Abramowitz, M. and Stegun, E. A., 1964. Handbook of Mathematical Functions. National Bureau of Standards, US Government Printing Office, Washington DC
Achenbach, J. D., 1973. Wave Propagation in Elastic Solids. Elsevier Science, Amsterdam
Achenbach, J. D., 1998. Lamb waves as thickness vibrations superimposed on a membrane carrier wave, J. Acoust. Soc. Am. 103, 2283–2285
Achenbach, J. D., 2000. Calculation of surface wave motions due to a subsurface point force: an application of elastodynamic reciprocity, J. Acoust. Soc. Am. 107, 1892–1897
Achenbach, J. D. and Kitahara, M., 1986. Reflection and transmission of an obliquely incident wave by an array of spherical cavities, J. Acoust. Soc. Am. 80, 1209–1214
Achenbach, J. D. and Xu, X., 1999a. Wave motion in an isotropic elastic layer generated by a time-harmonic point load of arbitrary direction, J. Acoust. Soc. Am. 106, 83–90
Achenbach, J. D. and Xu, X., 1999b. Use of elastodynamic reciprocity to analyze point-load generated axisymmetric waves in a plate, Wave Motion 30, 57–68
Achenbach, J. D., Gautesen, A. K. and McMaken, H., 1982. Ray Methods for Waves in Elastic Solids. Pitman Advanced Publishing Program, Boston, Massachusetts
Achenbach, J. D., Kitahara, M., Mikata, Y. and Sotiropoulos, D. A., 1988. Reflection and transmission of plane waves by a layer of compact inhomogeneities, PAGEOPH 128, 101–118
Angel, Y. C., and Achenbach, J. D., 1985. Reflection and transmission of elastic waves by a periodic array of cracks, Wave Motion 7, 375–397
Auld, B. A., 1973. Acoustic Fields and Waves in Solids, Vols. I and II. Reprinted R. E. Krieger Publ. Co. 1990, Malabar, Florida
Auld, B. A., 1979. General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients, Wave Motion 1, 3–10
Banerjee, P. K. and Kobayashi, S. (eds.), 1992. Advanced Dynamic Analysis by Boundary Element Methods. Elsevier Applied Science, London and New York
Belousov, Y. I. and Rimskii-Korsakov, A. V., 1975. The reciprocity principle in acoustics and its applications to the sound fields of bodies, Sov. Physics – Acoustics 21, 103–109
Beskos, D. E., 1987. Boundary element methods in dynamic analysis, Appl. Mech. Rev. 40, 1–23
Betti, E., 1872. Teori della elasticita, Il Nuove Ciemento (Series 2), 7–10
Bleistein, N., 1984. Mathematical Methods of Wave Phenomena. Academic Press, Orlando, Florida
Block, G., Harris, J. G. and Hayat, T., 2000. Measurement models for ultrasonic nondestructive evaluation, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 47, 604–611
Blok, H. and Zeylmans, M. C. S., 1987. Reciprocity and the formulation of inverse profiling problems, Radio Science 22, 1137–1147
Bonnet, M., 1995. Boundary Integral Equation Methods for Solids and Fluids. John Wiley and Sons, New York
Burridge, R. and Knopoff, L., 1964. Body force equivalents for seismic dislocations, Bull. Seismol. Soc. Am. 54, 1875–1888
Chao, C. C., 1960, Dynamical response of an elastic half-space to tangential surface loadings, J. Appl. Mech. 27, 559–567
Chimenti, D. E., 1997. Guided waves in plates and their use in materials characterization, Appl. Mech. Rev. 50, 247–284
Christensen, R. M., 1972. Theory of Viscoelasticity – An Introduction. Academic Press, New York
Cohen, J. K. and Bleistein, N., 1977. An inverse method for determining small variations in propagation speed, SIAM J. Appl. Math. 32, 784–799
Collin, R. E., 1960. Field Theory of Guided Waves. Reprinted IEEE Press 1991, New York
Courant, R. and Hilbert, D., 1962. Methods of Mathematical Physics Vol. II. Interscience Publishers, New York
