed
Schodel, F., Milich, D. R. and Will, H. (1990). Hepatitis B virus nucleocapsid/pre-S2 fusion proteins expressed in attenuated Salmonella for oral vaccination. J Immunol, 145, 4317–21.Google ScholarPubMed
Schorr, J., Knapp, B., Hundt, E., Kupper, H. A. and Amann, E. (1991). Surface expression of malarial antigens in Salmonella typhimurium: induction of serum antibody response upon oral vaccination of mice. Vaccine, 9, 675–81.CrossRefGoogle Scholar
Shams, H., Poblete, F., Russmann, H., Galan, J. E. and Donis, R. O. (2001). Induction of specific CD8+ memory T-cells and long lasting protection following immunization with Salmonella typhimurium expressing a lymphocytic choriomeningitis MHC class I-restricted epitope. Vaccine, 20, 577–85.CrossRefGoogle ScholarPubMed
Shata, M. T., Reitz, M. S., Jr., DeVico, A. L., Lewis, G. K. and Hone, D. M. (2001). Mucosal and systemic HIV-1 Env-specific CD8+ T-cells develop after intragastric vaccination with a Salmonella Env DNA vaccine vector. Vaccine, 20, 623–9.CrossRefGoogle ScholarPubMed
Shiau, A. L., Chu, C. Y., Su, W. C. and Wu, C. L. (2001). Vaccination with the glycoprotein D gene of pseudorabies virus delivered by nonpathogenic Escherichia coli elicits protective immune responses. Vaccine, 19, 3277–84.CrossRefGoogle ScholarPubMed
Simonet, M., Fortineau, N., Beretti, J. L. and Berche, P. (1994). Immunization with live aroA recombinant Salmonella typhimurium producing invasin inhibits intestinal translocation of Yersinia pseudotuberculosis. Infect Immun, 62, 863–7.Google ScholarPubMed
Sjostedt, A., Sandstrom, G. and Tarnvik, A. (1992). Humoral and cell-mediated immunity in mice to a 17-kilodalton lipoprotein of Francisella tularensis expressed by Salmonella typhimurium. Infect Immun, 60, 2855–62.Google ScholarPubMed
Smerdou, C., Anton, I. M., Plana, J., Curtiss, R., III and Enjuanes, L. (1996). A continuous epitope from transmissible gastroenteritis virus S protein fused to E. coli heat-labile toxin B subunit expressed by attenuated Salmonella induces serum and secretory immunity. Virus Res, 41, 1–9.CrossRefGoogle Scholar
Srinivasan, J., Tinge, S., Wright, R., Herr, J. C. and Curtiss, R., III (1995). Oral immunization with attenuated Salmonella expressing human sperm antigen induces antibodies in serum and the reproductive tract. Biol Reprod, 53, 462–71.CrossRefGoogle ScholarPubMed
Stabel, T. J., Mayfield, J. E., Morfitt, D. C. and Wannemuehler, M. J. (1993). Oral immunization of mice and swine with an attenuated Salmonella choleraesuis [Δcya-12 Δcrp-cdt19] mutant containing a recombinant plasmid. Infect Immun, 61, 610–18.Google ScholarPubMed
Stabel, T. J., Mayfield, J. E., Tabatabai, L. B. and Wannemuehler, M. J. (1990). Oral immunization of mice with attenuated Salmonella typhimurium containing a recombinant plasmid which codes for production of a 31-kilodalton protein of Brucella abortus. Infect Immun, 58, 2048–55.Google ScholarPubMed
Stabel, T. J., Mayfield, J. E., Tabatabai, L. B. and Wannemuehler, M. J. (1991). Swine immunity to an attenuated Salmonella typhimurium mutant containing a recombinant plasmid which codes for production of a 31-kilodalton protein of Brucella abortus. Infect Immun, 59, 2941–7.Google Scholar
Stager, S., Gottstein, B. and Muller, N. (1997). Systemic and local antibody response in mice induced by a recombinant peptide fragment from Giardia lamblia variant surface protein (VSP) H7 produced by a Salmonella typhimurium vaccine strain. Int J Parasitol, 27, 965–71.CrossRefGoogle ScholarPubMed
Steger, K. K., Valentine, P. J., Heffron, F., So, M. and Pauza, C. D. (1999). Recombinant, attenuated Salmonella typhimurium stimulate lymphoproliferative responses to SIV capsid antigen in rhesus macaques. Vaccine, 17, 923–32.CrossRefGoogle ScholarPubMed
Stocker, B. A. (1990). Aromatic-dependent Salmonella as live vaccine presenters of foreign epitopes as inserts in flagellin. Res Microbiol, 141, 787–96.CrossRefGoogle ScholarPubMed
Strugnell, R., Dougan, G., Chatfield, S.et al. (1992). Characterization of a Salmonella typhimurium aro vaccine strain expressing the P.69 antigen of Bordetella pertussis. Infect Immun, 60, 3994–4002.Google ScholarPubMed
