Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Some elastodynamic theory
- 3 Wave motion in an unbounded elastic solid
- 4 Reciprocity in acoustics
- 5 Reciprocity in one-dimensional elastodynamics
- 6 Reciprocity in two- and three-dimensional elastodynamics
- 7 Wave motion guided by a carrier wave
- 8 Computation of surface waves by reciprocity considerations
- 9 Reciprocity considerations for an elastic layer
- 10 Forced motion of an elastic layer
- 11 Integral representations and integral equations
- 12 Scattering in waveguides and bounded bodies
- 13 Reciprocity for coupled acousto-elastic systems
- 14 Reciprocity for piezoelectric systems
- References
- Index of cited names
- Subject index
6 - Reciprocity in two- and three-dimensional elastodynamics
Published online by Cambridge University Press: 10 December 2009
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Some elastodynamic theory
- 3 Wave motion in an unbounded elastic solid
- 4 Reciprocity in acoustics
- 5 Reciprocity in one-dimensional elastodynamics
- 6 Reciprocity in two- and three-dimensional elastodynamics
- 7 Wave motion guided by a carrier wave
- 8 Computation of surface waves by reciprocity considerations
- 9 Reciprocity considerations for an elastic layer
- 10 Forced motion of an elastic layer
- 11 Integral representations and integral equations
- 12 Scattering in waveguides and bounded bodies
- 13 Reciprocity for coupled acousto-elastic systems
- 14 Reciprocity for piezoelectric systems
- References
- Index of cited names
- Subject index
Summary
Introduction
In Chapter 1, a formal definition of a reciprocity theorem for elastodynamic states was stated as: “A reciprocity theorem relates, in a specific manner, two admissible elastodynamic states that can occur in the same time-invariant linearly elastic body. Each of the two states can be associated with its own set of time-invariant material parameters and its own set of loading conditions. The domain to which the reciprocity theorem applies may be bounded or unbounded.”
Reciprocity theorems for elastodynamics in one-dimensional geometries were stated in Chapter 5. In the present chapter analogous theorems for three-dimensional elastodynamics are presented, as well as some applications. The most useful reciprocity theorems are for elastodynamic states in the frequency and Laplace transform domains. We also discuss reciprocity in a two-material body and reciprocity theorems for linearly viscoelastic solids.
For the time-harmonic case a number of applications of reciprocity in elastodynamics are considered. Some of the examples are concerned with the reciprocity of fields generated by point forces in bounded and unbounded elastic bodies. Other cases are concerned with the solution of the wave equation with polar symmetry and with reciprocity for plane waves reflected from a free surface.
Another purpose of the chapter is to provide insight on the applicability of reciprocity considerations, together with the use of a virtual wave, as a tool to obtain solutions for elastodynamic problems. Some examples are concerned with two-dimensional cases for anti-plane strain. These examples are very simple.
- Type
- Chapter
- Information
- Reciprocity in Elastodynamics , pp. 90 - 115Publisher: Cambridge University PressPrint publication year: 2004