Cremer, L., Heckl, M. and Ungar, E. E., 1973. Structure-borne Sound. Springer-Verlag, New York
Crighton, D. G., Dowling, A. P., Ffowcs Williams, J. E., Heckl, M. and Leppington, F. G., 1992. Modern Methods in Analytical Acoustics. Springer-Verlag, London
d'Alembert, J.-le-Rond, 1747. Investigation of the curve formed by a vibrating string (transl.). In Lindsay R. B. (ed.), 1972, Acoustics: Historical and Philosophical Development, Dowden, Hutchinson and Ross, Stroudsbury, Pennsylvania, 119–130
de Hoop, A. T., 1995. Handbook of Radiation and Scattering of Waves. Academic Press, London
DiMaggio, F. L. and Bleich, H. H., 1959. An application of a dynamic reciprocal theorem. J. Appl. Mech. 26, 678–679
Dowling, A. P. and Ffowcs Williams, J. E., 1983. Sound and Sources of Sound. Ellis Horwood, Chichester, UK
Eringen, A. C. and Suhubi, E. S., 1975. Elastodynamics, Vol. II, Linear Theory. Academic Press, New York
Ewing, W. M., Jardetzky, W. S. and Press, F., 1957. Elastic Waves in Layered Media. McGraw-Hill, New York
Fahy, F., 1985. Sound and Structural Vibration. Academic Press, London
Fokkema, J. T. and van den Berg, P. M., 1993. Seismic Applications of Acoustic Reciprocity. Elsevier Science, Amsterdam
Foldy, L. L. and Primakoff, H., 1945. A general theory of passive linear electroacoustic transducers and the electroacoustic reciprocity theorem I, J. Acoust. Soc. Am. 17, 109–120
Graff, K. F., 1975. Wave Motion in Elastic Solids. Ohio State University Press, Columbus, Ohio
Graffi, D., 1946. Sul teorema di reciprocita nella dinamica dei corpi elastici, Mem. Acad. Sci. Bologna 10, 103–111
Gubernatis, J. E., Domany, E., Krumhansl, J. A., and Huberman, M., 1977. The Born approximation in the theory of the scattering of elastic waves by flaws, J. Appl. Phys. 48, 2804–2811, 2812–2819
Harris, J. G., 2001. Linear Elastic Waves. Cambridge University Press, Cambridge
Jones, D. S., 1986. Acoustic and Electromagnetic Waves. Clarendon Press, Oxford
Junger, M. C. and Feit, F., 1972. Sound, Structures and Their Interaction. MIT Press, Cambridge, Massachusetts
Keller, J. B. and Karal, F. C. Jr., 1964. Geometrical theory of elastic surface-wave excitation and propagation, J. Acoust. Soc. Am. 36, 32–40
Kino, G. S., 1978. The application of reciprocity theory to scattering of acoustic waves by flaws, J. Appl. Phys. 49, 3190–3199
Knopoff, L. and Gangi, A. F., 1959. Seismic reciprocity, Geophysics 24, 681–691
Kobayashi, S., 1987. Elastodynamics. In Computational Methods in Mechanics (ed. D. E. Beskos), Handbooks in Mechanics and Mathematical Methods Vol. 3, North-Holland, Amsterdam
Kupradze, V. D., 1963. Dynamical Problems in Elasticity. In Progress in Solid Mechanics Vol. 3 (eds. I. N. Sneddon and R. Hill). North-Holland, Amsterdam
Lamb, H., 1888. On reciprocal theorems in dynamics, Proc London Math. Soc. 19, 144–151
Lamb, H., 1904. On the propagation of tremors over the surface of an elastic solid, Phil. Trans. Roy. Soc. LondonA 203, 1–42
Lamb, H., 1917. Waves in an elastic plate, Proc. Roy. Soc. LondonA 93, 114–128
Liang, K. K., Kino, G. S. and Khuri-Yakub, B. T., 1985. Material characterization by the inversion of V(z), IEEE Trans. Son. Ultrason. 32, 266–273
Love, A. E. H., 1892. A Treatise on the Mathematical Theory of Elasticity. Dover, New York, 1944
Love, A. E. H., 1911. Some Problems of Geodynamics. Dover, New York, 1967
Lyamshev, L. M., 1959. A method for solving the problem of sound radiation by thin elastic plates and shells, Sov. Physics – Acoustics 5, 122–123