Strugnell, R. A., Maskell, D., Fairweather, N.et al. (1990). Stable expression of foreign antigens from the chromosome of Salmonella typhimurium vaccine strains. Gene, 88, 57–63.CrossRefGoogle ScholarPubMed
Su, G. F., Brahmbhatt, H. N., Wehland, J., Rohde, M. and Timmis, K. N. (1992). Construction of stable LamB-Shiga toxin B subunit hybrids: analysis of expression in Salmonella typhimurium aroA strains and stimulation of B subunit-specific mucosal and serum antibody responses. Infect Immun, 60, 3345–59.Google ScholarPubMed
Titball, R. W., Howells, A. M., Oyston, P. C. and Williamson, E. D. (1997). Expression of the Yersinia pestis capsular antigen (F1 antigen) on the surface of an aroA mutant of Salmonella typhimurium induces high levels of protection against plague. Infect Immun, 65, 1926–30.Google ScholarPubMed
Toso, J. F., Gill, V. J., Hwu, P.et al. (2002). Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol, 20, 142–52.CrossRefGoogle ScholarPubMed
Turner, S. J., Carbone, F. R. and Strugnell, R. A. (1993). Salmonella typhimurium ΔaroA ΔaroD mutants expressing a foreign recombinant protein induce specific major histocompatibility complex class I-restricted cytotoxic T-lymphocytes in mice. Infection And Immunity, 61, 5374–80.Google Scholar
Urashima, M., Suzuki, H., Yuza, Y.et al. (2000). An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium. Blood, 95, 1258–63.Google ScholarPubMed
Valentine, P. J., Meyer, K., Rivera, M. M.et al. (1996). Induction of SIV capsid-specific CTL and mucosal sIgA in mice immunized with a recombinant S. typhimurium aroA mutant. Vaccine, 14, 138–46.CrossRefGoogle ScholarPubMed
Verma, N. K., Ziegler, H. K., Stocker, B. A. and Schoolnik, G. K. (1995a). Induction of a cellular immune response to a defined T-cell epitope as an insert in the flagellin of a live vaccine strain of Salmonella. Vaccine, 13, 235–44.CrossRefGoogle Scholar
Verma, N. K., Ziegler, H. K., Wilson, M., Khan, M.et al. (1995b). Delivery of class I and class II MHC-restricted T-cell epitopes of listeriolysin of Listeria monocytogenes by attenuated Salmonella. Vaccine, 13, 142–50.CrossRefGoogle Scholar
Vrtala, S., Grote, M., Ferreira, F.et al. (1995). Humoral immune responses to recombinant tree pollen allergens (Bet v I and Bet v II) in mice: construction of a live oral allergy vaccine. Int Arch Allergy Immunol, 107, 290–4.CrossRefGoogle Scholar
Walker, M. J., Rohde, M., Timmis, K. N. and Guzman, C. A. (1992). Specific lung mucosal and systemic immune responses after oral immunization of mice with Salmonella typhimurium aroA, Salmonella typhi Ty21a, and invasive Escherichia coli expressing recombinant pertussis toxin S1 subunit. Infect Immun, 60, 4260–8.Google Scholar
Wang, J., Michel, V., Leclerc, C., Hofnung, M. and Charbit, A. (1999). Immunogenicity of viral B-cell epitopes inserted into two surface loops of the Escherichia coli K12 LamB protein and expressed in an attenuated aroA strain of Salmonella typhimurium. Vaccine, 17, 1–12.CrossRefGoogle Scholar
Wedemeyer, H., Gagneten, S., Davis, A.et al. (2001). Oral immunization with HCV-NS3-transformed Salmonella: induction of HCV-specific CTL in a transgenic mouse model. Gastroenterology, 121, 1158–66.CrossRefGoogle Scholar
Weiss, S. (2003). Transfer of eukaryotic expression plasmids to mammalian hosts by attenuated Salmonella spp. Int J Med Microbiol, 293, 95–106.CrossRefGoogle ScholarPubMed
Weth, R., Christ, O., Stevanovic, S. and Zoller, M. (2001). Gene delivery by attenuated Salmonella typhimurium: comparing the efficacy of helper versus cytotoxic T-cell priming in tumor vaccination. Cancer Gene Ther, 8, 599–611.CrossRefGoogle ScholarPubMed
Whittle, B. L. and Verma, N. K. (1997). The immune response to a B-cell epitope delivered by Salmonella is enhanced by prior immunological experience. Vaccine, 15, 1737–40.CrossRefGoogle ScholarPubMed
Whittle, B. L., Lee, E., Weir, R. C. and Verma, N. K. (1997a). Immune response to a Murray Valley encephalitis virus epitope expressed in the flagellin of an attenuated strain of Salmonella. J Med Microbiol, 46, 129–38.CrossRefGoogle Scholar
Whittle, B. L., Smith, R. M., Matthaei, K. I., Young, I. G. and Verma, N. K. (1997b). Enhancement of the specific mucosal IgA response in vivo by interleukin- 5 expressed by an attenuated strain of Salmonella serotype Dublin. J Med Microbiol, 46, 1029–38.CrossRefGoogle Scholar
Winau, F.,Kaufmann, S. H. and Schaible, U. E. (2004). Apoptosis paves the detaur path for CD8 T-cell activation against intracellular bacteria. Cell Microbiol, 6, 599–607.CrossRefGoogle ScholarPubMed
Woo, P. C., Wong, L. P., Zheng, B. J. and Yuen, K. Y. (2001). Unique immunogenicity of hepatitis B virus DNA vaccine presented by live-attenuated Salmonella typhimurium. Vaccine, 19, 2945–54.CrossRefGoogle ScholarPubMed
Wu, J. Y., Newton, S., Judd, A., Stocker, B. and Robinson, W. S. (1989). Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strain of Salmonella. Proc Natl Acad Sci USA, 86, 4726–30.CrossRefGoogle ScholarPubMed
Wu, S., Pascual, D. W., Lewis, G. K. and Hone, D. M. (1997). Induction of mucosal and systemic responses against human immunodeficiency virus type 1 glycoprotein 120 in mice after oral immunization with a single dose of a Salmonella-HIV vector. AIDS Res Hum Retroviruses, 13, 1187–94.CrossRefGoogle ScholarPubMed
Wyszynska, A., Raczko, A., Lis, M. and Jagusztyn-Krynicka, E. K. (2004). Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72D3/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine, 22, 1379–89.CrossRefGoogle ScholarPubMed
Xiang, R., Lode, H. N., Chao, T. H.et al. (2000). An autologous oral DNA vaccine protects against murine melanoma. Proc Natl Acad Sci USA, 97, 5492–7.CrossRefGoogle ScholarPubMed
Xiang, R.,Mizutani, N.,Luo, Y.et al. (2005). A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res., 65, 553–61.Google ScholarPubMed
Xiang, R., Primus, F. J., Ruehlmann, J. M.et al. (2001). A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T-cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice. J Immunol, 167, 4560–5.CrossRefGoogle ScholarPubMed
Xiong Bao, J. and Clements, J. D. (1991). Prior immunologic experience potentiates the subsequent antibody response when Salmonella strains are used as vaccine carriers. Infect Immun, 59, 3841–5.Google Scholar
Xu, D., McSorley, S. J., Chatfield, S. N., Dougan, G. and Liew, F. Y. (1995). Protection against i infection in genetically susceptible BALB/c mice by gp63 delivered orally in attenuated Salmonella typhimurium (aroA− aroD−). Immunology, 85, 1–7.Google Scholar
Xu, D., McSorley, S. J., Tetley, L.et al. (1998). Protective effect on Leishmania major infection of migration inhibitory factor, TNFγ, and IFNγ administered orally via attenuated Salmonella typhimurium. J Immunol, 160, 1285–9.Google Scholar
Yang, D. M., Fairweather, N., Button, L. L.et al. (1990). Oral Salmonella typhimurium (aroA−) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T-helper 1 cells and protective immunity against leishmaniasis. J Immunol, 145, 2281–5.Google Scholar
Yrlid, U. and Wick, M. J. (2000). Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J Exp Med, 191, 613–24.CrossRefGoogle ScholarPubMed
Yrlid, U., Svensson, M., Johansson, C. and Wick, M. J. (2000). Salmonella infection of bone marrow-derived macrophages and dendritic cells: influence on antigen presentation and initiating an immune response. FEMS Immunol Med Microbiol, 27, 313–20.CrossRefGoogle ScholarPubMed
Yu, Y. A., Shabahang, S., Timiryasova, T. M.et al. (2004). Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol, 22, 313–20.CrossRefGoogle ScholarPubMed
Yuhua, L., Kunyuan, G., Hui, C.et al. (2001). Oral cytokine gene therapy against murine tumor using attenuated Salmonella typhimurium. Int J Cancer, 94, 438–43.CrossRefGoogle ScholarPubMed
Zheng, B., Woo, P. C., Ng, M.et al. (2001). A crucial role of macrophages in the immune responses to oral DNA vaccination against hepatitis B virus in a murine model. Vaccine, 20, 140–7.CrossRefGoogle Scholar
Zheng, L. M., Luo, X., Feng, M.et al. (2000). Tumor amplified protein expression therapy: Salmonella as a tumor-selective protein delivery vector. Oncol Res, 12, 127–35.CrossRefGoogle ScholarPubMed
Zoller, M. and Christ, O. (2001). Prophylactic tumor vaccination: comparison of effector mechanisms initiated by protein versus DNA vaccination. J Immunol, 166, 3440–50.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×