Lyon, R. H., 1955. Response of an elastic plate to localized driving force, J. Acoust. Soc. Am. 27, 259–265
Mal, A. K. and Knopoff, L., 1967. Elastic wave velocities in two component systems, J. Inst. Math. Applic. 3, 376–387
Maxwell, J. C., 1864. On the calculation of the equilibrium and stiffness of frames, Phil. Mag. 27, 294
McLachlan, N. W., 1961. Bessel Functions for Engineers. Clarendon Press, Oxford
Mikata, Y. and Achenbach, J. D., 1988. Interaction of harmonic waves with a periodic array of inclined cracks, Wave Motion 10, 59–72
Miklowitz, J., 1962. Transient compressional waves in an infinite elastic plate or elastic layer overlying a rigid half-space, J. Appl. Mech. 29, 53–60
Miklowitz, J., 1978. The Theory of Elastic Waves and Waveguides. Elsevier Science, Amsterdam
Mindlin, R. D., 1960. Waves and vibrations in isotropic elastic plates. In Structural Mechanics, pp. 199–232 (eds. J. N. Goodier and N. J. Hoff), Pergamon Press, New York
Morse, P. M. and Ingard, K. U., 1968. Theoretical Acoustics. McGraw-Hill, New York
Pao, Y.-H. and Mow, C.-C., 1973. Diffraction of Elastic Waves and Dynamic Stress Concentrations. Crane Russak, New York
Payton, R. G., 1964. An application of the dynamic Betti–Rayleigh reciprocal theorem to moving-point loads in elastic media, Q. J. Appl. Math. XXI, 299–313
Pekeris, C. L., 1955. The seismic surface pulse, Proc. Nat. Acad. Sci. USA 41, 469–480
Pierce, A. D., 1981. Acoustics: An Introduction to its Physical Principles and Applications. Acoustic Society of America, Woodbury, New York
Primakoff, H. and Foldy, L. L., 1947. A general theory of passive linear electroacoustic transducers and the electroacoustic reciprocity theorem II, J. Acoust. Soc. Am. 19, 50–120
Rayleigh, Lord, 1873. Some general theorems relating to vibrations, Proc. London Math. Soc. 4, 357–368
Rayleigh, Lord, 1877. The Theory of Sound, Vol. II. Dover reprint, Dover Publications, New York, 1945
Rayleigh, Lord, 1887. On waves propagated along the plane surface of an elastic solid, Proc. London Math. Soc. 17, 4–11
Santosa, F. and Pao, Y.-H., 1989. Transient axially asymmetric response of an elastic plate, Wave Motion 11, 271–296
Schenk, H. A., 1968. Improved integral formulations for acoustic radiation problems, J. Acoust. Soc. Am. 44, 41–58
Stokes, G. G., 1849. On the dynamical theory of diffraction, Trans. Cambridge Phil. Soc. 9, 1
Tan, T. H., 1977. Reciprocity relations for scattering of plane elastic waves, J. Acoust. Soc. Am. 61, 928
Thompson, R. B., 1994. Interpretation of Auld's electromechanical reciprocity relation via a one-dimensional example, Res. Nondestr. Ev. 5, 147–156
Vasudevan, N. and Mal, A. K., 1985. Response of an elastic plate to localized transient sources, J. Appl. Mech. 52, 356–362
Helmholtz, H. L., 1860. Theory des Luftschalls in Rohren mit offenen Enden, Borchardt-Crelle's J. 57, 1–70
Helmholtz, H. L., 1886. Ueber die physikalische Bedeutung des Princips der kleinsten Wirkung, Borchardt-Crelle's J. 100, 137–166, 213–222
Weaver, R. L. and Pao, Y.-H., 1982. Axisymmetric elastic waves excited by a point source in a plate, J. Appl. Mech. 49, 821–836
Weston, V. H., 1984. Multifrequency inverse problem for the reduced wave equation with sparse data, J. Math. Phys. 25, 1382–1390
Zhang, Ch. and Gross, D., 1998. On Wave Propagation in Elastic Solids with Cracks. Computational Mechanics Publications, Southampton, UK
Zhang, M. and Achenbach, J. D., 1999. Simulation of self-focusing by an array on a crack in an immersed specimen, Ultrasonics 37, 9–18